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PREFACE 

in order for you to develop an intuitive understanding of them. They are then 
rigorously discussed in the remainder of the chapter. Each chapter ends with a 
set of exercises that allow you to review and test your understanding of the 
new material. Examples and exercises have beenv selected from various dis-
ciplines and application domains, including business, engineering, science, 
mathematics, and statistics. Illustrative programs have been run and tested 
under both UNIX and DOS environments. 

Organization 
We begin with an overview of the computer organization in Chapter 1. The 
principal components of computer hardware — memory, control unit, arithme-
tic-logic unit, and input/output devices — are described. We then discuss com-
puter software and programming languages, explaining the differences 
between machine, assembly, and higher level languages. A brief history of the 
evolution of C is also given. We then describe the programming process: prob-
lem definition, program design, program coding, program compilation and 
execution, program testing and debugging, and program documentation. 
Algorithm development, which is the heart of computer programming, is also 
discussed in this chapter. 

We start learning the specifics of C in Chapter 2. A useful starting point for 
understanding computer programming is that all programs can be written 
using just three logical structures: sequential, selective, repetitive, or a combi-
nation thereof. We first discuss the sequential structure, which consists of one 
operation followed by another, and then introduce some C constructs sufficient 
to write simple sequential programs. In particular, we examine the main func-
tion, the C character set, various data types, variables and constants, arithmetic 
operators, assignment statements, input and output functions, type conver-
sions, and simple macros. 

The selective structure, which consists of a test for a condition followed by 
alternative paths that the program can follow, is discussed in Chapter 3. Selec-
tion among alternative processing is programmed with certain decision-mak-
ing constructs: conditional statement, nested conditional statement, multiway 
conditional statement, and constant multiway conditional statement. Besides 
introducing these constructs, we also examine the relational, logical, and condi-
tional expression operators necessary for understanding these constructs. 

The repetitive structure, also known as the iterative or loop structure, 
allows a set of program statements to be executed several times even though 
they appear only once in the program. This topic is discussed in Chapter 4. The 
constructs presented include while loop, do-while loop, for loop, and nested 
loops. The facilities for loop interruption are also discussed. 

A C program is usually developed by dividing it into logically coherent 
functional components, each of which carries out a specific task. We discuss the 
user-defined functions in Chapter 5. In particular, we look at how a function is 
defined and called, function prototypes, block structure, external variables, 
storage classes, separate compilation and data abstraction, and recursion. 

Arrays, which enable a user to organize and process a set of ordered data 
items, are the subject of Chapter 6. We discuss array type declaration, arrav ini-
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Chas emerged as the most widely used programming language for software 
development. It is a small, yet powerful language. It features modem 

control flow and data types that allow the development of well-structured 
programs. Its data types and control structures are directly supported by most 
computers, resulting in the construction of efficient programs. It is 
independent of any particular machine architecture or operating system, which 
makes it easy to write portable programs. It is this combination of rich control 
structures and data types, ability to get close to computer hardware, efficiency, 
portability, and concisenessi that has contributed to the popularity of C. 

Audience 
This book teaches computer programming using C. It does not presume prior 
knowledge of some other programming language, and teaches C from first 
principles. At the same time, it is a complete description of C. Even knowledge-
able C programmers should find the examples and exercises interesting and 
challenging. This book can be used either as a textbook for a course on pro-
gramming, as a source book for a training course on C, as a guide for self-teach-
ing C, or as a reference by software professionals. 

Approach 
The text is designed in such a way that it gradually introduces new concepts, 
gives examples based on the concepts introduced so far, and then builds on 
what you have already assimilated. There is a strong emphasis on examples. The 
book is full of illustrative programs that exemplify how different language con-
structs can be put together to solve a given problem. Examples in each chapter 
have been chosen so that they not only embody the various language con-
structs introduced in that chapter, but also use the ideas learned in previous 
chapters. In this way, concepts are reinforced and covered at a deeper level in 
each new context. In several instances, the same problem has been solved using 
different language constructs to clarify differences between them. Concepts are 
first introduced informally through one or more motivating example programs 

ix 
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tialization, and how array elements are accessed. We also study arrays as func-
tion arguments. 

We examine in Chapter 7 one of the most sophisticated features of C: point-
ers. After introducing the basics of pointers, such as pointer type declaration, 
pointer assignment, pointer initialization, pointer arithmetic, pointer compari-
son, and pointer conversion, we discuss the relationship between functions 
and pointers, arrays and pointers, strings and pointers, and multidimensional 
arrays and pointers. We then look at pointer arrays, pointers to functions, and 
dynamic memory management. 

Structures allow a fixed number of data items, possibly of different types, 
to be treated as a single object, whereas unions allow a number of different 
types of grouped data items to be referred to using the same name. These top-
ics form the subject matter of Chapter 8. Besides introducing the techniques for 
defining and using structures and unions, we discuss the scope rules for struc-
ture definitions, structures as function arguments, structures as function val-
ues, nested structures, arrays of structures, structures containing arrays, struc-
tures containing pointers, and self-referential structures. 

Systems programs frequently require the capability to manipulate individ-
ual bits of a word. C provides four operators, called bitwise logical operators, 
for masking operations on bits, and two operators, called the bitwise shift oper-
ators, for shifting bits in a word. In addition, C allows a word to be partitioned 
into groups of bits, called bit-fields, and names to be assigned to them. We 
study these features in Chapter 9. 

C does not provide language constructs for input/output (I/O) operations. 
However, ANSI C has defined a rich set of functions to provide a standard I/O 
system for C programs. We discuss in Chapter 10 the functions available in the 
standard I/O library and their use in writing applications involving file pro-
cessing that require large amount of data to be read, processed, and saved for 
later use. 

The C preprocessor, which can conceptually be thought of as a program 
that processes the source text of a C program before it is compiled, is the subject 
of Chapter 11. The three major functions of the C proeprocessor discussed are 
macro replacement, conditional inclusion, and file inclusion. Macro replace-
ment is the replacement of one string by another, conditional inclusion is the 
selective inclusion and exclusion of portions of source text on the basis of a 
computed condition, and file inclusion is the insertion of the text of a file into 
the current file. In addition, the line, error, pragma, and null directives, and the 
predefined macro names are also described. 

We discuss some additional C features in Chapter 12. In particular, we 
describe the type definition facility, which allows synonyms to be defined for 
existing data types; the type qualification facility, which permits greater control 
over program optimization; the enumeration type, which provides the facility 
to specify the possible values of a variable by meaningful symbolic names; the 
facility to define functions that take variable number of arguments; the storage 
class specifier register, which can speed up programs by specifying to the com-
piler the heavily used variables to be kept in machine registers; facilities for 
alternative representation of characters; and the goto statement, which can be 
used to branch around one or more statements. 
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The book contains six appendices. Appendix A describes functions 
included in the standard library but not presented in the text earlier. Appendix 
B summarizes C operators together with their precedence and associativity. 
Appendix C explains the main differences between ANSI C and the version of 
C as described in Kernighan and Ritchie's 1978 book "The C Programming 
Language." Those of you who still have pre-ANSI C compilers will find this 
appendix particulary useful. Appendix D reviews the decimal, binary, octal, 
and hexadecimal number systems, discusses how numbers in any one of these 
systems can be converted into numbers in the others, and describes how num-
bers and characters are represented inside the computer. Appendix E gives a 
table of ASCII and EBCDIC character codes and equivalent representations of 
some decimal numbers in the binary, octal, and hexadecimal systems. Appen-
dix F lists some classical references on programming and C. 

We believe that the best way to learn programming is by reading, writing, 
and experimenting with programs. To increase your understanding of C, we 
encourage you to read and re-read the example programs given in the book 
and to solve as many exercises as you can. We also encourage you to experi-
ment with the programs by running them with different test inputs, by modify-
ing them to use alternate constructs, and by enhancing them with error check-
ing and additional functionality. The source code for the programs given in the 
illustrative examples has been made available on a compainion diskette to aid 
this process. 

We hope that this text will make problem solving on computers an exciting 
and rewarding endeavor, and that you will find computer programming a fun 
experience. We appreciate receiving suggestions for improvements and ideas 
for additional illustrative examples and exercises. 
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1 Computers 
and Programming 

To be able to program well, in addition to mastering the details of a 
programming language, you need to understand the nature of computers 

and the process of developing computer programs. We summarize the basic 
concepts of computers and their programming in this chapter. 

We first discuss computer hardware and software. Hardware refers to the 
physical equipment that makes up a computer. Software refers to programs that 
make computers do useful work. A computer program is a sequence of instruc-
tions that a computer follows to solve a particular problem. We then describe 
different types of programming languages and the place of the programming 
language C in this spectrum. Finally, we discuss the programming process, that 
is, the steps involved in developing a computer program. 

1.1 HARDWARE 
A computer is composed of five principal components: (i) input device, (ii) 
memory, (iii) control unit, (iv) arithmetic-logic unit, and (v) output device. The con-
trol and arithmetic-logic units are collectively referred to as the central process-
ing unit. Figure 1.1 shows the logical organization of the principal components 
of a computer. The arrows in the figure represent information flow within the 
computer. ! 

The input device converts information from a form suitable to human 
users into one suitable for a computer. The control unit manages the computa-
tion and directs the computer-usable information provided by the input device 
to the appropriate units for processing. The memory stores the information as 
directed by the control unit. The arithmetic-logic unit performs arithmetic 
operations and conducts comparisons of stored information to make logical 
decisions. After the completion of a computation, the control unit directs the 
results of the computation to the output device; it may also direct that the re-
sults be stored back in memory for future use. The output device converts the 
results into a form convenient for human users. 

We will now look into these components and their interactions in some 
detail. 
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Figure 1.1. Principal components of a computer system 

1.1.1 Memory 
Memory is used to store both data and program instructions. It also holds 
intermediate and final results of a computation. 

• Memory can be visualized as an ordered sequence of storage locations, or 
cells, labeled from zero upwards. The label of a location is called its address; 
each location is called a word and consists of bits. A bit is a computer abbrevia-
tion for a binary digit and can contain either a 0 or 1. Eight adjacent bits are 
referred to as a byte. A word usually consists of 8,16, or 32 bits. A 16-bit word is 
usually divided into 2 bytes and a 32-bit word into 4 bytes. Figure 1.2 gives a 
visual representation of a 16-bit word-addressable computer memory. 

When some information is stored in a memory location, the previous con-
tents of that location are overwritten. The contents of a location remain unal-
tered when information is retrieved from it. 

1.1.2 Control Unit 
The control unit fetches, interprets, and controls the execution of the program 
instructions stored in computer memory. It also directs and coordinates all 
other units of a computer. 

We briefly describe the execution of a program instruction. A program 
instruction specifies the operation and the operands (data) on which the opera-
tion is to be performed. Associated with the control unit are some special stor-
age locations, called registers, that have very fast access time. The memory 
address of the instruction to be executed is first placed in a special register, 
called the program counter, from where it is transferred to the memory address 
register. A memory-read operation is then performed that copies the instruction 
from memory into the memory buffer register. From the memory buffer register, 
the instruction is transferred to the instruction register, where it is decoded to 
identify the operation and the operands. The control unit then causes the oper-
ation indicated by the instruction to be executed. Operations requiring arith-
metic or logical computations are carried out using special registers and cir-
cuits of the arithmpHr-lncrir unit-
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Address Word 
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6 

Figure 1.2. Visual representation of computer memory 

Every time an instruction is moved into the instruction register, the pro-
gram counter is automatically incremented, so that after the execution of the 
instruction, the program counter contains the memory address of the next 
instruction. It is also possible to load the program counter with a memory 
address other than the next one in sequence. 

1.1.3 Arithmetic-Logic Unit 
The arithmetic-logic unit performs arithmetic operations and conducts com-
parisons of data to make logical decisions. This unit contains the necessary 
components, such as adders, multipliers, counters, and comparators, for carrying 
out these operations. 

The arithmetic-logic unit, like the control unit, also contains several regis-
ters, the most important being the accumulator in which the results of arithmetic 
and logical operations are produced. Typical instructions will load the accumu-
lator with a data value from memory, add to it another data value, store the 
result back in memory, clear the accumulator to zero, shift its contents left or 
right, or complement its contents. 

1.1.4 Input and Output Devices 
Input and output (I/O) devices are the means of communication between 
human users and a computer. An input device is used to enter data to be 
manipulated into memory and an output device is used to display or record 
the results of this manipulation. Some important I/O devices are: (i) terminal, 
(ii) printer, (iii) magnetic tape unit, and (iv) magnetic disk unit. 

Terminal 

A computer terminal provides both input and output capability. Input is 
accomplished by keying information on a keyboard. Output is displayed on a 
video monitor. Some terminals are equipped with graphic capabilities. With 
some graphic terminals, the user can communicate with a computer by point-
ing at information displayed on the screen using a mouse. A mouse is a small 
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object, containing one to three buttons, that moves a pointer on the video mon-
itor when it is rolled on the desk. 

Printer 

A printer is an output device capable of accepting information from 
computer's memory and producing a corresponding printed record on paper, 
sometimes called the hard copy. A great .variety of printers are available, includ-
ing line printers, matrix printers, laser printers, and ink-jet printers. They differ 
in speed, cost, reliability, and the quality of output. 

Magnetic Tape Unit 

Magnetic tape units have the dual capacity of reading (input) and writing (out-
put) by either sensing (reading) the magnetized spots or by magnetizing (writ-
ing) areas in parallel tracks along the length of a magnetic tape. Magnetic tape 
units come in a variety of sizes ranging from the larger reel tape units to units 
no bigger than a portable cassette tape unit. 

A magnetic tape unit is a sequential device: to access a specific area of the 
magnetic tape, the entire earlier portion of the tape must be scanned first. 

Magnetic Disk Unit 

A magnetic disk unit is an I/O device with the capability to read or write data 
sequentially as well as randomly. Random access permits access to any specific 
portion of information without accessing the preceding information. 

A magnetic disk is a thin disk of metal coated with magnetic recording 
material. A stack of disks mounted on a common spindle is called a disk pack. 
Data is stored as magnetized spots on concentric circles called tracks that are 
numbered and divided into sectors. A group of all the tracks with the same 
number on all the surfaces of a disk pack is called a cylinder. Data is read and 
written using an access mechanism that consists of read/write heads, one for 
each of the recording surfaces. 

A floppy disk (also called diskette) consists of a plastic disk coated with mag-
netic material and comes in two sizes — 3.5 inch and 5.25 inch. The floppy 
disks operate much the same way as the hard magnetic disks, but have rela-
tively less capacity, larger access time, and are less expensive. The main advan-
tage of the floppy disks is that they are portable — they can be used to transfer 
information from one computer to another. 

1.2 SOFTWARE 
A finite sequence of instructions that a computer follows to solve a particular 
problem is called a computer program. Some programs, called systems programs, 
direct the internal operations of a computer, such as controlling input and out-
put devices or managing storage areas within the computer. Others, called 
application programs, direct a computer to solve user-oriented problems, such as 



SECTION 1.2 / SOFTWARE 5 

preparing electricity bills, determining the rate of return for a proposed project, 
or calculating the stress factors for a building structure. Collectively, the group 
of programs that a computer uses is referred to as software. 

1.2.1 Programming Languages 
Every computer has its own language, called machine language, that depends on 
the specific hardware of the computer. A program written in a machine lan-
guage is machine-dependent and is good only for that particular type of a com-
puter. An instruction for a computer specifies precisely the operation to be per-
formed. In machine language, it consists of a given number of bits; each bit, or 
a group of contiguous bits, signifies some required action. Thus, a machine-lan-
guage programmer must know the numeric codes of various operations and 
must keep track of the address of each data item in memory. 

Programming in machine language is cumbersome and error-prone. It is 
difficult to make modifications to a machine-language program because to 
move even a single data item, all instructions that manipulate it must be 
changed to reflect the new address of the memory cell containing this data 
item. 

These difficulties may be alleviated somewhat by writing programs in 
assembly language, wherein the sequences of l's and O's are replaced by sym-
bols. Data items are referred to by descriptive names, such as gross or tax, 
and operations are specified in symbolic codes, such as ADD or HALT. However, 
since a computer does not "understand" assembly language, an assembly lan-
guage program is first translated into machine-language instructions by a sys-
tems program, called an assembler, before it can be executed. 

Programming in assembly language is relatively convenient as the pro-
grammer does not have to keep track of as many details as with the machine 
language. However, the programmer is still concerned with tedious details, 
such as indexing and storage locations, in addition to writing a complex 
sequence of instructions. Furthermore, assembly language programs written 
for one computer generally will not execute on another. It is for these reasons 
that languages known as higher-level languages have been developed. 

Higher-level languages are akin to our written languages. They relieve pro-
grammers from the burden of low-level details and allow them to concentrate 
on the problem being solved. Higher-level language programs contain very 
few of the machine-dependent details required in machine or assembly lan-
guage programs, and they may be used with little or no modification on a vari-
ety of computers. They are also much easier to maintain and update. 

A higher-level language program also needs to be translated into machine 
language instructions before it can be executed. This translation, called the com-
pilation, is performed by a systems program called a compiler. The original pro-
gram is called the source program and its translation the object program. 

As an illustration of the difference between machine, assembly, and higher-
level languages, given below are three versions of a program that adds the 
numbers B and C stored in two different memory locations and stores the result 
A in a third memory location: 
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Machine Language Version Assembly Language Version Higher-Level 
Language Version 

016767 000012 000014 GO: MOV B A B = 100 
066767 000006 000006 ADD C A C = 150 
000000 HALT A = B + C 
000100 B .WORD 100 
000150 C .WORD 150 
000000 A .WORD 

.END 
0 
GO 

You are not expected to understand these programs. However, the higher-level 
language program is obviously more readable. 

C is a higher-level language, but provides several powerful operations 
such as bit manipulations that are typically found only in assembly languages. 
Some other popular higher-level languages include BASIC, FORTRAN, 
COBOL, PL/1, Algol, Pascal, and Ada. 

1.2.2 C 
C belongs to the "Algol family" of programming languages and gets its name 
from being the successor to the B language. It was designed by Dennis Ritchie 
in about 1972 as the systems language for the UNIX operating system on a 
PDP-11 computer at the AT&T Bell Laboratories. C was developed as an alter-
native to the systems Language B, developed by Ken Thompson in about 1970 
for the first UNIX operating system on a PDP-7 at the Bell Laboratories. B was 
an offspring of BCPL, developed by Martin Richards in 1969 at the Cambridge 
University. The earlier languages belonging to this ancestry are Cambridge's 
CPL (1963) and Algol 60 (1960). 

C has acquired an immense following in recent times, and many commer-
cial implementations of C exist on a variety of machines. Initially the book The 
C Programming Language by Brian Kernighan and Dennis Ritchie served as the 
standard language reference. To propose a standard for C, a technical subcom-
mittee on C language standardization, X3J11, was formed by the American 
National Standards Institute (ANSI) in 1982. The goal of this committee was to 
produce an unambiguous and machine-independent standard definition of C, 
while retaining its original spirit. After considerable debate and deliberation, 
the standard was finalized in 1989 as the American National Standard for 
Information Systems-Programming Language C, X3.159-1989. This book is 
based on C as defined by this standard. 

1.3 PROGRAMMING PROCESS 
The process of developing a computer program to solve a specific problem 
involves the following steps: 

1. Problem Definition 
2. Program Design 
3. Program Coding 
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4. Program Compilation and Execution 
5. Program Testing and Debugging 
6. Program Documentation 

Although listed as distinct, these steps tend to blend into each other. The 
later steps sometimes feed back into the previous ones, making the whole pro-
cess iterative. 

1.3.1 Problem Definition 
A precise definition of the problem that the program is meant to solve is an 
essential prerequisite for a successful program. Defining a problem involves 
obtaining answers to the following questions: 

• What must the program do? 
• What outputs are required and in what form? 
• What inputs are available and in what form? 

Consider, for example, the generation of an inventory report. When the quan-
tity for an item in stock falls below the reorder level, a replenishment order is 
placed. The amount of the order, called the economic order quantity EOQ, is 
given by 

EOQ = (2AO/CI)1/2 

where A is the annual usage of the item, O the ordering cost, C the unit cost, 
and I the interest rate for carrying inventory. The reorder level R is given by 

R = L x W 

where L is the lead time — time between placing an order and the arrival of the 
item — in weeks, and W is the weekly usage. The purpose of the inventory pro-
gram can be stated as follows: 

The inventory program must provide the order quantity for each item whose cur-
rent stock has fallen below the reorder level. 

We now have to specify the outputs of the program. This step usually 
requires interaction with the potential users of the program outputs. We 
assume that the output of the inventory program is required to be in the form 
of an inventory report as shown in Figure 1.3. The report heading consists of 
the report title followed by the column names. The report body contains the 
item code, the current stock, the reorder level, and the order quantity for each 
item that needs to be reordered. The relative position and the largest value of 
each of the data items in the report have also been shown in the figure. 

Is this a complete specification of the program outputs? Consider the fol-
lowing additional questions that should also be answered: 

• How many pages can there be in the inventory report? Do pages need to 
be numbered? If the report is more than one page, do we need to repeat 
the title and the column names on every page, or do we require them 
only on the first page, or do we need only the column names on subse-
quent pages? 
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• 

Figure 1.3. The output format for the inventory problem 

• How should the program respond to exceptions? What should be 
printed if the value of a data item turns out to be larger than the speci-
fied largest value? What if the report has more pages than the antici-
pated maximum? 

•-Should the items be printed in any particular order? In ascending or 
descending order of item code? In descending order of order quantity? 
In ascending order of current stock? Or is the ordering not important? 

One could add several other questions to this list. Should the program also 
save information about the items reordered on a disk file for feeding as input to 
a purchase monitoring program? Should the report be dated? However, many 
times it is best to start with answers to a reasonably complete set of questions, 
initiate the design, and then revisit the output specification to make it firm. The 
key point to remember is that the assumptions at every iteration must be docu-
mented as part of the problem definition, as they crucially affect the program 
design. If any of the assumptions become invalid, the program may have to be 
modified to reflect the new reality. 

The output specification is followed by an investigation of what inputs are 
required to generate the desired outputs and how the inputs will be made 
available to the program. Inputs can be free-format in which the data items are 
separated by some special character (usually a space), or in a stylized form in 
which every data item has a fixed position on the data line. They may be sup-
plied interactively by the user in response to prompts from the program, or 
they may be prepared in advance specifically for the use of the program, or 
they may be the outputs of some other program. 

For the inventory program, we assume that the input consists of a line of 
data for each item in the stock, as shown in Figure 1.4. The largest value of each 
data item has also been specified. 

We need to answer some additional questions for a complete input specifi-
cation: 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 

Item 
Code 

Ordering 
Cost 

Unit 
Cost 

Rate Weekly 
Usage 

Lead 
Time 

Current 
Stock 

9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9> 9 9 

Figure 1.4. The input format for the inventory problem 

• Is there a fixed number of stock items that need to be processed, or is it a 
variable number? 

• In what order, if any, do the stock items appear in input? 
• Can there be errors in input (alphabetic characters in an item code, for 

•example) or has the input been validated by some other program? 

Once again, answers to these and other relevant questions should be docu-
mented as part of the problem definition. 

The complete set of requirements and assumptions constitute the problem 
definition. 

1.3.2 Program Design 
Having defined a problem, the next step in the programming process involves 
devising an algorithm, or a sequence of steps, by which a computer can produce 
the required outputs from the available inputs. An algorithm for solving a 
problem can be devised by starting with the problem and dividing it into major 
subtasks. Each subtask can then be further divided into smaller tasks. This pro-
cess is repeated until each task reduces to one that is easily doable and does not 
require further subdivision. This process of designing an algorithm by succes-
sive division of a problem into subtasks is known as the top-down design, and 
each successive subdivision is referred to as a stepwise refinement. 

We illustrate the top-down design by devising an algorithm for solving the 
inventory problem. For simplicity, we assume that the inventory report con-
tains no more than one page, the stock items may be printed in any arbitrary 
order, and the data is perfect so that no error checking is necessary. 

The problem of printing the inventory report can be divided into two sub-
tasks: 
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1. Print inventory report: 
1.1 Print heading 
1.2 Print body 

The task of printing the heading can be further divided into two subtasks: 

1.1 Print heading: 
1.1.1 Print title 
1.1.2 Print column names 

The task of printing the body can also be decomposed into two subtasks: (i) 
reading data for a stock item, and (ii) printing a report line for the item, if nec-
essary. These subtasks must be performed for every stock item. Thus, the fol-
lowing is a refinement of the task of printing the body: 

1.2 Print body: 
For each stock item, do 1.2.1 and 1.2.2 
1.2.1 Read data for the item 
1.2.2 Print a report line for the item (if necessary) 

The italicized statement controls the number of times the two subtasks are 
performed. It is a control construct, not a subtask. Thus, the refinement of a task 
consists of its decomposition into subtasks and constructs to' control their exe-
cution. 

The task of printing a report line for a stock item can be further decom-
posed into the following subtasks: (i) computation of the reorder level for the 
item, (ii) computation of the economic order quantity for the item, and (iii) 
printing of the data line for the item, if necessary. Subtasks (ii) and (iii) are per-
formed only for an item whose current stock is below its reorder level. Thus, 
the following is a refinement of the task of printing a report line: 

1.2.2 Print a report line for the item (if necessary): 
1.2.2.1 Compute the reorder level for the item 
Only if the current stock for the item is less than the reorder level, 
do 1.2.2.2 and 1.2.2.3 
1.2.2.2 Compute the economic order quantity for the item 
1.2.2.3 Print the data line for the item 

The italicized statement is another control construct that allows some sub-
tasks of a task to be conditionally performed. 

Figure 1.5 is a graphic representation of the top-down decomposition of 
the problem of printing the inventory report. The following is a complete 
description of the algorithm for solving this problem: 

1. Print inventory report: 
1.1 Print heading: 

1.1.1 Print title 
1.1.2 Print column names 

1.2 Print body: 
For each stock item, do 1.2.1 and 1.2.2 
1.2.1 Read data for the item 
1.2.2 Print a report line for the item (if necessary): 
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Figure 1.5. A top-down decomposition of the inventory problem 

1.2.2.1 Compute the reorder level for the item 
Only if the current stock for the item is less than the reorder level, 
do 1.2.2.2 andl.2.2.3 
1.2.2.2 Compute the economic order quantity for the item 
1.2.2.3 Print the data line for the item 

1.3 Stop 

The problem definition has a significant impact on the algorithm develop-
ment. Reconsider the inventory problem, but redefine the output specifications 
to allow more than one page of report and require that the report heading be 
printed on every page. An algorithm for solving this modified problem is as 
follows: 

1. Print inventory report: 
For each stock item, do 1.1 and 1.2 
1.1 Read data for the item 
1.2 Print a portion of the report (if necessary): 

1.2.1 Compute the reorder level for the item 
Only if the current stock for the item is less than the reorder level, 
do 1.2.2 through 1.2.5 
1.2.2 Compute the economic order quantity for the item 
1.2.3 Print heading (if necessary): 
Only if it.is the beginning of the report or the line count is not less than 
the data lines allowed on a page, do 1.2.3.1 through 1.2.3.3 

1.2.3.1 Print title 
1.2.3.2 Print column names 
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1.2.3.3 Set the line count to 0 
1.2.4 Print the data line for the item 
1.2.5 Increment the line count by 1 

1.3 Stop 

Many subtasks in the revised algorithm are the same as in the original 
algorithm. However, the report heading is now prirtted only after an item to be 
reordered has been found, which has the desirable consequence that no page is 
printed with only heading and no data lines on it. A line counter keeps track of 
the number of data lines printed on the current page, and the heading is 
printed after the permissible number of data lines have been printed on the 
page. 

1.3.3 Program Coding 
Program coding is the process of expressing the algorithm developed for solv-
ing a problem as a computer program in a programming language. An algo-
rithm developed using the top-down design methodology can be directly 
coded in C. Every higher-level task is coded as a separate function. Functions 
corresponding to higher-level tasks contain program statements, or calls to 
functions corresponding to tasks directly below in the top-down decomposi-
tion. Tasks at the lowest level are coded either as one or more C statements or 
as separate functions, depending upon the complexity of the task. 

We encourage structured programming to code individual C functions. 
Structured programming entails the simplification of program control logic so 
that what a program does to data is more easily understood. A basic fact about 
structured programming is that all programs can be written using a combina-
tion of only three control structures: sequential, selective, and repetitive. The 
sequential structure consists of a sequence of program statements that are exe-
cuted one after another in order. The selective structure consists of a test for a 
condition, followed by alternative paths that the program can follow. The 
repetitive structure consists of program statements that are repeatedly exe-
cuted while some condition holds. C provides constructs to directly represent 
these control structures. These constructs are described in Chapters 2 through 
4, and Chapter 5 discusses how a function is defined and interfaced with 
another function. 

To illustrate program coding, we give below a computer program for the 
inventory problem. This program implements the first algorithm, which 
assumes that the inventory report cannot be longer than one page. You are not 
expected to understand all the details of the program at this stage. However, 
you should be able to see the direct correspondence between the algorithm and 
the C program. 

/ * ' 
* Program to print the order quantity for those inventory items 
* whose current stocks are below their reorder levels. 
* / 

finclude <math.h> 
tinclude <stdio.h> 
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void print_heading(void); 
void print_title(void); 
void print_column_names(void) ; 
void print_body(void) ; 
int read_data(void) ; 
void print_report_line(void) ; 
int item_code, lead_time; 
float order_cost, unit_cost, interest_rate, weekly_use, 

current_stock; 

/* Main Task 1 */ 
int main(void) { 

printjheading () ; /* calling 1.1 */ 
print_body () ; /* calling 1.2 */ 
return 0; 

} 

/* Task 1.1 */ 
void print_heading(void) { 

print_title(); 
print_column_names(); } -

/* Task 1.1.1 */ 
void print_title(void) { 

printf(" ***** INVENTORY REPORT *****\n\n") 
} 

/* Task 1.1.2 */ 
void print_column_names(void) { 

printf( 
" ITEM CURRENT REORDER ORDER\n"); 

printf( 
" CODE STOCK LEVEL QUANTITY\n"); 

printf( 
" " ) ; . 

printf("\n\n"); 
} 

/* Task 1.2 */ 
void print_body(void) { 

/* repetitive structure: for each stock item, do 1.2.1 and 1.2.2 */ 
while (read_data () ) /* calling 1.2.1 *•/ 

print_report_line () ; /* calling 1.2.2 */ 
} 

/* calling 1.1.1 */ 
/* calling 1.1.2 */ 
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/* Task 1.2.1 */ 
int read_data(void) { 

return scanf("%6d %6f %7f %3f %6f %2d %7f", 
&item_code, &order_cost, &unit_cost, 
&interest_rate, &weekly__use, 
&lead_time, &current_stock) !=.EOF ? 1 : 0; 

} 

/* Task 1.2.2 */ 
void print_report_line(void) { • 

float reorder_level, order_qty; 

/* Task 1.2.2.1: compute the reorder level */ 
reorder_level = lead_time * weekly_use; 

/* selective structure: only if the current stock for the item 
is less than the reorder level, do 1.2.2.2 and 1.2.2.3 */ 

if (current_stock < reorder_level) { 
/* Task 1.2.2.2: compute the economic order quantity */ 
order_qty = 

sqrt((2 * 52 * weekly_use * order_cost) 
/ (unit_cost * interest_rate)); 

/* Task 1.2.2.2: print data line */ 
printf("%6d %12.2f %12.2f %12.2f\n", item_code, 

current_stock, reorder_level, order_qty); 
} 

} 

1.3.4 Program Compilation and Execution 
As mentioned in Section 1.2.1, a program written in a higher-level language 
like C must be translated into machine language instructions before it can be 
executed. C implementations do this translation in two steps: compilation and 
linking. The compilation step converts your source program into an intermedi-
ate form, called object code, and the linking step combines this object code with 
other code to produce an executable program. The advantage of this two-step 
approach is that you may split a large program into more than one file, compile 
these files separately, and then combine them later into one executable pro-
gram. Another advantage is that it becomes possible to build libraries of useful 
functions, such as the functions sqrt, scanf, and printf used in the inven-
tory program given in the previous section. The linker extracts the object code 
for the library functions used in your program from the library and combines it 
with the object code for your program. 
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The exact details of compiling and executing a program depend on the 
computer system being used. We illustrate this step for an IBM PC running the 
MS-DOS operating system, and for a machine running the UNIX System V 
Release 4 operating system. 

IBM PC 

First, you need to enter the statements that make up your program into a file 
using a text editor. You may use the editor EDLIN that comes with MS-DOS for 
this purpose. You may also use any word processor such as WordStar, Word-
Perfect, or Microsoft Word, but you must take care to create simple ASCII files. 
The text-formatting information added by the word processors in the default 
file formats used by them is not understood by the compiler. Some compilers, 
such as the Borland Turbo C and Microsoft C compilers, provide an editor spe-
cifically designed for programming. These editors are more convenient to use 
than a general purpose text editor. A discussion of how to use a text editor is 
beyond the scope of this book. If you are not familiar with text editors, read the 
user's guide or contact a local guru. By convention, the extension . c is used for 
C program file names. Thus, the program for the inventory problem may be 
keyed into a file named inventory. c. 

Assuming that your PC has the Microsoft C compiler, the program stored 
in the file inventory. c can be compiled by invoking the compiler with the 
command: 

cl inventory.c 
The compiler first produces an object file having the same base name as the 
source file, but with the extension . ob j. Thus, the object file will have the 
name inventory. ob j in our example. It then invokes the link program to 
combine the object file produced with the object code of the necessary library 
functions to produce the file containing the executable code. The executable file 
also has the same base name as the source file, but has the extension . exe. 
Thus, the executable file inventory. exe will be produced. 

You may now execute the inventory program by typing 

inventory 
This execution will expect you to provide the input for the program by typing 
data for the inventory items on the terminal. If the inventory data is available 
in a file named inventory. inp, you may provide it to the inventory pro-
gram using the command: 

inventory < inventory.inp 
The output of the program will be printed on the terminal. You may store the 
program output in a file named inventory. out using the command: 

inventory < inventory.inp > inventory.out 
Figure 1.6 summarizes the compilation and execution of a C program on an 

IBM PC using the Microsoft C compiler. 
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library 

EDLIN cl • inventory 

Figure 1.6. Compilation and execution of a program on an IBM PC 

UNIX 

With the UNIX operating system, you must first create a source file using a text 
editor. The two most popular text editors on the UNIX machines are vi and 
emacs. The source file is suffixed with the extension . c. Thus, you may enter 
the inventory program in the file inventory. c. 

You may compile this program by using the command 

cc inventory.c 
The cc command first converts the source program into the object program 
and then links it with the object code of the necessary library functions to pro-
duce the executable file. By default, cc searches only some of the C libraries. If 
your program uses a mathematical function, such as sqrt used by the inven-
tory program, you must explicitly instruct cc to search the math library by 
specifying the name of the library with the -1 option of the cc command: 

"cc inventory.c -lm 
The object file has the same base name as the source file, but has the extension 
. o. However, you will not find inventory. o in your directory after the com-
pletion of this command, since cc removes the object file once the executable 
file has been produced. 

Any executable file produced by cc gets the name a. out by default. Since 
the name a. out is not a meaningful name, you may supply an appropriate 
name for the executable version of the program by using the -o option when 
compiling the program: 

cc -o inventory inventory.c -lm 
This command produces an executable program file named inventory that 
you may execute as 

inventory 
This execution will expect input from the terminal and will print the output on 
the terminal. You may give the command 

inventory < inventory.inp > inventory.out 
to read input from the file inventory. inp and store the output in the file 
inventory.out. 
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library 

vi cc • a. out 

Figure 1.7. Compilation and execution of a program on a UNIX machine 

Figure 1.7 summarizes the compilation and execution of a C program on a 
UNIX machine. 

1.3.5 Program Testing and Debugging 
No matter how simple or complex, programs usually do not execute success-
fully for the first time; they contain a few errors or bugs. A program is, there-
fore, debugged and errors are removed until the program executes successfully. 
There are four levels of debugging: 

1. The programmer locates and corrects as many errors as possible by 
eyeing the program before compiling it. This process is referred to as 
desk checking. 

2. Errors in the syntax of the program, such as incorrect punctuations or 
misspelling of key words, are usually detected during the compilation 
of the program, and are called the compile-time errors. Some of these 
prove fatal and make it impossible to complete the compilation, while 
others generate diagnostics, or error messages, that show the sources of 
errors within the program, but the compilation continues. 

3. Errors such as an attempt to divide an arithmetic expression by zero 
will be detected only while the program is executing. Such errors are 
called the run-time, or execution-time, errors. When such errors are 
detected, the program execution is aborted and an error message is 
displayed. 

4. Logical errors that arise in the design of the algorithm, or in the coding 
of the program that implements the algorithm, cannot be detected 
automatically since such a program is syntactically correct. For exam-
ple, if the statement 

if (n == 1) return 1; 
in a function to calculate factorials is mistakenly written as 

if (n = 1) return 1; 
with the equality symbol (==) replaced by the assignment symbol (=), 
the program would be compiled and executed with no error mes-
sages. However, the results produced by the program would be incor-
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rect, since the function would now compute the factorial of any num-
ber as 1. 

Logical errors are the most difficult to diagnose and remove from a pro-
gram. A program is tested by executing it with a set of test inputs for which the 
results are already known, and verifying that it produces the same results. The 
test data should be such that it exercises all fragments of the program. 

A buggy program produces incorrect output, or it halts before producing 
the complete output. Locating where the bug is involves tracing the execution 
of the program and dumping the state of the program at significant points. One 
may employ debugging tools, such as symbolic debuggers, available on some 
computers, or manually insert print instructions at appropriate points in the 
source program for this purpose. By examining the output so produced, the 
programmer can use inductive reasoning to explain why the achieved result is 
different from the expected result, which leads to the source of the bug. 

1.3.6 Program Documentation 
Documentation for a program refers to a collection of information about the pro-
gram that specifies what is being done and how. It includes detailed require-
ments of the program, the layout of all output reports and input data, the top-
down decomposition, the algorithm for each component, the source listing 
created during the last compilation of the program, the input data used for test-
ing and the output of the test run, and finally a user's guide that provides pro-
cedural instructions for installing and executing the program. 

Program documentation should be generated as the program is being 
developed, and not as an afterthought. Every effort should be made to make 
programs self-documenting. The following programming practices are particu-
larly useful in this regard: 

1. Meaningful variable names suggestive of the entity represented should be 
used. For example, the statement 

value = principal,* (1 + rate) * years; 
should be used to implement the formula 

v = p (1 + r) n 

for finding the value accumulated after n years by the deposit of a 
given amount p at the simple interest rate r. 

2. Comments to provide information helpful in understanding the program 
should be included within the program. Comments should be used liber-
ally throughout the program to explain the purpose of the sections of 
the program that are not self-evident. Assumptions made in the vari-
ous sections should also be included as comments within the pro-
gram. Comments should be meaningful and to the point. 

Most computer programs are used, maintained, and updated by someone 
other than the original writer of the program. A program without proper docu-
mentation soon becomes unusable. 
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1.3.7 Illustrative Examples 
We now give some examples to further illustrate the process of algorithm 
development. 

Example 1 
The tax rate is 10% of the first $1000 and 20% of all additional income. Design an 
algorithm for printing the gross pay, the tax withheld, and the net pay of an employee, 
given the number of hours worked and the hourly wage rate. 

The desired algorithm is as follows: 

1. Print salary information: 
1.1 Read hours worked and wage rate 
1.2 Do computations: 

1.2.1 Compute gross pay: 
gross pay = hours worked X wage rate 

1.2.2 Compute tax : 
If gross pay is less than 1000 then 

tax = 0 .1 X gross pay 
otherwise 

tax = 100 + 0.2 X (gross pay - 1000) 
1.2.2 Compute net pay: 

net pay = gross pay - tax 
1.3 Print gross pay, tax, and net pay 
1.4 Stop 

Example 2 
Design an algorithm to find the value of n ! , where n is zero or any positive integer. 

By definition, 

n! = l x 2 x 3 x . .. x n > 0, and 0! = 1. 

The desired algorithm is as follows: 

1. Computation of n! : 
1.1 n less than 0: 

1.1.1 Report error 
1.1.2 Stop 

1.2 n equals 0: 
1.2.1 Print factorial = 1 
1.2.2 Stop 

1.3 n greater than 0: 
1.3.1 Let the initial value of factorial be 1 
1.3.2 Let the initial value of number be 1 
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1.3.3 Compute factorial: 
While number is not greater than n, do 1.3.2.1 and 1.3.2.2 
1.3.3.1 Multiply the current value of factorial and the 

current value of number giving the new value of 
factorial 

1.3.3.2 Increment the current value of number by 1 giving 
the next integer number 

1.3.4 Print the final value of factorial 
1.3.5 Stop 

Exercises 1 
1. Informatics employees are paid at the overtime rate of one and a half times the base 

rate for hours worked above 40 hours in a week. Informatics desires a payroll pro-
gram that reads, for every employee, the base pay rate and the number of hours 
worked and prints their weekly wages. It should also print the total of weekly 
wages paid by Informatics. Develop an algorithm to solve this problem. 

2. Each data line of a file contains four numbers. The first number represents a student 
id and the remaining three indicate the scores in three tests. Design an algorithm to 
compute for each student the average of three tests, the average score in each test for 
the whole class, and the average class score over all tests. 

3. Design an algorithm to convert a given number of pennies into dollars, quarters, 
dimes, nickels, and pennies. 

4. Design an algorithm to find the largest of a given set of numbers. 
5. Design an algorithm to arrange six numbers in descending order of magnitude. 
6. Design algorithms to find the sum of the following series: 

a. 1 + x + x2 + x3 +... + x50 

2! + 3! 4! + ' ' ' 12! 



Sequential Structure 

Now that we have acquired some background in the nature of computers 
and the process of developing computer programs, we will start learning 

the specifics of C. A basic fact about computer programming is that all 
programs can be written using a combination of only three control structures: 
sequential, selective, and repetitive. The sequential structure consists of a 
sequence of program statements that are executed one after another in order, 
the selective structure consists of a test for a condition followed by alternative 
paths that the program can follow, and the repetitive structure consists of 
program statements that are repeatedly executed while some condition holds. 
In this chapter, we introduce C constructs sufficient to write simple sequential 
programs. Selective and repetitive structures will be introduced in Chapters 3 
and 4 respectively. 

The sequential structure can be pictorially represented as shown in Figure 
2.1. 

Entry 

Exit 

Figure 2.1. Sequential structure 
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2.1 OVERVIEW 
We begin by analyzing two simple sequential programs. Our intent is to give 
you an overview of the various components of a C program so that you 
develop a feel for the language. In the subsequent sections, we will discuss in 
detail the concepts introduced informally through these examples. 

Example 1 
We first consider a program for printing Victor Hugo's famous quotation: 
Knowledge is Power. The algorithm for solving this problem is trivial — it 
consists of a single step of printing the specified sequence of characters. 

Here is the program: 

tinclude <stdio.h> 
int main(void) { 

printf("Knowledge is Power\n"); 
return 0; 

} 

Let us examine the various components of this program. 
All C programs are made up of one or more functions, each performing a 

particular task. Every program has a special function named main. It is special 
because the execution of any program starts at the beginning of its main func-
tion. This example program consists of only one function — the main function. 

When a function is called, it is usually provided a list of values, called argu-
ments. For example, if you are calling the function sqrt, you must provide the 
value whose square root is to be computed. The arguments that a function 
expects are specified in a parenthesized parameter list following the function 
name. The keyword void enclosed within a pair of parentheses in 

main(void) 
indicates that this main expects no arguments. 

An opening brace { following a function name and its parameter list marks 
the beginning, and the corresponding closing brace } the end, of the function 
body. A function body may contain zero or more variable declarations and state-
ments. Statements specify the computing operations necessary to achieve the 
desired result, and variables hold values during the computation. The main 
function in this program contains two statements, but no variable declarations. 

The first statement 

printf("Knowledge is Power\n"); 
is a call to the standard library function printf. There are several commonly 
used computations that are required in many programs. Instead of requiring 
every programmer to write code for such computations, C provides a standard 
library of commonly used functions. Appendix A contains a comprehensive 
description of the standard C library. When a program uses a function that is 
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not coded as part of the program, the compiler searches through the standard 
library for the missing function. If the compiler finds the function, it adds the 
necessary code for that function to the program. 

A function is called by following its name with a parenthesized list of argu-
ments. A sequence of characters enclosed within double quotation marks is 
called a string constant, or simply a string. When printf is supplied with a 
string as argument, it prints the characters between the double quotation 
marks. Thus, the printf statement in this program causes Hugo's quotation 
to be printed. The sequence \n represents the newline character and it causes 
the output to advance to the left margin on the next line. If we did not include 
\n in the string, the quotation would still be printed, but without a line 
advance in the output. The semicolon ; terminates the statement. 

Information relevant to the functions in the standard library is grouped 
into standard header files, and a program calling such a function must include 
the appropriate header file using the #include directive. Information about 
the printf function is contained in the header file <stdio. h> and the first 
line of this program 

#include <stdio.h> 
includes it in the program. 

A C function may return a value to its caller using a return statement. 
The main function is like any other C function, except that it is called by the 
environment in which the program is executed, and it should return its com-
pletion status to the environment. The keyword int before main in the line 

int main(void) 
indicates that main returns an integer value. By convention, a 0 is returned to 
indicate normal completion of the program, whereas a nonzero return value 
indicates abnormal termination. The second statement of this program will be 
executed after printf has completed successfully. We therefore return a 0 in 
the second statement 

return 0; 
to signal successful completion of the program. 

The following transcript shows a sample execution of this program on a 
Unix System V Release 4 machine, where the program text is available in a file 
named hugo. c: 

unix-> cc -o hugo hugo.c 
unix-> "hugo 
Knowledge is Power 
unix-> 

This particular computer uses the prompt unix-> to indicate that it is ready to 
accept commands from the user. The first command invokes the C compiler, 
compiles the program, and creates an executable program named hugo. The 
next command executes this program. The third line shows the output gener-
ated by the program. The last line indicates that the program execution is com-
plete and the computer is ready to accept the next command. 
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The following transcript shows the execution of this program on an IBM 
PC using the Microsoft C compiler: 

C> cl hugo.c 
C> hugo 
Knowledge is Power 
C> 

• Example 2 
• We now consider a program that computes the total interest earned on an 

investment that pays a fixed rate of simple interest when the principal remains 
invested for a specified number of years. Here is an algorithm for solving this 
problem: 

1. Read the amount of principal, interest rate (as a percentage), and the 
number of years for which the principal is to be invested. 

2. Convert the percentage rate read into a decimal fraction. 

3. Compute the total interest earned using the formula 

interest = principal X rate X years. 
4. Print interest. 

Here is the program: 

/ * 

* This program computes the total interest accrued on an 
* investment that pays simple interest at a fixed rate when the 
* principal is invested for the specified number of years. 
* / 

tinclude <stdio.h> 

int main(void) { 
/* variable declarations */ 
float principal, rate, interest; 
int years; 

/* prompt the user to provide input values */ 
printf("principal, rate, and years of investment? "); 

/* read the input values */ 

scanf("%f %f %d", sprincipal, &rate, Syears); 

/* compute interest */ rate = rate / 100 ; /* convert percentage into fraction */ 
interest = principal * rate * years; 
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/* print interest */ 
printf("interest = %f\n", interest); 

/* successful completion */ 
return 0; 

} 

The first new feature to note in this program is the use of comments to 
explain different segments of the program. The character sequence / * starts a 
comment and the sequence * / ends the comment. As shown, a comment may 
occupy part of a line, all of a line, or several lines. Comments may include any 
characters, but a comment cannot be placed inside another comment. Com-
ments are ignored by the compiler. They should be used liberally to improve 
the readability of the program. 

This program uses two functions from the standard library: scanf and 
printf. The program, therefore, includes the header file <stdio.h> in the 
line 

#include <stdio.h> 
The line 

int main(void) 
indicates that this main does not expect any argument and it returns an integer 
value to its execution environment. 

~ The next new feature introduced in this program is the variable declarations. 
All the variables used in a function are usually declared at the beginning of the 
function body. The main function of this program uses four variables: prin-
cipal, rate, years, and interest. They store the values of the principal 
amount, the rate of interest, the number of years the principal remains 
invested, and the interest earned respectively. 

A variable declaration, besides specifying that this variable is being used, 
also specifies the properties of the variable. In particular, it specifies the type of 
the variable. The type of a variable is a characteristic that restricts the variable 
to assume a particular set of values. For example, the type int specifies that 
the corresponding variable can only assume integer values, whereas the type 
float allows the variable to have real values. Thus, the declarations 

float principal, rate, interest; 
int years; 

establish the variables principal, rate, and interest to be of type float, 
and the variable years to be of type int. 

The first executable statement of main 
printf("principal, rate, and years of investment? "); 

calls the function printf, which prints a message asking the user to provide 
values for principal, interest rate, and the number of years of investment. 

The next statement 

scanf("%f %f %d", Sprincipal, irate, &years); 
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calls scanf, another function provided in the standard library. It reads the 
input values typed in by the user and assigns them to the variables princi-
pal, rate, and years respectively. 

The next statement 

rate = rate / 100; /* convert percentage into fraction */ 

is an assignment statement that causes the value of the variable rate to be 
divided by 100 and the result to be assigned as the newvalue of the variable 
rate. The previous value of rate is destroyed in the process. 

In rate / 100, the symbol / represents arithmetic division and it is one of 
the C arithmetic operators. An operator is a symbol that causes specific mathemat-
ical or logical manipulations to be performed. Other examples of arithmetic 
operators include + (addition), - (subtraction), and * (multiplication). 100 is an 
integer constant. A constant is an entity whose value does not change during pro-
gram execution. Other examples of constants include 3 . 1 4 1 5 9 2 6 5 , a floating-
point constant, ' C', a character constant, and "Knowledge is Power", a string 
constant. A combination of constants and variables together with the operators 
is referred to as an expression. The expression rate / 100 is an arithmetic ex-
pression as it involves only floating-point and integer data and an arithmetic 
operator. 

The next statement 

interest = principal * rate * years; 
causes the expression principal * rate * years to be evaluated, and the 
result is assigned to the variable interest. The next statement 

printf("interest = %f\n", interest); 
prints the value of interest. Finally, the statement 

return 0 
terminates the execution of the program, returning 0 to its execution environ-
ment. 

The following transcript shows an execution of this program: 

unix-> cc -o simplint simplint.c 
unix-> simplint 
principal, rate, and years of investment? 7500 8.75 5 
interest = 3281.250000 
unix-> 

The program was keyed into a file named simplint. c. The first command 
creates the executable simplint and the second command initiates its execu-
tion. The program prompts the user to provide values for principal, interest 
rate, and years of investment. The user-entered data has been italicized. The 
program then calculates interest and prints the fourth line. The program execu-
tion is now complete and the computer prompts the user for a new command. 

By now you should have developed some feel for the various building 
blocks that make up a sequential C program. We will now study them in detail. 
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2.2 CHARACTER SET 
The set of characters that may appear in a legal C program is called the charac-
ter set for C. This set includes some graphic as well as non-graphic characters. 
The graphic characters, shown in Table 2.1, are those that may be printed. The 
non-graphic characters, shown in Table 2.2, are represented by escape 
sequences consisting of a backslash \ followed by a letter. The character set 
also includes a null character, represented as \0. 

The graphic characters, other than decimal digits, letters, and blank, are 
referred to as special characters. Blank, horizontal and vertical tabs, newlines, 
and formfeeds are called whitespace characters. When necessary for clarity, we 
will represent the blank character as ty. 

The C compiler groups characters into tokens. A token is a sequence of one 
or more characters that have a uniform meaning. For instance, the token -> has 
a meaning that is quite distinct from that of the characters that make it up and 
is independent of the context in which -> appears. Some tokens, such as /, *, 
-, >, and =, are only one character long; others, such as ->, ==, >=, comments, 
and variable names, are several characters long. When collecting characters 
into tokens, the compiler always forms the longest token possible. 

Table 2.1. C character set (graphic characters) 

Character Meaning Character Meaning 

0,1,. . 9 Decimal digits Colon 
A,B, . . z Uppercase letters ; Semicolon 
a, b, . . ., . z Lowercase letters < Less than 
j Exclamation point = Equal to 

Double quotation mark > Greater than 
# Number/pound sign ? Question mark 
$ • Dollar sign @ "At" sign 
% Percent sign [ Left bracket 
& Ampersand sign \ Backslash 
' Apostrophe/single ] Right bracket 

quotation mark A Caret/circumflex 
( Left parenthesis Underscore 
) Right parenthesis \ Accent grave/back 
* Asterisk quotation mark 
+ Plus { Left brace 

Comma 1 Vertical bar 
- Minus/hyphen ) Right brace 

Period ~ Tilde 
/ Slash ¥ Blank/space 

Table 2.2. C character set (non-graphic characters) 

Character Meaning Character Meaning 

\a Audible alert (bell) \b Back space 
\f Form feed \n New line 
\r Carriage return \t Horizontal tab 
\v Vertical tab 
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C is a free-format language, meaning that tokens can go anywhere on a page 
and can be separated by any number of whitespaces. Thus, the program frag-
ment 

int main(void) { 
printf("Knowledge is PowerXn"); 
return 0; 

} 

can equivalently be written as 

int main(void){printf("Knowledge is Power\n");return 0;} 
However, as a matter of programming style, the latter form is never used. 

Programs are written with every statement starting on a new line and with 
proper indentation to bring out the program structure. We encourage you to 
study the style used in the example programs in the book and use it in your 
programs. 

2.3 DATATYPES 
Data is differentiated into various types. The type of a data element restricts the 
data element to assume a particular set of values. For example, on some 
machines, a data element of type int may only have integer values in the 
range -32,768 to +32,767. The basic C data types are: 

char a character in the C character set 
int an integer 
float a single-precision floating-point number 
double a double-precision floating-point number 

The qualifiers short and long may be applied to some of the above data 
types. Thus we have the following additional data types: 

short int also abbreviated as short 
long int also abbreviated as long 
long double an extended-precision floating-point number 

The qualifiers signed and unsigned may be applied to char, short int, 
int, or long int. unsigned variables can only have nonnegative values, 
while signed variables can have both positive and negative values. In the 
absence of explicit unsi'gned specification, int, short int, and long int 
are considered to be signed. The default signedness of char, however, is 
implementation-dependent. 

Many implementations represent a char in 8 bits, a short in 16 bits, an 
int in 16 or 32 bits, and a long in 32 bits. The width for float is often 32 bits 
and that of double 64 bits. These bit widths have not been specified by the C 
language, but have become traditional. All that C specifies is that the range of 
int may not be smaller than short, and the range of long may not be smaller 
than int. The magnitudes of float, double, and long double depend on 
the method used to represent the floating-point numbers, but a long double 
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is at least as precise as a double, and a double at least as precise as a float. 
The particular bit widths for an implementation are specified in that 
implementation's standard header files climits. h> and <f loat. h>. 

You may be wondering why C provides so many data types. The primary 
use for smaller data types, such as short int, is to economize on storage. For 
example, if you know that the largest value that your integer variable may 
assume is 1000, and a short int is represented in 16 bits whereas an int 
takes 32 bits, you may specify it to be of type short int. Similarly, char is 
sometimes used as a small integer type, as char normally takes only 8 bits. 
However, using a smaller integer type may increase program execution time as 
values of these types are converted into int before they are used in a computa-
tion. Unsigned integers are used to squeeze an extra bit for representing larger 
numbers when the sign bit is not needed. For example, the largest positive 
number that can be represented in a 16-bit signed int is 32,767, whereas 
65,534 can be represented in a 16-bit unsigned int. 

All types of integers and characters are collectively referred to as of integral 
type, and the types float, double, and long double as of floating-point type. 
The term arithmetic type is used to refer collectively to the integral and floating-
point types. 

2.4 CLASSES OF DATA 
A computer program manipulates two kinds of data — variables and con-
stants. 

2.4.1 Variables 
A variable is an entity used by a program to store values used in the computa-
tion. Every variable in C has a type and it must be declared before it is used. 

Declarations 

A declaration consists of a type name followed by a list of one or more variables 
of that type, separated by commas. Thus, the declarations 

int mint; 
char cherry; 
double trouble; 
float swim, snorkel; 

declare the variable mint to be of type int, the variable cherry to be of type 
char, the variable trouble to be of type double, and the variables swim and 
snorkel to be of type float. The variables swim and snorkel could have 
been equivalently declared in two separate declarations: 

float swim; /* time spent swimming in minutes • */ 
float snorkel; /* time spent snorkeling in hours */ 

As shown, the latter form is useful for adding comments immediately after the 
declarations, explaining the purpose of the variables being declared. 
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It is possible to assign an initial value to a variable in its declaration by fol-
lowing its name with an equal sign and the value. Thus, the declaration 

float start = -1.0, final = 1.0, increment = Q.I; 
declares the variables start, final,and increment to be of type float and 
also initializes them to - 1 . 0 , 1 . 0, and 0 .1 respectively. 

All declarations within a function are usually put together at the beginning 
of the function body before any executable statement. 

Names 

C places some restrictions on what can be a variable name. The following are the 
rules for naming a variable: 

1. A variable name must begin with a letter or underscore, and may be 
made up of any combination of letters, underscores, or the digits 0-9. 
Whitespace characters are not permitted within a name. Thus, 

foo r2d2 Agent707 ANSI_C _mvBytes 
are valid names, whereas the following are not, for the reasons indi-
cated: 

4 eve r The first character is not a letter or underscore. 
x2 . 5 Period (.) is not allowed in a variable name. 
ANSI C Embedded spaces are not permitted. 

2. A variable name may use uppercase letters, lowercase letters, or both. 
Changing the case of even one character makes a different name. For 
example, the variable names 

interest Interest INTEREST 
are all recognized to be different. However, it is bad programming 
style to have distinct names that differ only in the case of their letters. 

3. The number of characters that can be used in a variable name is com-
piler-dependent. The original description of C specified that only the 
first eight characters of a variable name were significant, and hence 
names like average_weight and average_width would be indis-
tinguishable since they are identical up to the first eight characters. 
ANSI C permits at least 31 significant characters in variable names, 
and hence accidental name collision rarely becomes a problem. 

4. C reserves certain names, called keywords, for specific meanings, and 
they cannot be used as variable names. The 32 standard keywords are: 

auto break case char const continue 
default do double else enum , extern 
float for goto if int long 
register return short signed sizeof static 
struct switch typedef union unsigned void 
volatile while 
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Variable names are traditionally written in lowercase letters. It is absolutely 
desirable to use meaningful names suggestive of the entity they represent. This 
practice increases the readability of a program and pays off handsomely during 
the debugging and maintenance of the program. 

Technically, a variable name is an identifier. Identifiers are names given to 
various program entities. Examples of identifiers other than variable names 
include function names, enumeration constants, symbolic constants, etc. The 
rules discussed above for naming variables apply to all identifiers. 

2.4.2 Constants 
A constant is an entity whose value does not change during program execution. 
Constants are of five different types: integer, floating-point, character, string, 
and enumeration. The first four will be discussed here; enumeration constants 
will be discussed in Chapter 12. 

Integer Constants 

An integer constant is a number that has an integer value. Integer constants may 
be specified in decimal, octal, or hexadecimal notation. (See Appendix D for a 
review of these number systems.) 

A decimal integer constant consists of a sequence of one or more decimal 
digits 0 through 9. The first digit of the sequence cannot be 0, unless the deci-
mal integer constant is 0. Thus, 

0 255 32767 32768 65535 2147483647 
are valid decimal integer constants. 

An octal integer constant consists of the digit 0, followed by a sequence of 
one or more octal digits 0 through 7. Thus, 

012 037 0177 01000 077777 0100000 
are valid octal integer constants corresponding to the decimal integer constants 

10 31 127 4096 32767 32768 
respectively. 

A hexadecimal integer constant consists of the digit 0, followed by one of the 
letters x or X, followed by a sequence of one or more hexadecimal digits 0 
through 9, or letters a through f, or letters A through F. Thus, 

Oxlf OXIF . Oxff OxABC 0x10000 0x7FFFFFFF 
are valid hexadecimal integer constants corresponding to the decimal integer 
constants 

31 31 255 2748 65536 2147483647 
respectively. 

Commas and spaces are not allowed in integer constants. Thus, the follow-
ing are not valid integer constants for the reasons indicated: 
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10 , 000 Contains a comma. 
8 4141 Contains a space. 

The type of an integer constant is normally in t . However, if the value of a 
decimal integer constant exceeds the largest positive integer that can be repre-
sented in type int, its type instead is long. The type of an octal or hexadeci-
mal integer constant, whose value exceeds the largest integer that can be repre-
sented in type unsigned int, is likewise taken to be long. An integer 
constant followed by the letter 1 or L, such as 12 3 4 5 6 7 8 9L, is an explicit long 
type. It is also possible to explicitly express unsigned constants. An explicit 
unsigned integer constant is written by suffixing the constant with an u or u, 
as in 123U, and an unsigned long integer constant by suffixing the constant 
with an ul or UL, as in 12345678 9UL. 

Floating-Point Constants 

A floating-point constant is a number that has a real value. The standard decimal 
form of a floating-point constant is a number written with a decimal point. 
Thus, 

1.0 1. .1 0. .0 
are valid floating-point constants, whereas the following are not for the reasons 
indicated: 

1 Contains no decimal point. 
1, 0 0 0 . 0 Contains a comma. 
1 0 0 0 . 0 Contains a space. 

The scientific notation is often used to express numbers that are very small 
or very large. Thus, 0.000000011 is written as 1.1 x 10"8 and 20000000000 as 2 x 
1010. C provides an exponential form for such numbers that is related to the sci-
entific notation as follows: 

(coefficient) e (integer) = (coefficient) x iomteger 

The part appearing before e is called the mantissa and the part following e is 
called the exponent. The uppercase E can also be used instead of the lowercase 
e. Thus, 1.1 x 10"8 is written as 1. le-8 and 2 x 1010 as 2el 0. 

The type of a floating-point constant is double, unless suffixed. The suf-
fixes f or F indicate a float constant, and 1 or L a long double constant. 
Thus, 1.23F is a floating-point constant of type float, whereas le-lOLisa 
floating-point constant of type long double. 

Character Constants 

A character constant consists of a single character enclosed within apostrophes. 
For example, 

' 0 ' ' a ' ' Z ' ' ? ' ' % ' 

are all valid character constants. The first represents the character 0, the second 
the lowercase letter a, the third the uppercase letter Z, the fourth a question 
mark, and the fifth a percent sign. 



SECTION 2.4 / CLASSES OF DATA 33 

Character constants are of type int. The value of a character constant is 
the numeric value of the character in the machine's character set, and hence 
depends on whether the machine uses the ASCII or EBCDIC character set. (See 
Appendix D for more on internal representation of characters.) Appendix E 
gives a complete table of the decimal values of the character constants in the 
ASCII and EBCDIC character sets. The following are the decimal values of the 
character constants given above in the two character sets: 

Character Constant ASCII EBCDIC 

' 0' 48 240 
' a' 97 129 
' Z' 90 233 
' ? ' 63 111 
'9-1 37 108 

If the apostrophe or the backslash is to be used in a character constant, it 
must be preceded by a backslash as shown below: 

' W 

Non-graphic characters may also be used to form character constants. 
Thus, the following are valid character constants: 

' \a' (Audiblealarm) ' \b' (Backspace) '\f' (Formfeed) 
'\n ' (New line) ' \r' (Carriagereturn) ' \ t ' (Horizontal tab) 
' \v' (Vertical tab) 

In addition, an arbitrary byte-sized bit pattern can be used to specify the 
value of a desired character constant by writing 

' \ooo' 

where the escape \ ooo consists of a backslash followed by 1,2, or 3 octal digits. 
The bit pattern may also be expressed in hexadecimal by writing 

'\xhh' 

where the escape \xhh consists of a backslash, followed by an x and 1 or 2 
hexadecimal digits. Here are some examples: 

Character Constant 

Octal Hexadecimal 
Decimal 
Value 

ASCII 
Character 

EBCDIC 
Character 

'\100' '\x40' 64 
'\135' '\x5d' 93 ' ) ' 

' \176' '\x7e' 126 / ^ / 

A special case of the above construction is \0, which represents the character 
with the value zero, that is, the null character. 
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String Constants 

A string constant, or simply a string, consists of zero or more characters enclosed 
within double quotation marks. Non-graphic characters may also be used as 
part of a character string. Here are some examples: 

"Madam, I'm Adam" 
"Programming in C is fun\n" 
"\n\n\t\t***** inventory report *****\n\n" 
The double quotation marks are not part of the string; they only serve to 

delimit it. If the double quotation mark is required to be one of the characters of 
the string, it must be preceded by a backslash (\). If the backslash is required to 
be a character of the string, it must be preceded by another backslash. Thus, the 
string constant I' m a " and I' m a \ is written as 

"I'm a \" and I'm a \\" 
The length of a string is the number of characters that form the string. 

There is no limit on the length of a string. A string can be continued by putting 
a backslash (\) at the end of the line as in: 

"Great things are not done by impulse,\ 
but by a series of small things brought together" 

Adjacent string constants are concatenated at compile time. Thus, the last 
string can equivalently be written as 

"Great things are not done by impulse, " 
" but by a series of small things brought together" 

or 

"Great things are not done by impulse, " 
" but by a series of small things" 
" brought together" 
The compiler automatically places the null character \ 0 at the end of each 

string so that a program scanning a string can find its end. The physical storage 
required is thus one byte more than the number of characters enclosed within 
double quotation marks. When the compiler concatenates two string constants, 
it puts the null character at the end of the resultant concatenated string and not 
after each individual string. 

Note that a character constant, say ' Z' , is not the same as the string that 
contains the single character " z ". The former is a single character and the latter 
a character string consisting of characters Z and \ 0. 

2.5 ARITHMETIC OPERATORS 
An operator is a symbol that causes specific mathematical or logical manipula-
tions to be performed. We discuss here the arithmetic operators, addition (+), sub-
traction (-), multiplication (*), division (/), remainder (%), unary plus (+), and unary 



SECTION 2.6 / EXPRESSIONS 35 

minus (-). Two other arithmetic operators, increment (++) and decrement (—), 
will be discussed in Section 2.7.1. All these operators, except remainder (%), 
operate on operands of any arithmetic type. The remainder operator (%) takes 
only integral operands. 

The first five arithmetic operators are binary operators and require two 
operands. The result of addition (+), subtraction (-), multiplication (*), and 
division (/) is the same as in mathematics, except that when division is applied 
to integer data, the result is truncated to the integer value. The operator % 
obtains the remainder when one integer is divided by another. Thus, we have 

12 + 9 = 21 12 . + 9. = 21. 
12 - 9 = 3 12. - 9. = 3. 
12 * 9 = 108 12 . * 9. = 108. 
12 / 9 = 1 12 . / 9. = 1.33 
12 o. "0 9 = 3 
The unary minus is a unary operator and requires only one operand. The 

result of the unary minus applied to an operand is the negated value of the 
operand. 

The unary plus is also a unary operator. The result of the unary plus 
applied to an operand is the value of the operand. 

2.6 EXPRESSIONS 
A combination of constants and variables together with the operators is 
referred to as an expression. Balanced parentheses may be used in combining 
constants and variables with the operators. Constants and variables by them-
selves are also considered expressions. An expression that involves only con-
stants is called a constant expression. 

We will, for the present, restrict ourselves to the arithmetic operators and 
the corresponding expressions, called arithmetic expressions. In an arithmetic 
expression, integer, character, or floating-point type of data can participate as 
operands. Thus, the following are valid arithmetic expressions: 

012 • '\n' i -x 
12.3 / 45.6 -(i +1) 1 % j 32 + 1.8 * c 

2.6.1 Evaluation of an Expression 
Every expression has a value that can be determined by first binding the oper-
ands to the operators and then evaluating the expression. If an expression con-
tains more than one operator and parentheses do not explicitly state the bind-
ing of operands, it may appear that an operand may be bound to either of the 
operators on its two sides. For example, apparently the expression 32 + 1 . 8 * 
c may be interpreted as (32 + 1 . 8 ) * c or as 32 + ( 1 . 8 * c). C uses a prece-
dence and associativity rule and a parentheses rule to specify the order in which 
operands are bound to operators. 
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Table 2.3. Precedence and associativity of the arithmetic operators 

Operators Type Associativity 

+ - Unary Right to left 
* / % Binary Left to right 
+ - Binary Left to right 

Every operator in C has been assigned a precedence and an associativity. 
The precedence and associativity rule states that the operator precedence and asso-
ciativity determine the order in which operands are bound to operators. Opera-
tors receive their operands in order of decreasing precedence. If an expression 
contains two or more operators of equal precedence, their associativity deter-
mines their relative precedence. If the associativity is "left to right", then the 
operator to the left in the expression has the higher precedence; if it is "right to 
left", then the operator to the right has higher precedence. 

Appendix B contains a complete table of the precedence and associativity 
of the C operators. Table 2.3 summarizes the precedence and associativity of 
the basic arithmetic operators. In this table, an operator in a higher row has a 
higher precedence when compared to an operator in a lower row. Operators 
that are in the same row have the same precedence and associativity. Thus, the 
expression 32 + 1.8 *c is interpreted as 32 + (1.8 * c) because * has prece-
dence over the binary +. 

The following table shows the evaluation of some arithmetic expressions 
using the precedence and associativity rule: 

Expression Equivalent Expression Value 

2 3 + 4 ( 2 - 3 ) + 4 3 
2 - 3 - 4 (2 * 3) - 4 2 
2 - 3 / 4 2 - (3 / 4) 2 
2 + 3 % 4 2 + (3 % 4) 5 
2 * 3 % 4 (2 * 3) % 4 2 
2 / 3 * 4 (2 / 3) * 4 0 
2 % 3 / 4 (2 % 3) / 4 0 
- 2 + 3 (-2) + 3 1 
2 * - 3 2 * (-3) -6 
- 2 * - 3 (-2) * (-3) 6 

As a further illustration of the precedence and associativity rule, consider 
the evaluation of the expression 
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l + 2 % 2 / 2 + 4 / 2 * 2 

-1 

The order in which the expression is evaluated is indicated by the sequence of 
lowercase letters. 

Parentheses can be used to alter the order of precedence; they force an 
operation, or set of operations, to have a higher precedence level. The parenthe-
ses rule states that the operation will be performed in the innermost set of 
parentheses, using the precedence and associativity rule where appropriate, 
and then in the next outer set, etc., until all operations inside the parentheses 
have been performed. The remaining operations in the expression are then car-
ried out according to the precedence and associativity rule. 

As an illustration of the parentheses rule, consider the evaluation of the fol-
lowing expression, obtained after adding a few parentheses to the expression 
evaluated above: 

( ( 1 + 2 ) 

a 

( ( 2 / 2 ) + 4 / ( 2 * 2 ) ) ) 

- 1 
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2.7 ASSIGNMENT STATEMENTS 
An assignment expression is of the form 

variable = expression 

An assignment expression when followed by a semicolon becomes an assign-
ment statement. 

The "equals" symbol (=) in an assignment should not be interpreted in the 
same sense as in mathematics. It is an operator that assigns the value of the 
expression on its right side to the variable on its left side. Thus, the two state-
ments 

x = y; 
and 

y = x; 
produce very different results. The first assigns the value of y to x leaving y 
unchanged, whereas the second assigns the value of x to y leaving x 
unchanged. Thus, if x and y have the values shown in (a) in Figure 2.2, the 
values produced by the two assignment statements would be as shown in (b) 
and (c) of the same figure. 

To further illustrate the assignment statement, consider the statement 

sum = sum + item; 
This statement causes the value of the variable item to be added to the current 
value of the variable sum, and the result is assigned as the new value of the 
variable sum. The previous value of sum is destroyed in the process. If sum and 
item have values as shown in (a) in Figure 2.3, the effect of the assignment 
would be as shown in (b) of the same figure. The value 10 of the variable sum is 
destroyed in the process. 

X 1.0 

y 2.0 
(a) 

Figure 2.2. 

2.0 

2.0 
(b) 

X 1.0 y = x 1.0 

Y 2.0 1.0 

(a) (c) 

sum 10 sum = sum + item 15 10 sum = sum + item 15 

item 5 5 

(a) (b) 

Figure 2.3. Effect of an assignment statement 
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The precedence of the assignment operator is lower than that of the arith-
metic operators. Thus, 

sum = sum + item; 
is interpreted as 

sum = (sum + item); 
and not 

(sum = sum) + item; 
It is mandatory that the left operand of the assignment operator be an 

lvalue: an expression that refers to an object that can be examined as well as 
altered. A variable name is an example of an lvalue. An expression that permits 
examination but not alteration is called an rvalue. A constant is an example of 
an rvalue. Thus, 

15 = n; 
x + 1.0 = 2.0; 

are not valid assignment statements because 15 and x + l. 0 are not lvalues. 
Note that x + 1. 0 evaluates to a value, depending upon the current value of x, 
which can be examined and used but not altered, and hence is an rvalue. 

2.7.1. Increment and Decrement Operators 
Two common forms of assignments found in programs are those that incre-
ment or decrement the value of a variable by 1. C provides two operators, incre-
ment (++) and decrement (—), for this purpose. Increment (++) and decrement 
(—) are unary operators, and require only one operand. They are of equal pre-
cedence and their precedence is the same as the other unary operators. 

These operators can be used both as prefix, where the operator occurs 
before the operand, and postfix, where the operator occurs after the operand, in 
the following manner: 

++variable 
variable++ 
—variable 
variable— 

Both in the prefix and the postfix form, ++ adds 1 to its operand and — 
subtracts 1 from its operand. However, in the prefix form, the value is incre-
mented or decremented by 1 before it is used. In the postfix form, the value is 
incremented or decremented by 1 after the use. For example, if i were 1, 

n = ++i; 
first increments the value of i to 2, and then sets n to the current value of i 
making n equal to 2, but 

n = i++; 
first sets n to 1, and then increments the value of i to 2. Similarly, 
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n = —i; 
first decrements the value of i to 0, and then sets n to 0, but 

n = i — ; 
first sets n to 1, and then decrements the value of i to 0. 

Thus, the statement 

n = ++i; 
is equivalent to the two assignment statements 

i = i + 1; 
n = i; 

and the statement 

n = i++; 
is equivalent to the two assignment statements 

n = i; 
i = i + 1; 

Similarly, the statements 

n = —i; 
and 

n = i — ; 
are respectively equivalent to 

i = i - 1; 
n = i; 

and 

n = i; 
i = i - 1; 
The following table further illustrates the increment and decrement opera-

tors: 

Assignment Before Values After Values 

k = i++ 
k = ++i 
k = i — 
k = — i 

i = 1 
i = 1 
i = 1 
i = 1 
i = 1 
i = 1 
i = 1 
r = 1 

k = 1, i = 2 
k = 2, i = 2 
k = 1, i = 0 
k = 0, i = 0 
k = 5 - 1 = 4, i = 2 
k = 5 - 2 = 3, i = 2 
k = 5 + 1 = 6, i = 0 
k = 5 + 0 = 5, i = 0 
k = 1 + 4 = 5, i = 2, j = 4 
k = 2 + 5 = 7, i = 2, j = 4 

k = 5 - i++ 
k = 5 - ++i 
k = 5 + i — 
k = 5 + ~ i 
k = i++ + — j 
k = ++i + j — 

i = 1, j = 5 
i = 1, j = 5 
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2.7.2 Compound Assignment Operators 
C provides ten compound assignment operators 

< < = > > = & = |= 

for the compression of assignment statements. The meaning of the last five 
of these operators will become clear when we study the bit operators in 
Chapter 9. 

If we let op= denote the compound assignment operator, the compressed 
form of the assignment statement 

variable op= expression; 

is equivalent to the simple assignment statement 
variable = variable op expression; 

Thus, the compressed form of 
i = i- + 1 is i + = l; 
i = i - a is i - = a; 

i = i * (a + 1) is i * = a + 1; 
i = i / (a - b) is i /= a - b; 

i = i % 101 is i o "6 — 101; 
i = i << 1 is 1 = l; 
i = i >> j is i » = = j; 
i = i & 01 is i & = 01; 

i = i I Oxf is i 1 = Oxf; 
i = i A (07 | Oxab) is i A 07 | 0 
All the compound assignment operators have equal precedence, which is 

the same as that of the simple assignment operator (=) but lower than that of 
the arithmetic operators. Thus, in the preceding example 

i *= a + 1; 
is equivalent to 

i = i * (a + 1) ; 
and not 

i = (i * a) + 1; 
The following table further illustrates the compound assignment opera-

tors: 

int i = 2, j = 2, k = 3; 

Assignment Equivalent Statement Values After Assignment 

k -= i; 
k += i - 1; 
k /= i + 1; 
k *= i - j; 
k %= i * j; 

k = k - i; 
k = k + (i - 1) ; 
k = k / (i + 1) ; 
k = k * (i - j) ; 
k = k % (i * j) ; 

k = 3 - 2 = 1 
k = 3 + ( 2 - 1 ) = 4 
k = 3 / (2 + 1) = 1 
k = 3 * ( 2 - 1 ) = 3 
k = 3. % ( 2 * 1 ) = 1 
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Compound assignment operators are convenient short-hands and lead to 
more concise, more readable, and more efficient code. 

2.7.3 Nested Assignments 
C permits multiple assignments in one statement, and the assignments are then 
said to be nested. Assignment operators are right-associative, which allows the 
nested assignment statements to have the obvious interpretation. Thus, the 
nested statement 

i = j = k = 0; 
is interpreted as 

i = ( j = ( k = 0 ) ); 
and first assigns 0 to k. The expression k = 0 evaluates to 0, and this value is 
then assigned to j. The value of the expression j = k = 0 now becomes 0, and 
hence i also becomes 0. 

Similarly, the statement 

i += j = k; 
is treated as 

i += (j = k); 
and the statement 

i = j += k; 
as 

i = (j += k); 
Therefore, if i, j and k were originally 1, 2, and 3 respectively, then the first 
statement would result in i and j being assigned 4 and 3 respectively, whereas 
the second statement results in both being assigned 5. The value of k remains 
unchanged. 

The following table further illustrates nested assignments: 

int i = 9, j ^ 3, k = 1; 

Assignment Equivalent Statement Values After Assignments 

i /= j = k+1; 
i = j /= k+1; 
i /= j /= k+1 
i /= j /= k++ 
i /= j /= ++k 

i /= (j = k+1); 
i = (j /- k+1); 
i /= (j /= k+1) 
i /= (j /= k++) 
i /= (j /= ++k) 

k = 1, j = 1+1 = 2, i = 9/2 = 4 
k = 1, j = 3/(1+1) - 1, i = 1 
k = 1, j = 3/2 = 1, i = 9/1 = 9 
k = 2, j = 3/1 = 3, i = 9/3 = 3 
k = 2, j = 3/2 = 1, i = 9/1 = 9 
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2.8 INPUT AND OUTPUT 
C does not provide language constructs for input/output operations. How-
ever, ANSI C has defined a rich standard I/O library, a set of functions designed 
to provide a standard I/O system for C programs. We now present some fea-
tures of only two of these functions: printf, which is used for output opera-
tions, and scanf, which is used for input operations. The other functions in 
the standard I/O library and further details of the printf and scanf func-
tions will be discussed in Chapter 10. A program using these functions must 
include in it the standard header file <stdio. h> using the directive 

#include <stdio.h> 

2.8.1 p r i n t f Function 
A call to pr i nt f is of the form 

printf (control string, argl, argl, . . .) ; 

The control string governs the conversion, formatting, and printing of the argu-
ments of printf. It may consist of ordinary characters that are reproduced 
unchanged on the standard output. For example, the control string in 

printf("reproduced unchanged"); 
comprises only the ordinary characters, and hence 

reproduced unchanged 
is displayed on the standard output. 

The control string may also include conversion specifications that control the 
conversion of successive arguments argl, arg2, etc., before they are printed. 
Each conversion specification consists of the character % followed by a conver-
sion control character. Some conversion control characters and their effects are 
given below: 

d, i The integer argument is converted to decimal notation of the form [-]ddd. 

f The float or double argument is converted to decimal notation of the fprm 
[-]ddd.dddddd. By default, six digits are printed after the decimal point. 

e The float or double argument is converted to decimal notation of the form 
[-]d.dddddde[±]dd. There is one digit before the decimal point, and the exponent 
contains at least two digits. By default, six digits are printed after the decimal point. 

c The argument is taken to be a single character. 

s The argument is taken to be a string. 

For example, the printf statement 

printf("%c", \'C\'); 
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results in 

.C 
being displayed on the output. The print f statement 

int i = 1; 
printf("%d\n", 2 * i); 

results in 

2 
being displayed, and then the cursor moves to the next line. The pr int f state-
ment 

float r = 100.0; 
printf("\n%f\t%e", r, 100.0); 

first moves the cursor to the next line and then displays 

100.000000 1.000000e+02 
on the new line. The two values are separated by a tab caused by the presence 
of the horizontal tab character \t in the control string. Finally, the p r i n t f 
statement 

float c = -11.428572; 
printf("%f Centigrade = %f %s\n", 

c, 1.8*c+32, "Fahrenheit"); 
displays 

-11.428572 Centigrade = 11.428571 Fahrenheit 
The blank characters in the control string are significant. Thus, 

printf("1 2 3 4 5 end\n"); 
displays 

1 2 3 4 5 end 
The conversion specifications and the arguments must match both in num-

ber and order. Greater control on the appearance of output can be exercised by 
providing additional specifications between % and a conversion control charac-
ter. We will return to the p r i n t f function in Chapter 10 to discuss its full capa-
bility. 

2.8.2 scanf Function 
The scanf function is the input analog of the printf function. A call to 
s can f is of the form 

scanf (control string, argl, argl, ...) ; 

The control string contains conversion specifications according to which the char-
acters from the standard input are interpreted and the results are assigned to 
the successive arguments argl, argl, etc. The scanf function reads one data 
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item from the input corresponding to each argument other than the control 
string, skipping whitespaces including newlines to find the next data item, and 
returns as function value the total number of arguments successfully read. It 
returns EOF when the end of input is reached. 

Each argument, other than the control string, must be a pointer to the vari-
able where the results of input are to be stored. We will learn about pointers in 
detail in Chapter 7. For the present, just remember that if i is a variable, then 
& i is a pointer to i. Thus, if we want the result of input to be stored in i, we 
must specify & i as the argument to scanf. 

As in the case of print f, a conversion specification consists of the charac-
ter % followed by a conversion control character. Conversion specifications may 
optionally be separated by whitespace characters, which are ignored. Some of 
the conversion control characters and their effects are as follows: 

d, i A decimal integer is expected in the input. The corresponding argument should be a 
pointer to an i n t . 

f, e A floating-point number is expected in the input. The corresponding argument should be 
a pointer to a f l o a t . The input can be in the standard decimal form or in the 
exponential form. 

c A single character is expected in the input. The corresponding argument should be a 
pointer to a char . Only in this case, the normal skip over the whitespaces in input is 
suppressed. 

For example, given the declarations 

int i; 
float fl, f2; 
char cl, c2; 

and the input data 

10 l.Oel lO.Opc 
the statement 

scanf("%d %f %e %c %c", &i, &fl, &f2, &cl, &c2); 
results in i, f 1, f2, cl,and c2 being assigned 10, 10 .000000, 10 . 000000, p, 
and c respectively. 

2.9 TYPE CONVERSIONS 
An expression may contain variables and constants of different types. We dis-
cuss in this section how such expressions are evaluated. 

2.9.1 Automatic Type Conversion 
ANSI C performs all arithmetic operations with just six data types: int, 
unsigned int, long int, float, double, and long double. Any operand 
of the type char or short is implicitly converted to int before the operation. 
Conversions of char and short to int are called automatic unary conversions 
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Figure 2.4. Automatic conversion rules (no unsigned operands) 

to distinguish them from what are called automatic binary conversions, which 
we shall discuss now. 

Automatic binary conversions apply to both operands of the binary opera-
tors and are carried out after automatic unary conversions. In general, if a 
binary operator has operands of different types, the "lower" type is promoted 
to the "higher" type before the operation proceeds. The result is of the higher 
type. More precisely, for each arithmetic operator, automatic binary conver-
sions are carried out according to the following sequence: 

If one operand is long double and the other is not, the latter is converted 
to long double, and the result is long double; 

otherwise, if one operand is double and the other is not, the latter is con-
verted to double, and the result is double; 

otherwise, if one operand is float and the other is not, the latter is con-
verted to float, and the result is float; 

otherwise, if one operand is unsigned long int and the other is not, the 
latter is converted to unsigned long int and the result is unsigned long 
int; 

otherwise, if one operand is long int and the other is unsigned int, 
then if a long int can represent all values of an unsigned int, the 
unsigned int is converted to long int, and the result is long int; if not, 
both are converted to unsigned long int, and the result is unsigned long 
int; 

otherwise, if one operand is long int and the other is not, the latter is 
converted to long int, and the result is long int; 

otherwise, if one operand is unsigned int and the other is not, the latter 
is converted to unsigned int, and the result is unsigned int; 

otherwise, both the operands must be int, and the result is int. 
These rules are rather complex. However, if there are no unsigned oper-

ands, the rules are quite intuitive and have been summarized in Figure 2.4. The 
vertical line represents the unary conversions that are always performed, and 
the horizontal lines represent the binary conversions that are performed only 
when necessary. 

Consider, for example, the evaluation of the expression 

( c / u - l ) + s * f 
where the types of c, u, 1, s, and f are char, unsigned int, long, short, 
and float respectively. The following table summarizes the automatic conver-
sions that take place during the evaluation of this expression: 



SECTION 2.9 / TYPE CONVERSIONS 47 

Expression Conversion Operand 1 Operand 2 Result 

c 
c / u 
c / u -
s 
s * f 
(c / u 1) + s 

unary 
binary 
binary 
unary 
binary 
binary 

char 
int 
unsigned int 
short int 
int 
long int 

unsigned int 
long int 

float 
float 

int 
unsigned int 
long int 
int 
float 
float 

C does not specify whether variables of type char are signed or unsigned 
quantities, and this makes the conversion of a char into an int machine-
dependent. On some machines, when converting a char whose leftmost bit is 
1 into an int, the sign extension takes place, and the result is a negative integer. 
On others, a char is converted to an int by adding zeros to the left, and thus 
the result is always positive. 

2.9.2 Explicit Type Conversion 
Sometimes it is desirable to force a type conversion in a way that is different 
from the automatic type conversion. C provides a special construct called a cast 
for this purpose. The general form of a cast is 

( cast-type ) expression 

where cast-type is one of the C data types. For example, 

(int) 12.8 
casts 12 . 8 to an int, which is 12 after truncation. 

A cast is a unary operator and has the same precedence as the other unary 
operators. For example, 

(int) 1 2 . 8 * 3 . 1 

casts only 12 .8 , and not the whole expression 1 2 . 8 * 3 . 1 to int, yielding 
37 .2 as the value of the expression. If you want to cast the whole expression 
1 2 . 8 * 3 .1 , you should write 

(int) ( 1 2 . 8 * 3 . 1 ) 

yielding 3 9 as the value of the expression. 
A typical use of a cast is in forcing division to return a real number when 

both operands are of the type i n t . Thus, 

(float) sum / n 
casts sum to a float, and hence causes the division to be carried out as a float-
ing-point division. Without the cast, truncated integer division is performed, if 
both sum and n are of type int. 
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2.9.3 Type Conversion in Assignments 
When variables of different type are mixed in an assignment expression, the 
type of the value of the expression on the right side of the assignment operator 
is automatically converted to the type of the variable on the left side of the 
operator. The type of the resultant expression value is that of the left operand. 

Note that a conversion of a lower-order type, such as int, to a higher-
order type, such as float, only changes the form in which the value is repre-
sented; it does not add to the precision or accuracy. On the other hand, a con-
version from a higher-order type to a lower-order type may cause truncation 
and loss of information. For example, the conversion from a 16-bit int to a 8-
bit char results in the loss of the high-order eight bits, and the conversion from 
a float to an int means the loss of the fractional part and possibly more. 

2.10 SIMPLE MACROS 
Consider the following program that determines the surface area, and volume 
of a sphere of a given radius: 

#include <stdio.h> 

int main(void) - { 
float radius; 

scanf("%f", &radius); 
printf("surface area = %f\n", 

4 * 3.14 * radius * radius); 
printf("volume = %f\n", 

4 * 3.14 * radius * radius * radius / 3); 
return 0; 

} 

A problem with this program is that the value of n, 3 . 1 4 , has been buried in 
the program statements. If at a later date one wants to get more precise results 
by providing a more accurate estimate for n, say 3.14159265, one will have 
to hunt for all occurrences of 3 .14 in the program and replace them with the 
new value. Such transformations could be quite daunting in a large program 
and susceptible to errors. The same program could also contain a statement 
such as 

printf("average home runs = %f\n", 3.14); 
and one could end up inadvertently modifying this statement. Further, such 
"magic numbers" convey little information to someone who may have to read 
the program later. 

C provides a #define directive to define symbolic names for such con-
stants. The sphere program can be rewritten using a symbolic name PI for the 
value of 7i as follows: 
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•include <stdio.h> 
•define PI 3.14 

int main(void) { 
float radius; 

scanf ("%f", &radius); 
printf("surface area = %f\n", 

4 * PI * radius * radius); 
• printf("volume = %f\n", 

4 * PI * radius * radius * radius / 3); 
return 0; 

} 

More precise results can now be obtained by simply changing the definition of 
P i to 

•define PI 3.14159265 
The #define directive causes a symbolic name to become defined as a 

macro and associates with it a sequence of tokens, called the body of the macro. 
The general form for a simple macro definition is 

•define macro-name sequence-of-tokens 

and it associates with the macro-name whatever sequence-of-tokens appears from 
the first blank after the macro-name to the end of the line. Note that there is no 
semicolon at the end of the #define directive. There is no restriction on the 
sequence of tokens, which can be constants or arbitrary expressions. Previously 
defined macros can also be used in the definition of a macro. 

The #def ine is actually a directive to the C preprocessor that conceptually 
processes the source text of a C program before the compiler proper parses the 
source program. The preprocessor replaces every occurrence of a macro name 
in the program text with a copy of the body of the macro. Macro names are not 
recognized within comments or string constants. 

The rules for naming a macro are the same as for naming a variable 
described in Section 2.4.1. By convention, macro names are written in upper-
case letters. A #def ine directive can appear anywhere in the program; how-
ever, all #def ine directives are usually collected together at the beginning of 
the program. 

The primary use of simple macros is to define symbolic constants as in 

•define OUNCES_PER_GRAM 0.035 
•define GRAMS_PER_OUNCE 1 / OUNCES_PER_GRAM 
•define MAXIMUM_GRAM 1000 
•define STEP_SIZE 10 

Another important use is in isolating implementation-dependent restrictions as 
in 

•define EOF 
•define MAXINT 

- 1 
2147483647 
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Using symbolic names for constant values helps make programs extendible 
and portable. 

C also provides a parameterized version of macro definition that we will 
study in Chapter 11, along with other preprocessor directives. 

2.11 ILLUSTRATIVE EXAMPLES 
We now give some examples to further illustrate the concepts introduced in 
this chapter. 

Example 1 
Write the C equivalents for the given mathematical expressions, using a minimum 
number of parentheses. 

Mathematical Expression C Equivalent 

a + b/c -d a + b/ c- d 
a + b (a + b) / (c-d) 

a * b / (c-d) 
c-d 
a b 

c-d 

— -d a * b / c - d c 

-b a / (c * d) - b 
c d 

1 
a + — a + 1 / (1 + 1 / (1 + a) ) 

1 + 1+a 

Example 2 

Determine the value of the following C expression: 

- 2 * - 3 / 4 % 5 - - 6 + 4 
At first sight, this expression appears quite formidable, but a strict adher-

ence to the precedence and associativity rule untangles it. In the following fig-
ure, the order in which the expression is evaluated is indicated by the sequence 
of lowercase letters. 



SECTION 2.11 / ILLUSTRATIVE EXAMPLES 51 

- 2 * - 3 / 4 % 5 - - 6 + 4 

a b 
-2 -3 

I d I 

11 

Example 3 
Determine the values of i, j, and k after the execution of the following program frag-
ment: 

int i, j, k; 
i = j = k = 1; 
i -= - j-- - --k; 

The first nested assignment statement sets i, j and k to 1. In the expression 

i -= - j-- - --k 
the compound assignment operator -= has the lowest precedence. In the right-
hand side of the assignment, the first - is the unary minus operator, the first — 
is the decrement operator in the postfix form, the next - is the binary minus 
operator, and finally there is a decrement operator — in the prefix form. The 
unary minus and decrement operators have higher precedence than the binary 
minus, and they associate from right to left. We therefore obtain 

j ( 
-= - (j — ) -
-= (- (j-
-= ((- (j 

i -= 
i -= 
i -
i -
(i -= ( (- (j — ) ) - (—k) ) ) 

k) 
- (— k) 

)) - (—k) 
- ) ) - '( —k)) 
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Evaluation from the inside out then gives 

(i -= ((- (j — ) ) - 0 )) 
(i -= ((-1) - 0 )) 
(i -= (-1) ) 
(i = 1 - (-1) ) 
(i = 2 ) 
2 

and k = 0 
and j = 0 

and i = 2 

m m 
wrm 

K a si 

Example 4 
Determine the value of the following C expression: 

- ( 2 * ( - 3 / (double) ( 4 % 10 ) ) ) - ( - 6 + 4 ) 
The subexpressions within parentheses are evaluated first according to the 

parentheses rule, and we obtain 

- ( 2 * ( - 3 / (double) 4 ) ) +. 2 

The cast forces conversion of 4 into a double, and consequently, before -3 
is divided, its type is also converted to a double. Thus, the division is no 
longer an integer division, and we get 

( 2 * - 0.75 ) + 2 
Further evaluation gives 

- ( - 1.5 ) + 2 
1.5 + 2 
3.5 

Example 5 
Determine the values of x, y, and z after the execution of the following program frag-
ment: 

int x, z; 
float y; 
x = 5 ; 
x / = y = z = l + 1 . 5 ; 

In the expression 

x / = y = z = l + 1 . 5 
there is one arithmetic operator and the rest are assignment operators. The 
arithmetic operator + has higher precedence than the assignment operators 
and hence is evaluated first. The simple and compound assignment operators 
have equal precedence and they associate from right to left. Thus, the operands 
are bound in the following order: 
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x /= y = z = (1 + 1.5) 
x /= y = (z = (1+1.5)) 
x /= (y = (z = (1 + 1.5))) 
(x /= (y = (z = (1 + 1.5)))) 

Evaluation proceeds from inside out, and we obtain 

(x /= (y = (z = 2.5))) 

The type of the right operand in the assignment z = 2.5 is float, whereas 
that of the left operand is int, and hence the type of the right operand is auto-
matically converted to int and z becomes 2. Thus, we obtain 

(x /= (y = 2) ) 
Now, y is of type float, and hence before the assignment y = 2, the type of the 
right operand is automatically converted to float so that y is assigned 2 . 0, 
and we obtain 

(x /= 2.0) 
which is equivalent to 

(x = x / 2.0) 

The current value of x is 5, which is an int. It is converted into a float before 
the division and the result is 2 . 5 . But since the type of x is int, 2 .5 is con-
verted into an int, and 2 is assigned to x. 

Thus, the final values of x, y, and z would be 2, 2 . 0, and 2 respectively. 

Example 6 
Write an interactive program that computes miles per gallon and cost per mile for the 
operation of a vehicle based on the miles traveled, gasoline consumed, cost of gasoline, 
and other operating costs. 

The algorithm and program given below provide a solution to the problem. 

Algorithm 
1. Prompt the user to successively enter the miles traveled miles, gal-

lons of gasoline used gallons, cost of gasoline per gallon 
gas_price, and other operating costs operating_costs. 

2. Compute the miles per gallon miles_per_gallon and the cost per 
mile cost_per_mile using the formulae: 

miles_per_gallon = miles / gallons 
cost_per_mile = (gas_price x gallons 

+ operating_cost) / miles 
3. Print results. 

• • 
• • 
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Program 

#include <stdio.h> 

int main(void) 

float miles, gallons, gas_price, operating_costs; 
float miles_per_gallon, cost_per_mile; 

printf("miles traveled? "); 
scanf("%f", smiles); 

printf("gallons of gasoline used? "); 
scanf ("%f", &gallons); 

printf ("price of gasoline per gallon? "); 
scanf ("%f", &gas_price); 

printf("other operating costs? "); 
scanf("%f", &operating_costs); 

miles_per_gallon = miles / gallons; 
cost_per_mile = (gas_price * gallons 

+ operating_costs) / miles; 

printf("miles per gallon = %f\n", miles_per_gallon); 
printf("cost per mile = %f\n", cost_per_mile); 

return 0; 
} 

Sample Execution. The following transcript shows the interaction between the 
computer and the user: 

miles traveled? 215 
gallons of gasoline used? 6.5 
price of gasoline per gallon? 1.39 
other operating costs? 5 

The user-entered data has been italicized. The program now computes the 
desired quantities and displays 

miles per gallon = 33.076923 
cost per mile = 0.065279 

• • • • Example 7 
Write a program that reads the radius of a circle and determines its area, the area of the 
largest square contained within it, and the ratio of the two. 
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The algorithm and program given below provide a solution to the problem. 

Algorithm 

1. Read the radius of the circle, r. 
2. Compute the area of the circle, n r 2 . 
3. Compute the area of the largest square contained within the circle, 

2 f 2. 
4. Compute the desired ratio. 
5. Print results. 

Program 

•include <stdio.h> 
•define PI 3.14159265 

int main(void) 
{ ' 
float radius; 
float circle_area, square_area, ratio; 

scanf("%f", &radius); 

circle_area = PI * radius * radius; 
square_area = 2 * radius * radius; 
ratio = circle_area / square_area; 

printf ("area of circle = %f\n", circle_area) ; 
printf ("area of square = %f\n", square_area); 
printf("ratio = %f\n", ratio); 

return 0; 
} 

Sample Execution. If the input were 2.5, the program would print 

area of circle = 19.634954 
area of square = 12.500000 
ratio = 1.570796 

• Example 8 
• Write a program that determines the difference in the value of an investment after a 

given number of years when (i) the investment earns simple interest and (ii) the inter-
est is compounded annually at the same rate. 

The algorithm and program given below provide a solution to the problem. 
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Algorithm 

1. Read the amount of the principal p, the interest rate r as a percentage, 
and the number of years y for which the principal is to be invested. 

2. Convert the rate read in percentage into a decimal fraction. 
3. Compute the value of the investment s if it earns simple interest using 

the formula 

s=p(l+ry) 

4. Compute the value of the investment c if the interest is compounded 
annually using the formula 

c = p(l + r)V 

5. Print the difference in the two values. 

Program 

#include <math.h> 
•include <stdio.h> 

int main(void) { 
float principal, rate; 
int years; 
double simple, compound; 

scanf("%f %f %d", Sprincipal, Srate, Syears); 

rate /= 100; /* convert percentage into fraction */ 

simple = principal * (1 + rate * years); 
compound = principal * pow((1+rate), (double)years); 

printf("difference = %f\n", compound - simple ); 

return 0; 
} 

Sample Execution. If the principal were 7500 and the interest rate 8.75%, the 
program would print 

difference = 626.699518 
as the difference in the value of investments after 5 years. 

This program uses the function pow defined in the standard math library 
(see Appendix A). We have therefore included <math. h> in the program. The 
function call pow(x,y) returns the value of xy, and the function pow expects 
arguments of type double. Since years is of type int, we have cast it into a 
double before calling pow. 
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• Example 9 
• A projectile fired at an angle 0 with an initial velocity v travels a distance d given by 

d = — sin 2 0 
i 

where g is the acceleration constant of 9.8 m/sec2. It stays in motion for a time t given 
by 

, 2 v • a t = — sin 0 
g 

and attains a maximum height h given by 

v2 

h = — sin 0 g 
Write a program that computes d, t, and h, given v and 0. 

The algorithm and program given below provide a solution to the problem. 

Algorithm 
.1. Read the initial velocity and the firing angle theta entered in 

degrees. 
2. Convert the angle read in degrees into radians, since the function sin, 

defined in the standard math library, expects its arguments in radians. 
3. Compute distance, time, and height. 
4. Print results. 

Program 

•include <math.h> 
•include <stdio.h> 
•define G 
•define PI 
•define RADIANS_PER_DEGREE 

int main(void) { 

float velocity, theta; 

scanf("%f %f", &velocity, Stheta); 

/* convert degrees into radians */ 
theta *= RADIANS PER DEGREE; 

9.8 
3.14159265 
(PI/180) 
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printf("distance = %f\n", 
velocity * velocity * sin(2 * theta) / G) ; 

printf("time = %f\n", 
2 * velocity * sin(theta) / G); 

printf("height = %f\n", 
velocity * velocity * sin (theta) / G); 

return 0; 
} 

Sample Execution. If the initial velocity were 10 m/sec2 and the firing angle 30°, 
the program would print 

distance = 8.836994 
time = 1.020408 
height = 5.102041 

Example 10 
Write a program that reads a four-digit number and finds the sum of the individual 
digits. 

The algorithm and program given below provide a solution to the problem. 

Algorithm 

1. Read the four-digit number. 
2. Extract the least significant digit of the four-digit number by taking 

the mod of the number with 10. 
3. Determine the three-digit number obtained after truncating the least 

significant digit of the four-digit number. 
4. Determine by a similar procedure the remaining three digits. 
5. Obtain the sum of four digits and print the result. 

Program 

#include <stdio.h> 
int main(void) - { 

int number, sum;. 
int digitl, digit2, digit3, digit4; 
scanf("%d", snumber); 
digitl = number % 10; 
number /= 10; 
digit2 = number % 10; 
number /= 10; 
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digit3 = number % 10; 
number /= 10; 
digit4 = number; 

sum = digitl + digit2 + digit3 + digit4; 

printf("sum of the digits = %d\n", sum); 

return 0; } 
Sample Execution. If the four-digit number were 8769, the program would cal-
culate 

digitl = 8769 % 10 = 9 
number = 8769 / 10 = 876 
digit2 = 876 % 10 = 6 
number = 87 6 / 10 = 87 
digit3 = 87 % 10 =7 
number = 8 7 / 1 0 = 8 
digit4 = 8 

and print 

sum of the digit's = 30 
Observe that this program has a simple repetitive pattern for which a con-

cise program can be written. However, we defer it to Chapter 4 till we study 
some more C constructs. 

Exercises 2 
1. Which of the following are not acceptable as variable names and why? 

a. Vax/780 b. IBM-PC 
c. Cray 2 d. 3B20 
e. McPaint /. 0 
g. integer h. union 

2. Which of the following are not acceptable as integer constants and why? 
a. 0L b. 08 
c. Of d. 0x8f 
e. leO /.I. 
g. 10, 000 h. 10 000 

3. Which of the following are not acceptable as floating-point constants and why? 
a. .1 b. l. 
c. 1, 0 0 0 . 0 d. 1 0 0 0 . 0 

e. leO /. l.el 
e. le-1 h. lei. 
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4. Which of the following are not acceptable as character constants and why? 

a. '1' b. a 
c. 'V d. '\q' 
e. '08' /. 'c 
g. "" h. " ' 

5. Which of the following are not acceptable as string constants and why? 

a. "*&#A% : -) \n" 
b. "And he said, "Not me !!!"" 
c. "And he said, V'Not me !!!\"M 

d. "And he said," " V'Not me !!!\"" 
6. Write a C expression corresponding to each of the following mathematical expres-

sions using only the necessary parentheses: 
ab . a + b a. a + l 

a + b 
c v 

a 

2 

c-d 

+ c ab + bc + ac 
f. a + b + c b , a - - abc c 

7. For each of the following C expressions, find an equivalent expression after deleting 
superfluous parentheses: 

a. (a * b) / (c - d) 
b. (a * b ) - (c / d) 
c. (a * b * c) + ( (d * e) % f) 
d. (a * b * c) / ( (d * e ) % f) 
e. ( (a - b) / c) % (d * (e + f)) 
/.. ( (a / b) + (c % d) - (e * (f/g) ) ) 

8. Determine the value of each of the following C expressions: 

a . - 1 + 2 * 3 - 4 b . - ( 1 + 2 ) * ( 3 - 4 ) 
c. - l + 2 % 3 - 4 d. - ( ( 1 + 2 ) % 3 - 4 ) 
e . - 1 3 / 2 % - 3 * 2 / . ( - 1 3 / 2 ) % ( - 3 * 2 ) 

9. Determine the value of each of the following C expressions: 

a. 3 + 4 . 8 * 2 b . 2 . 8 - 1 7 / 5 
c. 2 * (float) 6 / 5 d. 2 * (int) 6.5 / 5 

10. What, if anything, is wrong with the following declarations: 

a. int i j; b. int, i, j; 
c. int: i, j; d. i, j : int; 

11. What, if anything, is wrong with the following assignment statements: 

a. i = ++ - j; b. i = — j + + ; 
c. i = -j++; d. i = (-j)++; 
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e . i = l + j = l + k ; /. i = 1 + (j- = 1 + k) ; 
g. i =+ 1; h. i = j++ = k++; 
i. i *= j /= k; /. i = i * j = j / k; 

12. What, if anything, is wrong with the following input/output statements: 

a. scanf ("%d", i) ; b. scanf ( " % d " , &i, &j); 
c. printf("%d %d" i j); d. printf ( "%d %d", 10); 
e. printf ("%d %d", "i=", i) ; /. printf ("%d %d", 1 % 2, 'i'); 

13. What, if anything, is wrong with the following program structures: 

c. int main (void) 
printf("bonjour\n"); 

} 

d. int main (void) (printf ("bon jour\n").; } 
14. Assuming x to be of type float and i, j, and k to be of type int, determine the 

output of each of the following program fragments: 

a. i = j = k = 1; 
k += - i++ + ++j; 
printf("%d %d %d\n", i, j, k) ; 

b. x = 1; i = 2; j = 3; k = 4; 
x -= k *= j /= i %= 5; 
printf("%f %d %d %d\n", x, i, j, k); 

c. i = 1; j = 2; x = 3 ; 
x /= j = ++i * 2.5; 
printf("%f %d %d\n", x, i, j); 

d. i = 1; j = 2; x = 3 ; 
x /= j = i++ * 2.5; 
printf("%f %d %d\n", x, i, j); 

e. i = j = 10; 
i %= j = (j = 5) % (i = 3) ; 
printf("%d %d\n", i, j); 

/. x = 5; i = 4; j = 3; k = 2; 
x *= 1 + (i %= 1 + (j /= -1 + ++k)); 
printf("%f %d %d %d\n", x, i, j, k); 

15. Write assignment statements that result in the computation of the following: 

a. The area a of a cylindrical drum of radius r and height h, given that 

a = 2nr (r + h) 
b. The area a of a triangle that has angle 0 between the two sides x and y, given that 

a = 1/2 xy sin 6 

c . The depreciated value vn of an asset of initial value v0 after n years at the depre-

a. int main (void) b. int main (void) 

printf("bonjour\n"); printf("bonjour\n") 

ciation rate r, given that 

vM = zJb(l-r)" .n 
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d. The value v of an investment p after y years at the interest rate r compounded / 
times in a year, given that 

v = p(l+r/f)yf 

e. The annual payment p to repay a loan I for y years at an interest rate r, given that 
, r(\+rf P = l — —\T~ K (l + r y - l 

/. The equivalent parallel resistance Rp of three resistors R\, R2, and R3 in a parallel 
arrangement, given that 

R 1 

JL+JL+JL 
R\ R2 R3 

16. Write a program fragment that interchanges the values of x and y so that x has y's 
value and y has x's value. 

17. Write a program to convert a given measurement in feet to an equivalent one in (a) 
yards, (b) inches, (c) centimeters, and (d) meters. 

18. Write a program to convert a given number of seconds into hours, minutes, and sec-
onds. 

19. Suppose that a particle gets into motion from rest and has constant acceleration/for 
t seconds. The distance traveled d by the particle and the final velocity v are given by 

d=|/t2 and v=ft 

Write a program that reads / and t, and prints d and v. 
20. Write a program that reads three numbers, xx, x2, and x3, and computes their average 

(j., their standard deviation a, and the relative percentage RP for each number, where 
xl + x2 + x3 

n= 3 

, X$+X2 + X3~3n2 

3 

RPl = 100 
Xi+X2 + x3 

and similarly for RP2 and RP3. 
21. Assuming a\b2 - a2bi 0, the solution of the linear equations 

a-ix + biy = Ci 
a2x + b^ = c2 

is given by 
&2C1 — b\Ci d\C2 — d2C\ 

X a-ib2-a2bj ^ a:b2-a2bj 
Write a program that reads the values of au bi, and cx from one data line and those 
of dif b2, and c2 from the next data line, and determines the solution pair x, y. 

22. The volume v of a sphere of radius r is given by 
p = (4/3)itr3 

Write a program that computes the thickness of a hollow ball, given the total 
volume occupied by the ball and the volume inside the ball. 
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23. The distance d between points (%i, i/i) and (x2,3/2) is given by 

d = ((x1-x2)2+(y,-y2)2)» 
and the perimeter p and the area a of a triangle of sides of length u, v, and w are 
given by 

p=u+v+w and a = (s (s-u) (s~v) (s-w))^ 
where s = p/2. Write a program that reads the coordinates of the three points of a 
triangle and prints its perimeter and area. 

24. Students are awarded points toward their grades based upon a weighted average of 
their quizzes, the midterm examination, and the final examination. The weighting is 
the average of three quizzes Q l , Q2, Q3, the midterm grade M, and twice the final 
examination grade F. Write a program that computes total weighted points using 
Q l , Q2, Q 3 , M , and F as input. 

25. Write a program that helps in visualizing the effect of inflation. Read the inflation 
rate and print (i) the amount of money needed in four years to buy what $1.00 buys 
today, and (ii) the amount of money needed four years ago to buy what $1.00 buys 
today. Note that if the inflation rate is 6%, the two amounts are given by 1.00 x 1.06 x 
1.06 x 1.06 x 1.06 and 1.00 / (1.06 x 1.06 x 1.06 x 1.06) respectively. 



Selective Structure 

The sequential structure consists of a sequence of program statements that 
are executed one after another in order. The selective structure allows the 

usual sequential order of execution to be modified. It consists of a test for a 
condition followed by alternative paths that the program can follow. The 
program selects one of the alternative paths depending upon the result of the 
test for the condition as illustrated in Figure 3.1. 

Selection among alternative processing is programmed with certain deci-
sion-making constructs. Before studying these constructs in detail, let us go 
through an example program to develop an intuitive understanding for them. 

3.1 OVERVIEW 
Reconsider the program for determining simple interest that we analyzed in 
Example 2 of Section 2.1. We now assume that the bank offers two interest 
rates: a bonus rate of 9.75% for those who invest at least $10,000 or keep the 

Exit 

Figure 3.1. Selective structure 
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principal invested for more than 5 years, and a regular rate of 8.75% otherwise. 
Here is an algorithm for solving this problem: 

1. Read the amount of principal and the number of years for which the 
principal is to be invested. 

2. Determine the interest rate depending upon the principal and the 
years of investment. 

3. Compute the total interest accrued using the formula 

interest = principal x rate x years. 

4. Print interest. 

Here is the program: 

•include <stdio.h> 
•define BONUS 0.0975 
•define REGULAR 0.0875 

int main(void) { 
float principal, rate, interest; 
int years; 

/* prompt the user to provide input values */ 
printf("principal and years of investment? "); 

/* read the input values */ 
scanf("%f %d", &principal, Syears); 

/* determine the interest rate */ 
if (principal >= 10000 || years > 5) 

rate = BONUS; 
else 

rate = REGULAR; 

/* compute interest */ 

interest = principal * rate * years; 

/* print interest */ printf("interest = %f\n", interest); 
/* successful completion */ 
return 0; 

} 

The new feature introduced in this program is the i f statement: 

if (principal >= 10000 || years > 5) 
rate = BONUS; 

else 
rate = REGULAR; 
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which determines the effective rate depending on the values of principal 
and years. The expression enclosed within parentheses following the key-
word i f : 

principal >= 10000 | | years > 5 
is the test that determines whether rate is set to BONUS or REGULAR. If the 
condition is satisfied, i.e., if the expression is true, then the statement controlled 
by if: 

rate = BONUS; 
is executed; if the condition is not satisfied, i.e., the expression is false, then the 
statement controlled by else: 

rate = REGULAR; 
is executed. Thus, the program follows one of the two alternative paths 
depending upon the result of the evaluation of the test condition during the 
processing of this selective structure. In either case, after this structure has been 
processed, the program execution continues from the first statement after the 
structure: 

interest = principal * rate * years; 
C does not have Boolean values: true and false. Instead, integers are used as 

substitutes for Boolean values. Any nonzero value is interpreted as true and 
zero is interpreted as false. 

The test expression 

principal >= 10000. I | years > 5 
consists of two relational expressions 

principal >= 10000 
and 

years > 5 
combined with the logical OR operator 

I I 

into a logical expression. 
Relational expressions are used for comparing the values of two expres-

sions using a relational operator. The relational expression principal >= 
10000 compares principal with 10000 using the operator >=, and its value 
is 1 (true) if principal is greater than or equal to 10000 and 0 (false) other-
wise. The relational expression years > 5 compares years with 5 using the 
operator >, and its value is 1 (true) if years is greater than 5 and 0 (false) other-
wise. The other relational operators are < (less than), <= (less than or equal to), 
== (equal to), and ! = (not equal to). 

Logical operators are used for combining expressions, usually relational 
expressions, into logical expressions. The three logical operators are: I I (logical 
OR), & & (logical AND), and ! (logical NOT). The value of a logical expression 
formed by combining two expressions using the logical OR operator is 1 (true) 
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if the value of either of the two operands is nonzero (true); otherwise, its value 
is 0 (false). Thus, the rate is set to BONUS if principal is at least 10000 or if 
years is more than 5. Only if both of these conditions are false, is the rate set 
to REGULAR. 

More than one action can be specified within an alternative path in a selec-
tive structure by grouping statements into a block, also called a compound state-
ment. A block is a sequence of variable declarations and statements enclosed 
within braces. Moreover, it is not necessary to have an el se part in an i f state-
ment. Thus, if we wanted to ensure that the values provided by the user for 
principal and years were nonnegative, we could add the statement 

if (principal < 0 I I years < 0) 
{ 
printf("negative values in input\n"); 
return 1; 

} 
after the scanf statement. The block 

{ 
printf("negative values in input\n"); 
return 1; 

} 
is executed only if the expression 

principal < 0 || years < 0 
has a nonzero (true) value, and the program terminates abnormally in that case 
after printing the error message. If the value of this expression is zero (false), 
this block is not executed and the interest is computed and printed as before. 
Note that there is no semicolon after the closing brace of a block. 

C also provides a conditional expression operator that is often used to assign 
one of the two values to a variable depending upon some condition. Using this 
operator, rate can be set to either BONUS or REGULAR as follows: 

rate = principal >= 10000 || years > 5 ? BONUS : REGULAR; 
Here is the complete program that incorporates the validation of input 

data and the use of the conditional expression operator: 
•include <stdio.h> 
•define BONUS 0.0975 
•define REGULAR 0.0875 

int main(void) { 
float principal, rate, interest; 
int years; 

/* prompt the user to provide input values */ 
printf ("principal and years of investment? ") ; 

/* read the input values, */ 
scanf ("%f %d", &principal, &years.) ; 
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/* validate input */ 
if ( p r i n c i p a l < 0 || y e a r s < 0) { 

p r i n t f ( " n e g a t i v e v a l u e s i n i n p u t \ n " ) ; 
r e t u r n 1 ; 

} 

/* determine the interest rate */ 
r a t e = p r i n c i p a l >= 10000 |I y e a r s > 5 ? 

BONUS : REGULAR; 
/* compute interest */ 
i n t e r e s t = p r i n c i p a l * r a t e * y e a r s ; 

/* print interest */ 
p r i n t f ( " i n t e r e s t = %f\n", i n t e r e s t ) ; 

/* successful completion */ 
r e t u r n 0 ; 

} 
We will now study in detail the C constructs for specifying selective struc-

tures. We first discuss relational and logical operators and then discuss the con-
ditional expression operator. The various forms of conditional statements — 
the if statement, the i f - e l s e statement, the nested conditional statement, 
and the multiway conditional statement — are discussed next. Finally, we dis-
cuss the swi tch statement that allows checking for different values of the 
same expression. 

3.2 RELATIONAL OPERATORS 
C provides six relational operators for comparing the values of two expres-
sions, and the expression so formed is called a relational expression. Table 3.1 
gives the relational operators and shows how they can be used to compare two 
expressions expl and exp2. 

Relational operators can be applied to operands of any arithmetic type. 
The result of comparison of two expressions is true if the condition being tested 
is satisfied and false otherwise. However, C has no special data type for logi-
cally valued quantities. The value of a relational expression, instead, is of type 
i n t , and is 1 if the result of comparison is true and 0 otherwise. For example, 

15 > 10 has the value 1 (true). 
15 <= 10 has the value 0 (false). 
The use of relational operators to compare character values requires special 

mention. When characters are compared in a relational expression, their rela-
tive ordering in the collating sequence (see Appendix D) is used. Therefore, the 
result of comparison may differ from computer to computer depending upon 
whether the underlying collating sequence uses ASCII or EBCDIC codes. Thus, 
the relational expressions 

' b ' > ' a ' 
' 1 ' < ' 2 ' 
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Table 3.1. Relational operators 

Relational Operator Name Relational Expression 

< Less than expl < exp2 
< = Less than or equal to expl <= exp2 
> Greater than expl > exp2 
> = Greater than or equal to expl >= exp2 
= = Equal to expl == exp2 
l Not equal to expl ! = exp2 

are always true since ' b' follows ' a' and ' 1' precedes ' 2' in any collating 
sequence. However, the truth or falsity of the relational expressions 

'A' > ' 1' 
' * ' < I ( ' 

depends on the collating sequence used in a particular computer. The first is 
true and the second false for the ASCII code, but both are false for the EBCDIC 
code. 

A common programming error is to confuse the equal to operator == with 
the assignment operator =. The expression 

x. == 10 
tests if the value of x is equal to 10, whereas 

x = 10 
assigns 10 to the variable x. Thus, the statement 

if (x == 10) printf("tenbagger"); 
will print tenbagger only if x is 10, whereas the statement 

if (x = 10) printf("tenbagger"); 
will print tenbagger irrespective of the value of x because the value of the 
assignment expression x = 10 is 10 (true). 

3.2.1 Precedence and Associativity 
Table 3.2 shows the precedence and associativity of the relational operators 
with respect to the assignment and arithmetic operators. In this table, an opera-
tor in a higher row has a higher precedence when compared to an operator in a 
lower row. Those operators that are in the same row have the same precedence 
and associativity. Appendix B contains a complete table of the precedence and 
associativity of the C operators. 

Thus, the operators <, <=, >, and >= have equal precedence and associate 
from left to right. Just below them in precedence are the operators == and ! = 
that also have equal precedence and associate from left to right. Therefore, the 
expressions 
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Table 3.2. Precedence and associativity of the relational operators 

Operators Type Associativity 

+ - ++ Unary Right to left 
* / % Binary Left to right 
+ Binary Left to right 
< < = > > = Binary Left to right 
= = ! = Binary Left to right 
= * = / = % = + = - = Binary Left to right 

5 < n < 10 
i == j == 5 
p >= q == r >= s 

are interpreted as 

(5 < n) < 10 
(i'== j) == 5 
(p >= q) == (r >= s) 

respectively. The value of the first expression is 1, irrespective of the value of n, 
since the value of 5 < n is 0 or 1 and either of these two is less than 10. The 
value of the second expression is always 0, whatever the values of i and j are, 
since the value of i == j is 0 or 1 and neither of these two is equal to 5. The 
value of the third expression would be 1 or 0, depending upon whether p >= q 
and r >= s have the same value or not. 

The relational operators have lower precedence than the arithmetic opera-
tors but higher than the assignment operator. Thus, the expression 

a < b + c 
is interpreted as 

a < (b + c) 
However, 

a = b == c 
is interpreted as 

a = (b == c) 
Finally, the expression 

, a = b + c ! = d + e 
is interpreted as 

a = ( (b + c) != (d + e) ) 
The following table further illustrates the use of precedence and associativ-

ity to evaluate relational expressions: 
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int i = 3, j = 2, k = 1; 

Expression Equivalent Expression Value 

i > j > k 
i >= j >= k 
i ! = j ! = k 
k < i != k < 
i - k == j * 
i > j == i + 
i += j != k 
i = k ! = j < 

j k 

k > j + k 

k * j 

(i > j) > k 
(i >= .j) >= k 
(i != j) != k 
(k < i) ! = (k < j) 
(i - k) == (j * k) 
(i>j)==( (i+k) > (j+k) ) 
i += (j ! = k) 
i=(k! = (j<(k* j))) 

(3 > 2 ) > 1 = 1 > 1 = 0 
(3 >= 2) >= 1 = 1 >= 1 = 1 
(3 != 2) != 1 = 1 != 1 s 0 
(1<3) ! = (1<2) = 1 != 1 = 0 
( 3 - 1 ) == (2 * 1) = 2 = = 2 = 1 
1 == (4 > 3) = 1 == 1 = 1 
i+=(2!=1) = i+=l = i=4 s 4 
i=(1!=(2<2)) = i=(1!=0) = i=l s 1 

You may, of course, use parentheses to force an order of evaluation differ-
ent from one yielded by the precedence and associativity rule. You may also 
freely use redundant parentheses to clarify the order of evaluation in a complex 
relational expression. 

3.3 LOGICAL OPERATORS 
C provides three logical operators for combining expressions into logical expres-
sions. Table 3.3 gives these operators and their meanings. 

The logical operators & & and I | are binary operators, whereas the logical 
operator ! is a unary operator. The value of a logical expression is 1 or 0, 
depending upon the logical values of the operands. The operands may be of 
any arithmetic type. The type of the result is always in t . 

3.3.1 Logical AND Operator 
The logical AND operator combines two expressions into a logical expression 
and has the following operator formation: 

expl && expl 

An expression of this form is evaluated by first evaluating the left operand. If 
its value is zero (false), the evaluation is short-circuited and the right operand is 
not evaluated; the value of the logical expression then is 0 (false). However, if 
the value of the left operand is nonzero (true), the right operand does get evalu-

Table 3.3. Logical operators 

Symbol Name Meaning 

&& Logical AND Conjunction 
1 1 Logical OR Disjunction 
i Logical NOT Negation 
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Table 3.4. Logical AND operator 

expl exp2 expl && exp2 

nonzero (true) nonzero (true) l (true) 
nonzero (true) zero {false) o (false) 
zero (false) nonzero (true) o (false) 
zero (false) zero (false) o {false) 

ated. The value of the logical expression is 1 (true) if the right operand has non-
zero (true) value, and 0 (false) otherwise. Table 3.4 summarizes the results of the 
logical AND operation in the form of a truth table. 

Thus, given that 

int a, b, c; 
a = b = c = 1 0 ; 

the logical expression 

a && (b + c) 
has the value 1 (true), since both a and (b + c) are nonzero (true), whereas the 
logical expression 

a && (b - c) 
has the value 0 (false), since (b - c) is zero (false). 

A desirable consequence of the short-circuited left to right evaluation of the 
& & operator is that an expression such as 

(a != 0) && (b/a > 10) 
can safely be written. The division to the right of & & is now guaranteed to be 
performed only if a is not 0, and the division-by-zero error cannot occur. 

3.3.2 Logical OR Operator 
The logical OR operator, like the logical AND operator, combines two expres-
sions into a logical expression, and has the following operator formation: 

expl | | exp2 

An expression of this form is evaluated by first evaluating the left operand. If 
the value of the left operand is nonzero (true), the right operand is not evalu-
ated; the value of the logical expression then is 1 (true). However, if the value of 
the left operand is zero (false), the right operand is evaluated, and the value of 
the logical expression is 1 (true) if the right operand has a nonzero (true) value, 
and 0 (false) otherwise. Table 3.5 summarizes the results of the logical OR oper-
ation in the form of a truth table. 
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Table 3.5. Logical OR operator 

expl exp2 expl 11 expZ 

nonzero {true) nonzero (true) l (true) 
nonzero (true) zero (false) l (true) 
zero (false) nonzero (true) l (true) 
zero (false) zero (false) 0 (false) 

Thus, given that 

i n t a, b, c ; 
a = b = c = 1 0 ; 

the logical expression 

a I I (b - c) 

has the value 1 (true), since a is nonzero (true), and the logical expression 

(a - b) | | c 

also has the value 1 (true), since c is nonzero (true), but the logical expression 

(a - c) II (b - c) 

has the value 0 (false), since both (a-c) and (b-c) are zero (false). 

3.3.3 Logical NOT Operator 
The logical NOT operator inverts the logical value of an expression and has the 
following operator formation: 

! exp 

An expression of this form is evaluated by first evaluating the operand. If its 
value is zero (false), the value of the logical expression is 1 (true); if it is nonzero 
(true), the value of the logical expression is 0 (false). Table 3.6 summarizes the 
results of the logical NOT operation in the form of a truth table. 

Thus, given that 

i n t a, b; 
a = b = 10;-

the logical expression 

! a 

has the value 0 (false), since a is nonzero (true), and the logical expression 

! (a - b) 

has the value 1 (true), since (a - b) is zero (false). 
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Table 3.6. Logical NOT operator 

exp ! exp 

nonzero {true) 0 (false) 
zero (false) 1 (true) 

Table 3.7. Precedence and associativity of the logical operators 

Operators Type Associativity 

+ - ++ . - ! Unary Right to left 
* / % Binary Left to right 
+ Binary Left to right 
< <= > ; Binary Left to right 
= = ! = Binary Left to right 
SS Binary Left to right 
1 1 Binary Left to right 

= * = / = %= += -= Binary Left to right 

3.3.4 Precedence and Associativity 
Table 3.7 shows the precedence and associativity of the logical operators with 
respect to the assignment, arithmetic, and relational operators. In this table, an 
operator in a higher row has a higher precedence when compared to an opera-
tor in a lower row. Those operators that are in the same row have the same 
precedence and associativity. Appendix B contains a complete table of the pre-
cedence and associativity of the C operators. 

Thus, the logical AND operator has a precedence lower than that of any 
arithmetic or relational operators but higher than that of the logical OR opera-
tor. The logical NOT operator has the same precedence as the unary arithmetic 
operators, which means that it has higher precedence than all binary arithmetic 
operators, all relational operators, and the logical operators & & and I |. The 
logical operators associate from left to right, except the unary logical NOT that 
associates from right to left. 

Thus, the expression 
a || b && c 

is interpreted as 
a | | (b && c) 

since & & has higher precedence than | |. The expressions 
! a && b 
! a M b 

are interpreted as 
(! a) && b 
(! a) | | b 
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respectively, since ! has higher precedence than both & & and | |. Due to the left 
to right associativity of & & and | |, the expressions 

a && b && c 
a II b I | c 

are interpreted as 
(a && b) && c 
(a | | b) | | c 

The expressions 
a < b && c % d 
a - b || c == d 

are interpreted as 

(a < b) && (c % d) 
(a - b) || (c == d) 

since & & and I I have lower precedence than the relational and the arithmetic 
operators. Finally, the expressions 

! a > = b & & c / d 
a * b || ! c != d 

are interpreted as 

( (! a) >= b ) && (c / d) 
(a * b) II ( (!c) != d ) 

since ! has the same precedence as that of unary -, which is higher than that of 
the relational and the binary arithmetic operators. 

The following table further illustrates the use of precedence and associativ-
ity to evaluate logical expressions: 

int i = 3, j = 2, k = 1; 

Expression Equivalent Expression Value 

; ; k ! (! k) ! (! 1) = ! 0 = 1 
i i • = = ! j (!i) == <!j) (!3)==(!2) = 0==0 = 1 
k 1 = : | k * k k ! = ((!k) * k) 1 != (0 * 1) = 1 
i > j && j > k (i > j) && (j > k) 1 && 1 s 1 
i j = = j && j ! ! = k (i != j) && (j != k) 1 SS 1 s 1 
i - j - k | | k == i / j (i-j-k) || (k == (i/j) ) 0 | | (1 == (3/2)) = 1 
i < j 1 1 k < i && j < k (i<j) || ((k<i)&&(j<k)) 0 | | (1 && 0) =•0 

You may always use parentheses to force a particular order of evaluation, 
or to clarify the order of evaluation. 
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3.3.5 Evaluation of Logical Expressions 
We just studied how the operands are bound to the operators in a logical 
expression that contains more than one logical operator and/or other arithme-
tic or relational operators. For most operators in C, the order of evaluation is 
determined by their precedence. However, logical AND and logical OR opera-
tors are always evaluated conditionally from left to right, and this evaluation 
rule can make a difference when the expression contains a side effect. 

Consider, for example, the expression 

—a || —b && —c 

and leta = b = c = 10. Following the precedence rule and binding the oper-
ands to the operators, we get 

( (—a) | | ( (—to) && (—c) ) ) 

Hypothetically, if the evaluation order were to follow precedence, & & would be 
evaluated first and we would get 

( (—a) || ( 9 && (—c) ) ) and b = 9 
( (--a) || (9 && 9) ) and c = 9 
( (—a) | | true ) 
( whatever | | true ) 
true, or 1 

that is, the expression would be true, and a = 10, b = 9, and c = 9. Actually, 
the evaluation proceeds from left to right, although & & has higher precedence 
than | |. Evaluating from left to right, we get 

( 9 | | ( (—b) && (—c) ) ) and a = 9 
( true | | ( (—b) && (—c) ) ) 
( true | | whatever ) 
true, or 1 

That is, the expression is again true, but now a = 9, b = 10, and c = 10. 

3.4 CONDITIONAL EXPRESSION OPERATOR 
The conditional expression operator, unlike all other operators in C that are either 
unary or binary, is a ternary operator and takes three arguments. It has the fol-
lowing operator formation: 

expression-1 ? expression-2 : expression-3 

where the question mark ? and the colon : are the two symbols that denote 
this operator. A conditional expression is evaluated by first evaluating expres-

* sion-1. If the resultant value is nonzero {true), then expression-2 is evaluated and 
the value of expression-2 becomes the result of the conditional expression. Oth-
erwise, expression-3 is evaluated and its value becomes the result. 

The conditional expression is most often used to assign one of the two val-
ues to a variable depending upon some condition. For example, the assignment 
statement 
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larger = x > y ? x : y; 
assigns to larger the value of x if x is greater than y; otherwise, it assigns the 
value of y to larger. 

Precedence of the conditional expression operator is lower than all other 
operators except the assignment and comma operators. The second operand 
expression-2 may even use operators that have lower precedence, since it is 
effectively bracketed by the tokens ? and :. However, the third operand expres-
sion-3 cannot use an operator of lower precedence without using parentheses. 
For example, the conditional expression 

c ? x = a : x = b 
would be interpreted as 

(c ? x = a : x) = b 
due to the lower precedence of the assignment operator. This assignment is ille-
gal, since the conditional expression produces an rvalue. A correct form of this 
conditional expression is 

c ? x = a : (x = b) 
Note that it is not necessary to put parentheses around the second operand 
x = a. Of course, a better way to write this expression is 

x = c ? a : b 
The conditional expression operator is right-associative with respect to its 

first and third operands, so that 

a ? b : c ? d : e 
is interpreted as 

a ? b : ( c ? d : e ) 

The value of this expression would be b if a is nonzero (true); otherwise, the 
value of the expression would be d if c is nonzero (true) and e if c is zero (false). 

The following table further illustrates the evaluation of expressions con-
taining the conditional expression operator: 

int i = 0, j = 1, k = 2, n; 

Expression After Values n set to 

n = i+1 ? j : k 
n = i++ ? j — : k — 
n = ++i ? — j : — k 
n = i ? j : j ? k - l : k * k 
n = i ? j : — j ? k - 1 : k * k 
n = ++i ? j : — j ? k - 1 : k * k 

n=l i=0 j=l k=2 
n=2 i=l j=l k=l 
n=0 i=l j=0 k=2 
n=l i=0 j=l k=2 
n=4 i=0 j=0 k=2 
n=l i=l j=l k=2 

j 
k - 1 
k * k j 
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3.5 CONDITIONAL STATEMENTS 
A conditional statement allows selective processing of a statement or a group 
of statements. There are two forms of conditional statements: the i f statement 
and the if-else statement. The first form begins with the key word if, fol-
lowed by an expression in parentheses, followed by a statement. The second 
form also begins with the keyword i f, followed by an expression in parenthe-
ses, followed by a statement. In addition, it has appended to it the keyword 
else, followed by another statement. We will now discuss these two forms of 
conditional statements. 

3.5.1 if Statement 
The i f statement is used to specify conditional execution of a program state-
ment, or a group of statements enclosed in braces. The general format of this 
statement is 

if ( expression ) 

statement 

When an if statement is encountered, expression is evaluated and if its 
value is nonzero (true), then statement is executed. After the execution of state-
ment, the statement following the i f statement is executed next. If the value of 
expression is zero (false), statement is not executed and the execution continues 
from the statement immediately after the if statement. The if statement is 
pictorially represented in Figure 3.2. 

Here are some examples: 

1. if (number < 0) 
number = -number; 

printf("%d\n", number); 
If the number has a negative value, the logical expression number < 0 
evaluates to 1 (true), and the assignment statement converts the nega-
tive value into a positive value, which is assigned to number. If the 
number has nonnegative value, the logical expression evaluates to 0 
(false), and the assignment statement is not executed. In either case, 
the printf function is executed next and it prints the absolute value 
of number. 

2. if (age > 1 8 && salary < 250) 
{ 
unemployed++; 
total_age += age; 
total_salary += salary; 

} 

If the age of the person is more than 18 and the person's salary is 
less than $250, the three statements enclosed in braces are executed. 
Consequently, the number of unemployed is incremented by 1 and 
this person's age and salary are added to total_age and 
total salarv respectively. 
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Entry 

True > Statment 

False 

f 
Exit 

Figure 3.2. i f statement 

Finally, to illustrate the use of the i f statement, we give a program that 
prints the larger of the two given integer values: 

•include <stdio.h> 

int main(void) 
int vl, v2, larger; 

scanf("%d %d", &vl, &v2); 

larger = vl; 

if (v2 > vl) larger = v2; 

printf("%d\n", larger); 

return 0; 

3.5.2 i f - e l s e Statement 
The i f statement allows conditional execution of a group of statements. How-
ever, there are many situations when two groups of statements are given and it 
is desired that one of them be executed if some condition is true and the other 
be executed if the condition is false. In such situations, we make use of the if-
else statement whose general format is: 

if ( expression ) 

statement-1 
else 

statement-2 
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When an if-else statement is encountered, the value of expression is eval-
uated and if its value is nonzero (true), statement-1 is executed. After the execu-
tion of statement-1, the program execution continues from the statement imme-
diately after statement-2. If the value of expression is zero (false), statement-2 is 
executed. After the execution of statement-2, the program execution continues 
from the statement following statement-2. In either case, one of statement-1 or 
statement-2 is executed, but not both. 

Statement-1, controlled by if, is called the if-block, and statement-2, con-
trolled by else, is called the else-block. The if-else statement is pictorially 
represented in Figure 3.3. 

Here are some examples: 

1. if (n % 2 == 0) 
n = even; 

else 
n = odd; 

assigns even or odd to n, according to whether the remainder result-
ing from the division of n by 2 is 0 or not. Note that the preceding 
statement can equivalently be written using the conditional expression 
operator as 

n = (n % 2 == 0) ? even : odd; 
2. if (classification == star_hacker) 

{ 
regular_pay = 2 * regular_rate * regular_hrs; 
overtime_pay = 5 * regular_rate * overtime_hrs; 

} 
else { 

regular_pay = regular_rate * regular_hrs; 
overtime_pay = 2 * regular_rate * overtime_hrs; 

} 

computes the regular_pay and the overt ime_pay for the employ-
ees, but the pay rate depends on the classification of the 
employee. 

Finally, to illustrate the use of the if-else statement, we give a program 
that prints the larger of two given integer values: 

•include <stdio.h> 
int main(void) { 

int vl, v2, larger; 
scanf("%d %d", &vl, &v2); 
if (vl > v2) 

larger = vl; 
else 

larger = v2; 
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Entry 

True False 

Statement-1 Statement-2 

t 
Exit 

Figure 3.3. if-else statement 

printf("%d\n", larger); 
return 0; 

} 
Compare this program with the program for the same problem given in the 

previous section. This program can also be written using the conditional 
expression operator as 

•include <stdio.h> 
int main(void) { 

int vl, v2, larger; 
scanf("%d %d", &vl, &v2); 
larger = (vl > v2) ? vl : v2; 
printf("%d\n", larger); 
return 0; 

} 
Since the only use of larger is in printing the result, we can omit the 

intermediate variable larger, and write the program as 
-•include <stdio.h> 
int main(void) { 

int vl, v2; 
scanf("%d %d 
printf("%d\n 

u 
it 

&vl, &v2); 
vl > v2 ? vl : v2 ); 

return 0; 
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3.6 NESTED CONDITIONAL STATEMENT 
In our discussion of the if-else statement, we identified a set of statements 
as the if-block and another set as the else-block. No restrictions were placed 
on the kinds of statements that could be included within these blocks. One 
could, therefore, include another conditional statement in either the i f-block 
or the else-block or both. If this were to happen, the resulting statement is 
called a nested conditional statement. This structure results in one conditional 
statement being placed inside another conditional statement, and hence the 
adjective nested. The inner conditional statement is said to be nested within the 
outer one. The general format of this statement is 

if ( expression-1 ) 
if ( expression-2 ) 

statement-1 
else 

statement-2 
else 

if ( expression-3 ) 
statement-3 

else 
statement-4 

Neither statement-1 nor statement-2 will be executed unless expression-1 is 
true. Furthermore, neither statement-3 nor statement-4 will be executed if expres-
sion-1 is true. Note that any of statement-1, statement-2, statement-3, or statement-4 
can itself be a conditional statement, and there is no limit on the depth of nest-
ing. The nested conditional statement is pictorially represented in Figure 3.4. 

To illustrate the use of the nested conditional statement, we give a program 
that reads two integer values and prints Hare Rama! if the first is larger than 
the second, Hare Krishna! if the second is larger than the first, and Hare 
Hare! if the two are equal: 

•include <stdio.h> 
int main(void) { 

int vl, v2; 
scanf("%d %d", &vl, &v2); 
if (vl > v2) 

printf("Hare Rama!\n"); 
else 

if (v2 > vl) 
printf("Hare Krishna!\n"); 

else 
printf("Hare Hare!\n"); 

return 0; 
} 
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Entry 

Exit 

Figure 3.4. Nested conditional statement 

The preceding program can be written so that the nesting occurs in the i f -
block instead of else-block: 

•include <stdio.h> 

int main(void) { 

int vl, v2; 

scanf("%d %d", &vl, &v2); 

if (vl >= v2) 
if (vl > v2) 

printf("Hare Rama!\n"); 
else 

printf("Hare Hare!\n"); 
else 

printf("Hare Krishna!\n"); 

return 0; } 
In the preceding programs, the nesting occurs either in the i f-block or in 

the else-block. Here is an example of a nested conditional statement in which 
the nestine occurs both in the if-block and in the else-block: 
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if (xl > x2) 
if (xl > x3) 

largest = xl; 
else 

largest = x3; 
else 

if (x2 > x3) 
largest = x2; 

else 
largest = x3; 

This statement assigns the largest of xl, x2, and x3 to largest. 

3.6.1 Sequence of Nested i f s 
Consider a sequence of nested i f s as in 

if ( expression-1 ) 
if ( expression-2 ) 

if ( expression-3 ) 

if ( expression-n ) 
statement 

meaning thereby that expression-2 should be evaluated only if expression-1 is 
true, expression-3 should be evaluated only if both expression-1 and expression-2 
are true, and so on, and statement should only be executed if all the expressions 
are true. This nested-conditional statement can equivalently be written as 

if ( expression-1 && expression-2 && . . . && expression-n ) 
statement 

This equivalence is possible since C guarantees short-circuited left-to-right 
evaluation of logical expressions. If any of the expressions in the conjunction 
becomes false, the expressions to the right are not evaluated. Thus, 

if (rl !=.0) 
if (r2 + 1/rl != 0) 

if (r3 + 1/(r2+l/rl) != 0) 
r = 1/rl + 1/(r2+l/rl) 

+ 1/(r3+l/(r2+l/rl)); 
can equivalently be written as 

if ((rl != 0) && (r2 + 1/rl != 0) 
&& (r3 + 1/(r2+l/rl) != 0)) 

r = 1/rl + 1/ (r2+l/rl) 
+ 1/(r3 + l/ (r2 + l/rl)); 
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3.6.2 Dangling e l s e Problem 
When conditional statements are nested, it may not be apparent to which of 
several conditional statements an else belongs. The proper indentation helps 
greatly in understanding the program logic. However, the indentation used to 
indicate the way a nested conditional statement is intended to be interpreted 
may not coincide with the way the statement is actually interpreted. For 
instance, the statement 

if ( expression-1 ) 
if ( expression-2 ) 

statement-1 
/* no else-block fortheinner if-else statement */ 

else 
statement-3 

is not interpreted as intended by the indentation format. Instead, else is asso-
ciated with the closest previous else-less if, and the statement is interpreted 
as 

if ( expression-1 ) 
if ( expression-2 ) 

statement-1 
else 

statement-3 

in which the outer if has no else-block. 
The difficulty in such cases in which an innermost if does not contain an 

else, but an outer if does, can be alleviated by the use of braces for proper 
association. The braces have the effect of closing the i f statement. Thus, we 
can write 

if ( expression-1 ) 
{ 

if J expression-2 ) 
" statement-1 

/* no else-block fortheinner if-else statement */ 
} 

else 
statement-3 

for the desired effect. 
Here are some examples: 

1. An else associated with the second if: 
if (i > 1) 

if (j == 2) 
k = 3; 

else 
k = 4; 
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assigns 3 to k when i is greater than 1 and j is equal to 2, but assigns 
4 to k when i is greater than 1 and j is not equal to 2. If i is less than 
or equal to 1, the value of k remains unchanged. 

2. An else associated with the first i f. 
if (i > 1) { 

if (j == 2) 
k = 3; 

} 
else 

k = 4; 
assigns 3 to k when i is greater than 1 and j is equal to 2, but assigns 
4 to k when i is less than or equal to 1. If i is greater than 1 but j is 
not equal to 2, the value of k remains unchanged. 

3. An else associated with each of the i f s . 

if (i > 1) 
if (j == 2) 

k = 3; 
else 

k = 4; 
else 

k = 5; 
assigns, as in the first example, 3 to k when i is greater than 1 and j 
is equal to 2 and assigns 4 to k when i is greater than 1 and j is not 
equal to 2. However, unlike the first example, if i is less than or equal 
to 1, k is assigned 5 . 

4. An else associated with a third i f. 
Consider a slight modification of the sequence of the nested-ifs 
example considered in Section 3.6.1. 

if (rl != 0) 
if (r2 + 1/rl != 0) 

if (r3 + 1/ (r2 + l/rl) != 0) 
r = 1/rl + 1/ (r2 + l/rl) 

+ 1/ (r3 + l/ (r2+l/rl)); 
else 

printf("division by zero\n"); 
The intent is that if any of the denominators evaluates to zero, the 

error message should be displayed. However, the else is paired with 
the innermost if, and the error message is displayed only if the 
expression associated with the innermost if is false. If either of the 
expressions associated with the first and second i f s is false, the divi-
sion-by-zero error does not happen, but the error message is not dis-
played. Note that this statement is not equivalent to 
if ((rl != 0) && (r2 + 1/rl != 0) 

&& (r3 + 1/(r2+l/rl) != 0)) 
r = 1/rl + 1/ (r2 + l/rl) 
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else 
printf{"division by zero\n"); 

since the error message is now displayed if any of the denominators is 
zero, which, of course, was the original intent. 

3.7 MULTIWAY CONDITIONAL STATEMENT 
There is a special form of the nested conditional statement comprising a 
sequence of cascaded if-else statements, where each if-else statement 
but the last has another if-else statement in its else-block. This construc-
tion occurs so often in practice that it merits separate discussion, and is often 
referred to as the multiway conditional statement. 

The general format of this statement is as follows: 

if ( expression-1 ) 
statement-1 

else if ( expression-2 ) 
statement-2 

else if ( expression-3 ) 
statement-3 

"else if ( expression-(n-l) ) 
statement-(n-l) 

else 
statement-n 

In a multiway conditional statement, conditional expressions are evaluated in 
order. If any of these expressions is found to be true, the statement associated 
with it is executed, and this terminates the whole chain. If none of the expres-
sions is true the statement associated with the final else is executed. If no pro-
cessing is required when none of the expressions is true, this else along with 
the statement associated with it can be omitted, or it may be used for error 
checking to catch an unanticipated condition. The multiway conditional state-
ment is pictorially represented in Figure 3.5. 

To illustrate the use of the multiway conditional statement, we reconsider 
the problem of printing Hare Rama! if the first of the given integers is larger 
than the second, Hare Krishna! if the second is larger than the first, and 
Hare Hare! if the two are equal. The desired program, using the multiway 
conditional statement, is as follows: 

•include <stdio.h> 

int main(void) { 
int vl, v2; 

scanf("%d %d", &vl, &v2) ; 
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Entry 

Exit 

Figure 3.5. Multiway conditional statement 

if (vl > v2) 
printf("Hare Rama!\n"); 

else if (v2 > vl) 
printf("Hare Krishna!\n"); 

else 

printf("Hare Hare!\n"); 

return 0; } 
Compare this program with the programs for the same problem given in 

the previous section. This program is identical to the nested conditional ver-
sion in which the nesting is in the else-block. However, this method of for-
matting improves the readability and makes it clear that a three-way decision is 
being made. 

3.8 CONSTANT MULTIWAY CONDITIONAL STATEMENT 
When each of the tests in a multiway i f statement checks for a different value 
of the same expression, we have a constant multiway decision, which is coded 
using the switch statement. The general format of the switch statement is as 
follows: 

switch ( expression ) 
{ 
case value-1 : 

statement-1 
break; 
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case value-2 : 
statement-2 
break; 

case value-n : 
statement-n 
break; 

default : 
statement-x 
break; 

} 

Expression must be an integral expression and the case values must be con-
stant integral expressions. 

When a switch statement is encountered, expression is evaluated and its 
value is successively compared with the case values value-1, value-2, ..., and 
value-n. If a case value, say value-m, matches the expression value, the statement-
m associated with that case is executed. The break statement signals the end 
of the particular case, and causes the termination of the switch statement. If 
the value of the expression does not match any of the case values, statement-x 
associated with the case label default is executed. The label default is 
optional; if it is not there and if none of the case values matches, no action 
take's place. The default need not be after the last case value; cases and 
default can occur in any order. 

The preceding switch statement is equivalent to the following if-else 
statement: 

if ( expression == value-1 ) 
statement-1 

else if ( expression == value-2 ) 
statement-2 

else if ( expression == value-n ) 
statement-n 

else 
statement-x 

To illustrate the use of the switch statement, we give a program to evalu-
ate simple expressions. The program recognizes only the binary operators +, -, 
*, and /. The program is as follows: 

•include <stdio.h> 
int main(void) { 

char operator; 
float operandi, operand2; 
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scanf("%f %c %f", ^operandi, soperator, &operand2); 
switch (operator) { 

case '+':• 
printf("%f\n", operandi + operand2); 
break; 

case ' -' : 
printf("%f\n", operandi - operand2); 
break; 

case '*': 
printf ("%f\n", operandi * operand2); 
break; 

case '/'•.. 
printf("%f\n", operandi / operand2); 
break; 

default: 
printf("Invalid Operator\n"); 
break; 

} 

return 0; 
} 

Following is the program for the same problem using a multiway i f -
else statement,insteadofaswitch statement: 

•include <stdio.h> 
int main(void) { 

char operator; 
float operandi, operand2; 
scanf("%f %c %f", Soperandl, Soperator, &operand2); 

if (operator == '+') 
printf("%f\n", operandi + operand2); 

else if (operator == '-') 
printf ("%f\n", operandi - operand2); 

else if (operator =='*') 
printf("%f\n", operandi * operand2); 

else if (operator == '/') 
printf("%f\n", operandi / operand2); 

else 
printf("Invalid Operator\n"); 

return 0; 
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'i 
Evidently, the switch statement is more convenient and readable than the 

multiway i f statement. 
No two case values should be the same in a switch statement. However, 

more than one case value can be associated with a set of statements by listing 
multiple case values before that particular set of program statements. It is not 
necessary to terminate each case with a break statement. Omitting the 
break statement from a particular case causes the execution to continue 
without regard for the case values and the d e f a u l t label. The break state-
ment, although not logically necessary, should also be placed after the state-
ment associated with d e f a u l t (or the last case value, if d e f a u l t is not at the 
end) as a matter of good programming practice. This practice avoids inadver-
tent introduction of a bug in the program when a case value and associated 
statements are added later on at the end of a switch statement. 

To illustrate the above concepts, we extend the calculator program with 
several features. We will allow the use of _ as the symbol for subtraction, and x 
and x as the symbols for multiplication. We will perform subtraction by first 
negating the subtrahend and then adding it to the minuend. We will also 
ensure that the divisor is not zero in a division operation. The following is the 
new version of the program: 
•include < s t d i o . h > 

i n t main(void) { 

char o p e r a t o r ; 

f l o a t operandi , operand2; 

s c a n f ( " % f %c %f", &operandl, s o p e r a t o r , &operand2); 

switch (operator) 
{ 

d e f a u l t : 
p r i n t f ( " I n v a l i d Operator\n" ) ; 
b r e a k ; 

case ' - ' : 
case ' _ ' : 

operand2 = - operand2; 
case ' + ' : 

p r i n t f ( " % f \ n " , operandi + operand2) ; 
b r e a k ; 

case ' * ' : 
case ' x ' : 
case ' X ' : 

p r i n t f ( " % f \ n " , operandi * operand2) ; 
break ; 

case ' /' : 
i f ( !operand2) { 

p r i n t f ( " D i v i s i o n by Zero\n") ; 
re turn 1 ; 

} 
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else 
printf("%f\n", operandi / operand2); 

break; 
} 

return 0; 
} 

The alternative symbols for an operator are recognized by simply adding 
them as alternative case values for the same set of statements. Since break 
has been omitted in the case for subtraction, after the second operand has 
been negated, the statements associated with the case for addition are also 
executed and the negated second operand is added to the first operand. The 
default label has been put before any of the case values mainly for illustra-
tion purposes. 

Observe the use of an if-else statement to check division by zero. As a 
matter of fact, any valid C statement can be included in a statement block asso-
ciated with a case value. Thus, it is possible to nest switch statements within 
a switch statement. Also, a switch statement may be nested within other 
structures, such as an i f statement. We will see several examples of such nest-
ing later in the text. 

We encourage you to write the preceding program using an if-else 
statement to appreciate the usefulness of the switch statement. 

3.9 ILLUSTRATIVE EXAMPLES 
We now give some programs that use selective structures to further illustrate 
the concepts introduced in this chapter. 

>• Example 1 

II Chris and Casey have established the following minimum criteria for persons they will 
date: 

Chris: 6 feet tall and very good looking, 
or has $50,000 in bank and an imported car, 
or is an engineer or a doctor, and is decent lookirig. 

Casey: decent looking and owns a car, 
or isn't broke and is very good looking, 
or is a doctor. 

Write a program to decide whether a given person is suitable for dating Chris or Casey. 
J 

The relevant data are height, looks, bank balance, car, and job. Assume that 
this data for a person is keyed on one line as shown below: 
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height looks 
(inches) (on a 

1 - 1 0 
scale) 

money 
($) 

car 
(0 = none 
1 = old 
2 - new 
3 = imported) 

job 
(0 = unemployed 
1 = lawyer 
2 = engineer 
3 = doctor 
-1 = programmer) 

The following program provides a solution to the problem: 

•include <stdio.h> 

int main(void) { 
int height, looks, money, car, job, tall, 

verygood_looking, decent_looking, rich, 
broke, any_car, imported_car, engineer, 
doctor, ok_for_Chris, ok_for_Casey; 

/* Get person's attributes */ 

scanf("%d %d %d %d %d", 

sheight, Slooks, smoney, Scar, &job); 

/* Set person's characteristics */ 

tall = height >= 6*12; verygood_looking = looks >= 9; decent_looking 
rich 
broke 
any_car 
imported_car 
engineer 
doctor 

looks >= 5; 
money >= 50000; 
money <= 0; 
car > 0; 
car == 3; 
job == 2; 
job == 3; 

/* Check for Chris */ 

ok_for_Chris = tall && verygood_looking || 
rich && imported_car || 
(engineer || doctor) && decent_looking; 

/* Check for Casey */ 

ok_for_Casey = decent_looking && any_car || 
!broke && verygood_looking || doctor; 
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/* Print Decision */ 

ok_for_Chris ? 
printf("may date Chris\n") : 
printf ("may not date Chris\ri") ; 

ok_for_Casey ? 
printf("may date Casey\n") : 
printf("may not date Casey\n"); 

return 0; 
} 

Sample Execution. If the input data were 

71 6 40000 2 1 
the program would print 

may not date Chris 
may date Casey 

• Example 2 
• A 1000-foot cable for a cable car is stretched between two towers, with a supporting 

tower midway between the two end towers. The velocity of the cable car depends on its 
position on the cable. When the cable car is within 30 feet of a tower, its velocity v in 
ft/sec is given by 

v = 2.425 + 0.00175 d2 

where d is the distance in feet from the cable car to the nearest tower. If the cable car is 
not within 30 feet of a tower, its velocity is given by 

v = 0.625 + 0.12 d - 0.00025 d2 

Write a program that reads the position of the cable car as the distance in feet from the 
first tower, and outputs the number of the nearest tower (1 = first, 2 = middle, 3 = end) 
and the velocity of the cable car. 

The following program provides a solution to the problem: 

Program 

•include <stdio.h> 

int main(void) { 
float position, distance, velocity; 
int tower; 
scanf("%f", sposition); 
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/* Determine the nearest tower and the distance from it */ 

if (position <= 250) { 
tower = 1; 
distance = position; 

} 
else if (position <= 750) { 

tower = 2; 
distance = position < 500 ? 

500 - position : position - 500; 
} 

else { 
tower = 3; 
distance = 1000 - position; 

} 

/* Determine velocity */ 

if (distance <= 30) 
velocity = 2.425 

+ 0.00175 * distance * distance; 
else 

velocity = 0.625 + 0.12 * distance 
- 0.00025 * distance * distance; 

printf("Nearest Tower: %d Velocity: %f\n", 
tower, velocity); 

return 0; 
} 

Sample Execution. If the car's position were 700 feet from the first tower, the pro-
gram would print 

Nearest Tower: 2 Velocity: 14.625000 
On the other hand, if the position were 990 feet from the first tower, the pro-
gram would print 

Nearest Tower: 3 Velocity: 2.600000 

r.^-v Example 3 
»- > Write a program that reads the real coefficients a, b, and c(a^0) of the quadratic equa-

tion ax2 + bx + c = 0 and computes its real roots. 

The roots of the quadratic equation axi + bx + c = 0, when a, b, and c are real 
and a * 0, are given by 

(-b±^lb2-4ac)/2a 
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The roots are real when the discriminant b2 - 4ac > 0. If b2 - 4ac = 0, the two real 
roots are equal, each being -b/2a. 

The following program computes the desired roots: 

•include <math.h> 
•include <stdio.h> 
int main(void) { 

float a, b, c; 
float discriminant, root, rootl, root2; 
scanf("%f %f %f", &a, &b, &c); 
if (a == 0) { 

printf("Not a quadratic equation\n"); 
return 1; 

} 

discriminant = b*b - 4*a*c; 
if (discriminant < 0) 

printf("No real roots\n"); 
else if (discriminant == 0) { 

root = -b / (2*a); 
printf("Two identical roots: %f\n", root); 

} 

else /* discriminant > 0 */ { 

rootl = (-b + sqrt(discriminant)) / (2*a); 
root2 = (-b - sqrt(discriminant)) / (2*a); 
printf("Two distinct roots: %f %f\n", . 

rootl, root2); 
} 

return 0; 
} 

• Example 4 
• Write a program that reads three positive numbers a, b, c and determines whether they 

can form the three sides of a triangle. If yes, determine whether the triangle will be an 
obtuse-angle, or a right-angle, or an acute-angle triangle. If the triangle is an acute-
angle triangle, determine further whether the triangle is equilateral, isosceles, or sca-
lene. 

Recall that 
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• a,b,c can form the three sides of a triangle if each is less than the sum of 
the other two; 

• in an obtuse-angle triangle, if b is the side opposite to the obtuse angle, 
then b2 > a2 + c2; 

• in a right-angle triangle, if b is the side opposite to the right angle, then 
fcW + c2; 

• in an acute-angle triangle, the square of any side is less than the sum of 
the squares of the other two sides; 

• all sides of an equilateral triangle are equal; 
• two sides are equal in an isosceles triangle; and 
• no sides of a scalene triangle are equal. 
The following program provides a solution to the problem: 

•include <stdio.h> 
int main(void) { 

float a, b, c; 
int triangle, obtuse, right_angle, 

equilateral, isosceles; 
scanf("%f %f %f", &a, &b, &c); 
triangle = a < b+c && b < a+c && c < a+b; 
obtuse = a*a > b*b + c*c | | 

b*b > a*a + c*c || 
c*c > a*a + b*b ; 

right_angle = a*a == b*b + c*c || 
b*b == a*a + c*c |I 
c*c == a*a + b*b ; 

equilateral = a == b && b == c; 
isosceles = a == b || b == c || c == a; 
if (! triangle) 

printf("not a triangle\n"); 
else if (obtuse) 

printf("obtuse angle triangle\n"); 
else if (right_angle) 

printf("right angle triangle\n"); 
else { 

printf("acute angle triangle\n"); 
if (equilateral) 

printf("equilateral triangle\n"); 
else if (isosceles) 

printf("isosceles triangle\n"); 
else 

printf("scalene triangleXn"); 
} 

return 0; 
} 
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Example 5 
An electronic component vendor supplies three products: transistors, resistors, and 
capacitors. The vendor gives a discount of 10% on orders for transistors if the order is 
for more than $1000. On orders of more than $100 for resistors, a discount of 5% is 
given, and a discount of 10% is given on orders for capacitors of value more than $500. 
Assume that the numeric codes 1, 2, and 3 are used for transistors, capacitors, and 
resistors respectively. Write a program that reads the product code and the order 
amount, and prints out the net amount that the customer is required to pay after dis-
count. 

The program given below provides a solution to the problem. 

•include <stdio.h> 
•define TRANSISTOR 1 
•define RESISTOR 2 
•define CAPACITOR 3 

int main(void) { 
int code; 
float order, discount; 

scanf("%d %f", scode, &order); 

switch(code) { 
case TRANSISTOR: 

discount = (order > 1000) ? 0.1 : 0; 
break; 

case RESISTOR: 
discount = (order > 100) ? 0.05 : 0; 
break; 

case CAPACITOR: 
discount = (order > 500) ? 0.1 : 0; 
break; 

default: 
printf("Invalid Product Code\n"); 
return 1; 

} 

printf("Net Payment = %f\n", 
order - discount * order); 

return 0; 
} 
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Exercises 3 
1. For the following sets of values: 

i. i = 3, j = 2, k = 1 ii. i = -3, j = -2, k = -1 
iii. i = 1, j = 0, k = 0 iv. i = 0, j = 1, k = 0 
what value do the following expressions have? 

a. i >= j >= k 
b. i >= j && j >= k 

2. Given that i = 2, j = 3, and k = 6, what value do the following expressions have? 

a. i > j && i*j <= k b. i*j <= k && i > j 
c. ! (i > j) && i*j <= k d. ! (i*j <= k) && i > j 
e. i > j | | i*j <= k • /. i*j <= k | | i > j 
g. ! (i > j) II i*j <= k h. ! (i*j <= k) | | i > j 
i. ! (i > j) && ! (i*j <= k) j. ! (i > j) II ! (i*j <= k) 
k. i > j && i <= k || i*j <= k I. i > j && (i <= k | | i*j <= k) 

3. For the following sets of values: 

i. i = j = 0 ii. I = 1, j = -1 
iii. i = 1, j = 0 iv. i = 0, j = -1 
what value do the following expressions have? 

a.~( (i > 0) && (j < 0) ) || ( ! (i > 0) && !(j < 0) ) 
b. ( (i > 0) && ! (j < 0) ) || ( ! (i > 0) && (j < 0) ) 

4. For the following sets of values: 

i ii iii iv v vi vii viii 
u = 0 0 0 0 1 1 1 1 
V = 0 0 1 1 0 0 1 1 
w = 0 1 0 1 0 1 0 1 

what value do the following expressions have? 

a. —u || —v && —w 
b. —u && —v || —w 
What value will u, v, and w have after each evaluation? 

5. For the following sets of values: 

ii iii iv v vi vii viii 
0 1 - 1 1 - 1 1 - 1 

- 1 0 0 - 1 1 1 - 1 

what value do the following expressions have? 

a. (u > v ? u : v) / (u < v ? (!u ? v : u) : (v ? v : u) ) 
b. (u < v ? u : v) / (u > v ? (u ? u : v) : (!v ? u : v) ) 
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6. For the following sets of values: 
1 u 1U IV 

u = 0 0 1 1 
V = 0 1 0 1 

what value do the following expressions have? 
a. u ? v ? u++ : v++ : u++ 
b. v ? v++ : u ? u++ : v++ 
What value will u and v have after each evaluation? 

7. Assuming z to be initially 0, for the following sets of values: 

i ii iii iv 
x = 0 0 1 1 
y = 0 1 0 1 

what value will z have after the execution of each of the following program frag-
ments: 
a. if (x) b. if (x) { 

if (y) if (y) 
z = 1; z - i;J 

else else 
z = 2; z = 2; 

c. if (x) ; d. if (x 
if (y) && y) 

z = 1; z = l; 
else else 

z = 2; z = 2; 
8. Consider the nested if statement: 

if (i) 
if (j) 

if (k) humptyO; 
else; 

else; 
else 

if (j) 
if (k) dumptyO; 
else bumptyO; 

else; 
Which of the following nested if statements are equivalent to the above state-
ment: 
a. if (i && j && k) humptyO; 

else if (j && k) dumptyO; 
else bumptyO; 

b. if (i && j && k) humptyO; 
else if (!i && j && k) dumptyO; 
else if (!i && j && !k) bumptyO; 

c. if (j) 
if (i && k) humptyO; 
else if (!i && k) dumptyO; 
else if (! i && !k) bumptyO; 
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9. Write a logical expression that is true, 

a. if bug and debug are true and r ebug is false. 

b. if bug is true and at least one of debug or rebug is true. 

c. if exactly one of bug and debug is true. 

d. if both bug and debug are true, or both are false. 

10. Write a C statement that prints 

a. oof if foo -1 < foo <+1 . 

b. oops if a is greater than b and not less than c, or if a is not greater than d and 
not equal to e . 

c. c a n n o t buy if the car costs more than $25,000 or it gives less than 10 miles per 
gallon. 

d. h o t c a r if the car is not more than 2 years old, runs at least 25 miles per gallon, 
and costs less than $5000. 

11. Write a C statement that 

a. classifies a given character as an uppercase letter, a lowercase letter, a digit, or a 
special character. 

b. determines whether the given year is a leap year. (A year divisible by 4 is a leap 
year, but if it is also divisible by 100, then it is not, unless it is divisible by 400.) 

12. A function / is defined as follows: 

f(x) = ax3 -bx2 + cx-d, if x > k 
J{x) = 0 , if x = k 
f(x) = - ax3 + fa2 - cx + d, if x < k 

Write a program that reads the values of a, b, c, d, k, and x, and prints the value of 
fix). 

13. Your meteorologist friend has asked you to write a temperature conversion pro-
gram. The program should read the temperature measured and the type of scale 
used in the measurement (F for Fahrenheit and C for Celsius), and convert it to the 
other scale. 

14. In a simple thin lens, the optical axis is the line through the center of the lens joining 
the centers of curvature of the two surfaces. If the lens is used to form an image of an 
object, then the relation 

1 1 1 - + — = 7 a a f 
holds, when a, the distance from object to lens, a', the distance from image to lens, 
and /, the principal focal length of the lens, are measured along the optical axis. 
Note that if a = <*> then a' = f, and if a = f then a' = 

Write a program that accepts the focal length of the lens and the position of the 
object, and prints out the position of the image. 

15. A formula for computing the day of the week was developed by a Reverend Zeller. 
Let m be the month of the year, starting with March as m = 1 with January and Feb-
ruary being months 11 and 12 of the previous year, d the day of the month, y the year 
of the century, and c the previous century. For example, for April 1 ,1988, m = 2,d = 
1, y - 88, and c = 19. The day of the week on which a given date falls is computed as 
follows: 



102 CHAPTER 4 / REPETITIVE STRUCTURE 

i. fake the integer part of the ratio (13m -1)/5. Call it A. 
ii. Take the integer part of the ratio y/4. Call it B. 
iii. Take the integer part of the ratio c/4. Call it C. 
iv. ComputeD = A + B + C + d+y-2c. 
v. Obtain the remainder R of the division of D by 7. 

vi. If R is 0, the day is Sunday, if R is 1, the day is Monday, etc. 
Write a program that accepts a date as input and determines the day of the week. 

16. The Confusion Unlimited has three investment schemes: simple interest of 20%, 
compound interest of 18% compounded annually, and compound interest of 15% 
compounded every six months. Write a program that reads the amount and the time 
for which the money is to be invested, and advises the best choice of scheme. 

17. The commission on a salesman's total sales is as follows: 

• Sales <$100 => No commission. 
• $100 < Sales <$1000 => Commission = 10% of sales. 
• Sales >$1000 => Commission = $100 +12% of sales above $1000. 

Write a program that reads sales and prints out the salesman's commission. 
18. The Funny Bank offers the following interest rates for fixed deposits: 

• Deposit < $1000 for 5 or more years => rate is 6% compounded annually. 
• Deposit >$1000 for 5 or more years => rate is 7% compounded annually. 
• Deposit > $5000 for 5 or more years => rate is 8% compounded annually. 
• Deposit >$10,000 => rate is 10% compounded annually. 
• Deposit for more than 10 years => rate is 10% compounded every six months. 
• $5000 < Deposit <$10,000 for less than 5 years => rate is 5% compounded annu-

ally. 
• Deposit < $5000 for less than 5 years => rate is simple annual interest of 5%. 

Write a program that reads a customer's deposit and the number of years for 
which the deposit is being made, and computes the interest that the customer will 
earn from this investment. 

19. Anonymous Inc. has classified its employees into four categories, and has the fol-
lowing salary policy: 

Class 1: $10 per hour for regular hours and no overtime. 
Class 2 or 3: $7 per hour for regular hours, and overtime hours at the rate of 1.5 

times the rate for the regular hours. 
Class 4: $5 per hour for regular hours, and overtime hours at the rate of 2.0 

times the rate for the regular hours for overtime hours, up to a time 
equal to regular hours. The rate is 2.5 times the regular rate for 
excess overtime hours. 

Write a program that reads an employee's classification and regular and over-
time hours and prints the employee's pay. An error message should be printed if a 
classification number other than 1, 2,3, or 4 is read. 

20. A semiconductor manufacturer sells three types of microprocessors: 8-bit, 16-bit, 
and 32-bit. It differentiates between three types of customers: industrial, govern-
ment, and university. It has the following discount policy that depends on the type 
of microprocessor, the amount of the order, and the type of customer: 

For 32-bit microprocessors, if the order is for less than $50,000, allow 5% dis-
count to industrial customers and 6.5% discount to government agencies. If the 
order is $50,000 or more, discounts of 7.5% and 8.5% are given to industrial 
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customers and government agencies respectively. A discount of 10% is given to 
both industrial customers and government agencies if the order is more than 
$100,000. Universities get a discount of 7.5% irrespective of the amount of order. 
For 16-bit microprocessors, no discount is given for orders less than $10,000. For 
orders of $10,000 or more, 5% discount is given to industrial customers and uni-
versities, and 6% discount to government agencies. For 8-bit microprocessors, a flat 
discount of 10% is given to all three types of customers for any order. 

Write a program that reads the type of the customer, the type of the product, 
and the amount of the order, and prints the net amount payable by the customer. 



Repetitive Structure 

We have discussed so far the first two of the three control structures: 
sequential, selective, and repetitive. The third structure, namely the 

repetitive structure, also known as the iterative structure or program loop, is 
introduced in this chapter. 

The repetitive structure allows a sequence of program statements to be exe-
cuted several times even though those statements appear only once in the pro-
gram. It consists of an entry point that may include initialization of certain vari-
ables, a loop continuation condition, a loop body, and an exit point, as illustrated in 
Figure 4.1. 

Entry Entry 

Loop 
Body 

True 

Loop 
Body 

False 

t 
Exit 

Pre-test loop 

t 
Exit 

Post-test loop 

Figure 4.1. Repetitive structure 
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A repetitive structure must always be entered at the entry point to ensure 
that the appropriate initialization takes place. The loop body consists of state-
ments that are normally executed several times. The exit point is the first state-
ment following the loop body. 

The number of repetitions in a repetitive structure is controlled by a loop 
continuation condition, which is tested once for each execution of the loop body. 
This condition normally involves testing the value of a loop control variable 
whose value is changed every time the loop body is executed. For example, if 
the statements to be repetitively executed consist of reading input data, pro-
cessing it, and writing out the results, then the repetitive execution may be ter-
minated by checking for the end-of-file condition. Another example is the use 
of a counter to control the number of times a loop body is executed. The value 
of the counter is changed, usually by 1, for every execution of the loop body, 
and when the counter attains a predetermined value, the repetition is termi-
nated. 

The loop continuation condition may be tested before the loop body is exe-
cuted, in which case the loop is referred to as a pre-test loop, or the condition 
may be tested after the execution of the loop body, in which case the loop is 
referred to as a post-test loop. Note that the body of a post-test loop is always 
executed at least once; the body of a pre-test loop may possibly never be exe-
cuted. 

4.1 OVERVIEW 
Consider the program for finding the sum of the first n terms of the series 

1 1 1 1 
l + 2 + 3 + 4 + ---

Here is an algorithm for solving this problem: 
1. Read the value of n. 
2. Initialize an accumulator sum to 0. 
3. Repeat step (4) n times. 
4. In the j'th iteration, determine the value of the term 1/i, and add it to 

sum. Thus, 1/1 is added to sum in the 1st iteration, 1/2 in the 2nd 
iteration, 1/3 in the 3rd iteration, etc. 

5. Print sum. 
Here is a program for this problem that uses a while loop for iteration: 
•include <stdio.h> 
int main(void) { 

int i, n; 
float sum; 
scanf("%d", &n); /* read n */ 
i = 1; /* initialize the loop control variable i */ 
sum = 0 ; /* initialize the accumulator sum */ 
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while (i <= n) /* iterate n times */ 
{ 
sum += 1 . 0 / i ; / * add the ith term to sum */ 
i++; /* increment the loop control variable i */ 

} 

printf ("sum = %f\n", sum); /* print sum */ 
return 0; /* successful completion */ 

} 

The first three statements 

scanf("%d", &n); /* read n */ 
i = 1; /* initialize the loop control variable i */ 
sum = 0; /* initialize the accumulator sum */ 

read the value of n, initialize the loop control variable i to 1, and set the accu-
mulator sum to 0. These statements must be executed before the loop execution 
for proper initializations. 

The parenthesized expression following the keyword while 
i <= n 

is the loop continuation condition. The loop body enclosed within braces and 
consisting of the statements 

sum += 1.0/i; /* add the ith term to sum */ 
i++; /* increment the loop control variable i */ 

is repeatedly executed as long as the loop continuation condition is true, i.e., as 
long as i is not more than n. In the ith execution of the loop body, the ith term 
of the series 1 / i is added to sum. Thus, after i iterations, sum contains the sum 
of the first i terms of the given series. 

Every execution of the loop body also increments the value of the loop con-
trol variable i by 1. Eventually, i becomes n+1, the loop continuation condi-
tion becomes false, and the loop execution is terminated. Thus, the loop body is 
executed a total of n times, and the terms 1/1,1/2,..., 1/nare accumulated in 
sum in successive iterations, giving the desired sum of the series. 

Once the loop continuation condition becomes false, the program control 
transfers to the first statement following the loop body 

printf ("sum = %f\n", sum);/* print sum */ 
and sum is printed. 

Besides the while loop, C also provides do-while and for loops to 
express repetitive structures. Here is the program for the same problem, writ-
ten using a for loop. 

•include <stdio.h> 
int main(void) { 

int i, n; 
float sum; 
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scanf("%d", &n); 

for (i = 1, sum = 0; i <= n; i++) 
sum += 1.0/i; 

printf("sum = %f\n", sum); 

return 0; 
} 

We will now study the various looping constructs in detail. 

4.2 while LOOP 
The whi 1 e loop is a pre-test loop, whose general form is: 

loop initialization 

while ( expression ) 
statement-1 

statement-2 

The loop initialization defines the entry point of the structure. In the while 
statement, expression provides the loop continuation condition, and statement-1 
is any valid simple or compound C statement that constitutes the loop body. 
Statement-2 is the exit point of the structure. 

When the while statement is encountered, expression is evaluated. If 
expression evaluates to a nonzero value (true), statement-1 is executed. Expression 
is then again evaluated, and if the result of this evaluation is nonzero, state-
ment-1 is again executed. This process continues until the result of expression 
evaluation becomes zero (false). The iteration is then terminated and the pro-
gram execution continues from statement-2. If the result of expression evaluation 
is zero at the very outset, statement-1 is not executed at all and the program con-
trol immediately transfers to statement-2. 

Suppose we are interested in reading one character at a time from the stan-
dard input and echoing it on the standard output. At the end, we also want to 
output the total number of characters echoed. The standard I/O library pro-
vides a function getchar that reads a character from the standard input, and 
another function put char that writes it to the standard output (see Chapter 
10). Here is a while loop that uses these functions and accomplishes the 
desired task: 

int ch, count; 

count = 0; 
ch = getchar (); 
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while (ch != EOF) { 
putchar (ch); 
count++; 
ch = getchar(); 

} 

printf("total characters echoed = %d\n", count); 
We begin by initializing to zero a counter count in which we will accumu-

late the count of the characters echoed, and use getchar to read the first char-
acter from the standard input into the loop control variable ch. These two 
statements together are the loop initialization statements. 

Immediately following the keyword while is the loop continuation condi-
tion that tests the value of the loop control variable ch to determine whether 
the last getchar has resulted in a successful read from input or whether the 
end of input was reached. As long as a character has been successfully read, the 
loop body is repetitively executed. The loop body consists of echoing the last 
character read using putchar, incrementing count, and getting the next char-
acter from input into ch using getchar. When the end of input is reached, 
getchar returns EOF (end-of-file), the loop continuation condition becomes 
false, and the control transfers to the pr int f statement, which is the exit point 
of this repetitive structure. The printf statement outputs the total number of 
characters echoed. 

The preceding while loop contains the duplicated code: ch = 
getchar () ;. Here is a better alternative: 

int ch, count; 

count = 0; 

while ((ch = getchar()) != EOF) { 
putchar(ch); 
count++; 

} 

printf("total characters echoed = %d\n", count); 
This version avoids code duplication by embedding the call to getchar in the 
loop continuation condition. This form of embedding is a popular C idiom, and 
it works because assignment is an expression whose value 

is the same as that of 
the variable on the left of the assignment operator after the assignment. The 
parentheses surrounding the assignment expression ch = getchar () are nec-
essary since the precedence of the assignment operator is lower than that of the 
relational operators. 

The function getchar returns an int, and not a char. The reason for it 
has to do with detecting the end of input. When the end of input is detected, 
getchar returns EOF, the conventional value for which is -1. Since C does not 
require that a char be able to hold a signed quantity, getchar is made to 
return an int. For the same reason, a variable that holds the value returned by 



SECTION 4.3 / d o - w h i l e LOOP 109 

getchar, such as ch in the example, is declared to be of type int. The end of 
input in a data file is reached when the file runs out of data. The end of input 
on a terminal can be signaled by typing ctrl-d on a UNIX machine and ctrl-z on 
a DOS machine. 

4.2.1 Infinite Loop 
If one is not careful, one could write a loop that never terminates — an infinite 
loop. Consider, for example, the following while loop that determines the sum 
of integers from 1 to n for a user-specified value of n: 

int n, sum = 0; 

scanf("%d", &n); 
while (n != 0) { 

sum += n; 
n — ; 

} 
printf("sum = %d\n", sum); 

This loop correctly determines the desired sum as long as the user provides a 
nonnegative value for n. However, if a negative value is provided as input, n 
will keep decreasing and never become zero. Consequently, the loop continua-
tion condition will not become false and the loop body will be repeatedly exe-
cuted until interrupted by the user. Program interruption is system-dependent 
— on some machines, typing cntrl-c interrupts the executing program, while 
others use the delete, rubout, or break key for this purpose. 

There are several ways in which you can guard against the possibility of an 
infinite loop. In the preceding example, you may test that the user has pro-
vided a positive value for n immediately after reading it. Another alternative is 
to change the loop continuation condition to 

n >= 0 
The sum of the first n integers will now be printed as 0 for any negative value 
of n. 

A similar problem could arise if the loop continuation condition is a float-
ing-point expression. Consider the following while loop that prints a temper-
ature conversion table from degrees Celsius into degrees Fahrenheit: 

float Celsius = 0; 
while (celsius != 1.0) { 

printf("%f %f\n", celsius, 1.8 * celsius + 32); 
celsius += 0.005; 

} 

The problem here is that a floating-point value such as 0.005 is represented 
inside a computer as an approximation of 0.005, and may not exactly equal 
0.005. The loop continuation test in this example can be made more robust by 
changing it to 
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Celsius <=1.0 
A common programming error that leads to an infinite loop is the inadver-

tent use of the assignment operator = in place of the equality operator == in the 
loop continuation condition. A loop such as 

while(more = 1) { 

more = should_i_c.ontinue () ; 
} 

will never terminate because, irrespective of the value assigned to more by 
should_i_continue, the loop continuation condition more = 1 is always 
satisfied since its value is 1. 

Forgetting to change the value of the loop continuation variable inside the 
loop body is another common error that results in an infinite loop. Thus, the 
loop 

int i = 0, sum = 0, n; 
while (i < 25) { 

scanf("%d", &n); 
. sum += n; } 

will never terminate because the loop body does not change the value of i. 
Infinite loops of the form 

while ( 1 ) 

statement 
are sometimes deliberately used. In Section 4.6.1, we will see the use of such 
constructions. 

We have used only while loops in the preceding examples to illustrate 
infinite looping, but infinite loops also occur in do-while or for loops for 
identical reasons. 

4.2.2 Illustrative Examples 

We now give some programs to illustrate the use of while loops. 

Example 1 

Write a program that determines what fraction of a given text consists of vowels. The following program provides a solution to the problem: 
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•include <stdio.h> 

int main(void) { 

int c, vowel, vowelcnt, charcnt; 

vowelcnt = charcnt = 0; 

while ((c = getchar ()) != EOF) { 
/* if c is an uppercase letter, 

convert it into a lowercase letter */ 
C = (C >= 'A' && c <= ' Z' ) ? 

(c - ' A' + ' a' ) : c; 

/* test if c is a vowel */ 
vowel = c == 'a' | | c == ' e' | | • 

c == 'i' || c == 'o' || c == 'u' ; 

if (vowel) vowelcnt+t; 
charcnt++; 

} 

. printf("vowels = %f\n", 
(float)vowelcnt/charcnt); 

return 0; 
} 

One character at a time is read from input until the end of file is reached. If the 
character read is an uppercase letter, it is converted into a lowercase letter. This 
conversion simplifies the test that the character read is a vowel, in that the test 
now becomes a disjunction of five, rather than ten, relational expressions. If the 
character read is indeed a vowel, the count of vowels vowelcnt is incre-
mented. The count of total characters read charcnt is incremented in either 
case. After the complete text has been processed, vowelcnt is divided by 
charcnt to determine the fraction of vowels in the input text. 

• Example 2 
• Write a program that determines the greatest common divisor of two positive integers 

using the Euclidean algorithm. 

The Euclidean algorithm begins by dividing the first number by the second 
and retaining the remainder. At each successive stage, the previous divisor is 
divided by the previous remainder. The algorithm terminates when the 
remainder becomes zero. The greatest common divisor is the last nonzero 
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remainder, or the last divisor. For example, the algorithm finds 7 to be the 
greatest common divisor of 119 and 35 as follows: 

i j remainder^', /) 

119 35 14 
35 14 7 
14 7 0 

The following program implements the Euclidean algorithm: 

•include <stdio.h> 
int main(void) { 

int dividend, divisor, remainder; 

scanf ("%d %d", {.dividend, sdivisor) ; 
if (dividend <= 0 || divisor <= 0) { 

printf("non-positive values in input\n"); 
return 1; 

} 

while((remainder = dividend % divisor) != 0) { 
dividend = divisor; 
divisor = remainder; 

} 

printf("%d\n", divisor); 

return 0; 
} 

4.3 do-while LOOP 
The do-while loop is a post-test loop, whose general form is: 

loop initialization 

do 
statement-1 

while ( expression ) ; 

statement-2 

As with the while loop, the loop initialization statement defines the entry point 
of the structure, expression provides the loop continuation condition, statement-
1 is any valid simple or compound C statement that constitutes the loop body, 
and statement-2 is the exit point of the structure. 



SECTION 4.3 / d o - w h i l e LOOP 113 

When the keyword do is encountered, statement-1 is executed, followed by 
an evaluation of expression. If the result of the expression evaluation is nonzero, 
statement-1 is again executed. This process continues until the result of the 
expression evaluation becomes zero. The iteration is then terminated and the 
program execution continues from statement-2. If the result of the expression 
evaluation is zero at the very outset, the program control transfers to statement-
2. Thus, in this case, statement-1 is executed only once. 

Consider, for example, the following do-while loop: 

int number, digits, sum; 

digits = sum = 0; 
scanf("%d", &number); 

do 
{ 
sum += number % 10; 
number /= 10; 
digits++; 

} 
while (number > 0); 

printf("number of digits = %d sum = %d\n", 
digits, sum); 

Here we are interested in determining the number of digits and their sum in a 
nonnegative decimal integer of arbitrary length. These two quantities will be 
accumulated in variables digits and sum respectively, which are initially set 
to zero. Then the number is read. These two statements constitute the loop ini-
tialization. 

The keywords do and while bracket the loop body. In each iteration of the 
loop, first the right-most digit of the number is extracted and added to sum, 
and then this digit is truncated from the number. Finally, the count of number 
of digits is incremented. The test that the number has not become zero pro-
vides the loop continuation condition. Thus, number is the loop control vari-
able in this structure. Note that the loop would be executed as many times as 
the number of digits in number. 

Once the loop continuation condition becomes false, the program control 
transfers to the printf statement, which is the exit statement of the structure. 
The printf statement outputs the desired values. 

, Observe that the preceding program fragment computes the correct results 
when the input number is 0. Try writing this program using a while loop, and 
you would discover that you may have to resort to special processing to handle 
the case of 0 correctly. 

4.3.1 Illustrative Examples 
We now give some programs to illustrate the use of do-while loops. 
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'a-'- Example 1 
t The present populations of two countries, Curvedland and Flatland, are 817 million 

and 1.088 billion respectively. Their rates of population growth are 2.1% and 1.3% 
respectively. Write a program that determines the number of years until the population 
of Curvedland will exceed that of Flatland. 

The following program provides a solution to the problem: 

•include <stdio.h> 
•define CURVED_POPULATION 0.817 
•define F LAT_P OP ULATION 1.088 
•define CURVED_GROWTH 1.021 
•define FLAT_GROWTH 1.013 

int main(void) 
{ 

float curvedland, flatland; 
int years; 

curvedland = CURVED_POPULATION; 
flatland = FLAT_POPULATION; 
years = 0; 

do 
{ 
curvedland *= CURVED_GROWTH; 
flatland *= FLAT_GROWTH; 
years++; 

} 

while (curvedland <= flatland); 

printf("%d\n", years); 

return 0; } 

Example 2 
Mega Minis sells a laptop computer for $1000, or on monthly installments of $47.08 
till the principal and interest are fully paid. Every month, 1% interest is charged on the 
unpaid principal. The monthly installment is first used towards the payment of inter-
est, and the remaining money is used for decreasing the principal. The following table 
shows some sample calculations: 

Month Interest Paid Principal Paid Unpaid Principal 
1 10.00 37.08 962.92 
2 9.63 37.45 925.47 
3 9.25 37.83 887.64 
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Write a program to compute the number of monthly installments and the total interest 
till the principal is fully paid. 

The following program provides a solution to the problem: 

•include <stdio.h> 

int main(void) { 
float principal, installment, rate, 

interest, total_interest; 
int months; 

scanf("%f %f %f", Sprincipal, &installment, &rate); 
if (installment <= principal*rate) { 

printf("Installment must exceed interest\n"); 
return. 1; 

} 

total_interest = months = 0; 

do 
{ 
interest = rate * principal; 
principal -= installment - interest; 
total_interest += interest; 
months++; 

} 
while (principal > 0); 

printf("Number of Installments = %d\n", months); 
printf ("Total Interest = %f\n", total_interest); 

return 0; 
} 

What could happen if we did not check before the loop execution that 
installment was more than principal*rate? 

4.4 f o r LOOP 
The for loop is a very flexible and powerful repetitive structure. The general 
format of this structure is: 

for (expression-1; expression-2; expression-3) 
statement-1 

statement-2 
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Expression-1 defines the entry point of the structure and is used to perform loop 
initializations. Expression-2 provides the loop continuation condition. State-
ment-1 is any valid simple or compound C statement, whose execution is fol-
lowed by an evaluation of expression-3. Statement-1 together with expression-3 
constitute the loop body. Statement-1 is also referred to as the scope of the for 
statement. Expression-3 is the reinitialization expression, and is generally used to 
alter the value of the loop variables before the next iteration begins. Statement-2 
is the exit point of the structure. 

Consider, for example, the following for loop: 

int i, sum = 0; 

for (i = 1; i <= n; i++) 
sum += i; 

printf("%d\n", sura); 
We wish to determine the sum of integers from 1 to n. The loop control 

variable i is used to successively generate integers from 1 to n. First, the integer 
1 is generated by initializing i to 1. Before executing the loop body, it is 
checked that i has not become greater than n. In each execution of the loop 
body, the current value of i is added to sum, and i is incremented to the next 
integer. The loop terminates when i becomes n+1, and the control transfers to 
the exit point of the structure that prints the desired result. 

A for loop is equivalent to the following while loop: 

expression-1; 

while ( expression-2 ) { 
statement-1 
expression-3; 

} 

statement-2 

Thus, the preceding for loop for determining the sum of integers from 1 to 
n is equivalent to the following whi 1 e loop: 

i = 1; 

while (i <= n) { 
sum += i; 
i++; 

} 

printf("%d\n", sum); 
All the three expressions within parentheses in the for loop are optional 

and hence may be omitted. However, the two semicolons separating the 
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expressions and the parentheses surrounding them must be provided. Expres-
sion-2, when omitted, is assumed to evaluate to true, and the resulting loop is 
infinite, presumably to be broken by some statement within the loop body. 
Expression-1 is omitted when initialization is not required, or is made before the 
loop is entered. Expression-3 is omitted when the reinitialization required for 
the next execution of the loop body is done as part of statement-1. Thus, the 
preceding for loop can also be written as 

i = 1; 
for ( ; i <= n; ) { 

sum += i; 
i++; 

} 

printf("%d\n", sum); 
Similarly, 

for ( ; ; ) 
statement 

sets up an infinite loop because expression-2 has been omitted and hence the 
loop continuation condition is always true. 

A do-while loop of the form 

do 
{ 

statement 
} 

while ( expression ) ; 

can be simulated by a for loop of the form 

for ( x=l; x; x= (expression) ) 
statement 

where x is a dummy variable of the same type as the type of the expression that 
is initially set to nonzero, causing a first iteration, and then set to the loop con-
tinuation expression of the do-while at the end of each iteration. The variable 
x should not be otherwise used in the program. For example, consider the fol-
lowing do7while loop used in the previous section for determining the num-
ber of digits and their sum in a nonnegative decimal integer: 

do 
{ 
sum += number % 10; 
number /= 10; 
digits++; 

} 

while (number != 0); 
It can be equivalently written as 
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tor* (i = 1; i; i = (number != 0) ) { 
sum += number % 10; 
number /= 10; 
digits++; 

} 
The previous for loop can be further simplified to 

for (i = 1; i; i = number) { 
sum += number % 10; 
number /= 10; 
digits++; 

} 

4.4.1 Illustrative Examples 

We now give some programs to illustrate the use of for loops. 

wum Example 1 
mm Write a program that reads a positive integer and classifies it as being deficient, perfect, 

or abundant. 
The proper divisors of a positive integer N are those integers that are less 

than N and divide N evenly. A positive integer is said to be a deficient, perfect, or 
abundant number as the sum of its proper divisors is less than, equal to, or 
greater than the number. For example, 4 is deficient since its divisors are 1 and 
2, and 1+2 < 4; 6 is perfect since 1+2+3 = 6; 12 is abundant since 1+2+3+4+6 > 
12. 

The following program provides a solution to the problem: 
•include <stdio.h> 

main(void) 

int n, i, divisor_sum = 0; 
scanf("%d", &n); 
for (i=l; i < n; i++) 

if (n % i == 0) divisor_sum += i; 
if (divisor_sum < n) 

printf("%d is deficient\n", n); 
else if (divisor_sum > n) 

printf("%d is abundant\n", n); 
else 

printf("%d is perfect\n", n); 
return 0; 

} 

int { 
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n M Example 2 
» v Write a program that reads an integer N and computes N\. 

The following program provides a solution to the problem: 

•include <stdio.h> 

int main(void) { 

int number,, factorial; 

do 
{• 

printf("nonnegative number please\n"); 
scanf("%d", &number); 

} 
while (number < 0) ; 

for (factorial = 1; number > 0; number—) 
factorial *= number; 

printf("%d\n", factorial); 

return 0; 
} 

The program insists that the user provide a nonnegative integer before pro-
ceeding to calculate its factorial. Note that if number is 0, the body of the for 
loop would not be executed, and the program would correctly output 1 as the 
value of 0!. 

4.5 NESTED LOOPS 
Several loops may be used within the same program. Loops may follow one 
another as we have seen in the previous illustrative example. Loops may also 
be nested; that is, a loop may contain other loops within its body. There is no 
limit on the number of loops that can be nested or the depth of nesting. 

When nesting one loop inside another, the inner loop must be entirely con-
tained within the body of the outer loop and each loop must have its own 
unique loop continuation expression. However, the loops may have the same 
exit point. The inner loop is indented with respect to the outer loop for better 
readability. 

As an example, consider the problem of printing the interest table for the 
simple interest formula interest = principal * rate * years, where the 
principal amount is specified as the symbolic constant PRINCIPAL, the 
rate of annual interest ranges from 10 to 15 percent in increments of 0.5 per-
cent, and the number of years of the loan ranges from 1 to 5 years in incre-
ments of 1 year. The entries for different interest rates are required to be sepa-
rated by a blank line. 

The kernel of a program for this problem using nested loops is as follows: 
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for (rate = 10; rate <= 15; rate += 0.5) { 
for (years = 1; years <= 5; years++) { 

interest = PRINCIPAL * (rate/100) * years; 
printf("%f %f %d %f\n", 

PRINCIPAL, rate, years, interest); 
} 

printf ("\n") ; /* exit point for the inner years loop */ 
} 

/* exit point for the outer rate loop */ 

The program involves two for loops; the inner is nested in the outer one. 
When the first for is encountered, the value of rate is set to 10. The loop con-
tinuation condition of the outer rate loop is tested, and is found to be true, 
and the execution of its loop body begins. The inner for is encountered, and 
the value of years is set to 1. Next, the loop continuation condition of the 
inner years loop is tested, and is found to be true, and the execution of its loop 
body begins. Thus, the interest is computed and the first table entry gets 
printed. The program control now returns to the reinitialization expression of 
the inner loop, causing years to be incremented by 1. The loop continuation 
expression of the inner loop is still true, and one more table entry gets printed. 
This process continues until years becomes 6 and the table entries for $1000 
for the interest rate of 10% for 1 through 5 years have been printed. At this 
stage, the loop continuation expression of the inner loop becomes false, and the 
program control transfers to the exit point of the inner loop, causing a blank 
line to be printed. 

The printing of a blank line is the last statement within the scope of the 
outer for, and therefore the reinitialization expression of the outer loop is eval-
uated next, so that rate is increased by 0.5. The loop continuation expression 
of the outer loop is still true, and hence the body of the outer loop is again exe-
cuted. This means that once again the inner loop becomes active, its loop vari-
able years is reset to 1, and the inner loop prints five more table entries, this 
time for the interest rate of 10.5% for 1 through 5 years. A blank line is then 
printed, the interest rate is reinitialized, and the execution of the outer loop 
continues as before. Eventually, the rate increases to 15.5 and the outer loop 
terminates. 

Let us determine the number of table entries and blank lines printed dur-
ing the whole process. For one complete execution of the inner loop, 5 table 
entries are printed. The outer loop is executed 11 times, and in each execution 
of the outer loop, the inner loop is executed once followed by a printing of a 
blank line. Thus, a total of 55 table entries and 11 blank lines are printed. 

As an example of a triply nested loop, let us extend the previous problem 
to additionally require that the interest table is to be printed for principal 
amounts ranging from $1000 to $10,000 in increments of $1000. As before, the 
rate of annual interest ranges from 10 to 15 percent in increments of 0.5 per-
cent, and the number of years of the loan ranges from 1 to 5 years in incre-
ments of 1 vear. The entries for different interest rates for the same nrinrinal 
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amount are required to be separated by a blank line, and for different principal 
amounts by two blank lines. 

The kernel of a program for this problem is as follows: 

for (principal = 1000; 
principal <= 10000; principal += 1000) 

{ 
for (rate = 10; rate <= 15; rate += 0.5) { 

for (years = 1; years <= 5; years++) { 
interest = principal * (rate/100) * years; 
printf("%f %f %d %f\n", 

principal, rate, years, interest); 
} 

printf ("\n") ; /* exit point for the inner years loop */ 
} 

printf ("\n") ; /* exit point for the middle rate loop */ 
} 

/* exit point for the outer principal loop */ 

The program now involves three for loops: inner, middle, and outer; the 
inner loop is nested in the middle one, which itself is nested in the outer one. 
When the first for is encountered, the value of principal is set to 1000, the 
loop continuation condition of the outer loop is tested and is found to be true, 
and the execution of its loop body begins. The nested loops considered in the 
previous problem comprise the first statement in the loop body of the outer 
loop. Thus, all the table entries for $1000 for different interest rates and num-
bers of years are printed. The program control now transfers to the exit state-
ment of the rate loop, and one more blank line is printed, separating the 
entries for different principal amounts by two blank lines. Since this state-
ment is the last statement in the scope of the outer for, the loop variable of the 
outer loop — that is, principal — is reset to 2000, and all the steps described 
for the value 1000 of the variable principal are repeated for this value. This 
process continues until finally principal becomes 11000 and the loop contin-
uation expression of the outer loop becomes false. 

The outer loop is executed 10 times, and each time the outer loop is exe-
cuted, 55 table entries and 11 blank lines are printed due to the execution of the 
middle and inner loops, followed by the printing of one more blank line. Thus, 
a total of 550 table entries and 120 blank lines are printed. 

In the preceding example, for loops were nested within another for loop. 
Other types of loops may similarly be nested, or different types of loops may be 
nested within one another. The following example shows how the preceding 
nested structure may be written equivalently by nesting a whi le loop within a 
for loop, and a do-while loop within the while loop: 

for (principal = 1000; 
principal <= 10000; principal += 1000) 

{ 
ra.te = 10; 
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while (rate <= 15) { 
years = 1; 
do 

{ 
interest = principal * (rate/100) * years; 
printf("%f %f %d %f\n", 

principal, rate, years, interest); 
years++; 

} 
while (years <= 5); 

printf ("\n") ; /*exit point for inner do-while loop*/ 
rate += .5; 

} 

printf ("\n") ; /*exit point for the middle while loop*/ 
} 

/* exit point for the outer for loop */ 

4.5.1 Illustrative Examples 
We now give some programs to illustrate the use of nested loops. 

Example 1 
Four different tests are given to a class often students. The test data is arranged so that 
each student's ID is followed by the student's scores in the four tests. Write a program 
that calculates the average score of every student and the class average over all tests. 

The following program provides a solution to the problem: 

•include <stdio.h> 
•define TOTAL_STUDENTS 10 
•define TOTAL_TESTS 4 
int main(void) { 

int student_id, score; 
float total_score, grand_total; 
int i, j; 

grand_total = 0; 
for (i = 1; i <= TOTAL_STUDENTS; i++) { 

total_score = 0; 
scanf("%d", sstudent id); 
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for (j = 1; j <= TOTAL_TESTS; j++) { 
scanf("%d", Sscore); 
total_score += score; 

} 

printf("%d %f\n", 
student_id, total_score/TOTAL_TESTS); 

grand_total += total_score; 
} 

printf("Class Average = %f\n", 
grand_total/(TOTAL_STUDENTS*TOTAL_TESTS)); 

return 0; 
} 

The program contains two nested loops. The outer loop, executed once for each 
of the ten students, consists of reading student_id and score in each of the 
four tests, calculating the student's average score, and adding the student's 
total_score to the grand_total for the class. The inner loop reads the 
four scores for a student and accumulates them in total score. 

• Example 2 
• Three positive integers a, b, and c, such that a <b < c, form a Pythagorean triplet if 

a2 + b2 = c2. Write a program that generates all Pythagorean triplets a, b, c, where a, b 
<25. 

The following program provides a solution to the problem: 

•include <math.h> 
•include <stdio.h> 
•define LIMIT 25 

int main(void) { 
int a, b, c, c_sqr; 

for (a = 1 ; a < LIMIT; a++) 
for (b = a+1; b <= LIMIT; b++) { 

c_sqr = a * a + b * b; 
c = sqrt (c_sqr) ; /* truncate fraction */ 
if (c * c == c_sqr) 

printf ("%d %d %d\n",. a, b, c) ; 
} 

return 0; 
} 
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We start with a = 1 and find the values of b from 2 through 25 such that c = 
(a2 + b1')A is an integer. This process is repeated for a = 2 through 24. 

The above program is error prone. Consider what will happen when a is 
2, b is 3, and sqrt ( 2 5 . 0 ) turns out to be 4.999999, instead of 5.0. How would 
you fix this problem? 

4.6 LOOP INTERRUPTION 
It is sometimes desirable to control loop exits other than by testing a loop ter-
mination condition at the top or the bottom of the loop. Similarly, it is some-
times desirable that a particular iteration be interrupted without exiting the 
loop. We will now study the facilities provided by C for this purpose. 

4.6.1 break Statement 
When a break statement of the form 

break; 
is encountered within a loop body, the execution of the loop body is inter-
rupted, and the program control transfers to the exit point of the loop. Recon-
sider, for example, the problem of computing simple interest discussed in Sec-
tion 2.1. However, the interest is now required to be computed for a set of 
values of principal, rate, and years of investment. The following loop ac-
complishes this task: 

while (1) { 
printf( 

"principal, rate, and years of investment? "); 

if (scanf("%f %f %d", &principal, Srate, &years) 
== EOF) break; 

interest = principal * rate / 100 * year's; 
printf("interest = %f\n", interest); 

} 

We have deliberately set up an infinite loop by providing a loop continuation 
condition that is always true. In each iteration of the loop, the user is prompted 
to provide principal, rate, and years, their values are read, and inter-
est is computed and printed. When the user provides the end-of-file indica-
tion, the break statement is executed, and the loop is exited without comput-
ing and printing interest. 

When a break is located within a nested loop structure, the only loop that 
gets interrupted is the innermost one whose body contains the break state-
ment. The statement that is executed after the break is the one which is the exit 
point of the loop in which the break occurs. Consider, for example, the follow-
ing program fragment that determines the sum of prime numbers between 10 
and 100: 
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for (i = 10; i <= 100; i++) { 
/* check if i is prime */ 

for (j = 2; j <= sqrt(i 
if (i % j == 0) /* 

break; 

if (j > sqrt(i)) /* 
sum += i; 

} 

A number is prime if its only positive divisors are 1 and itself. The outer for 
loop successively tests every number between 10 and 100 to determine whether 
it is a prime. The test is performed in the inner for loop using a very simple 
algorithm. This algorithm successively divides the given number i by integers 
from 2 to sqrt (i) , and declares the number to be not a prime if any of these 
numbers divides i evenly; otherwise i is prime. The break statement breaks 
the inner loop as soon as the first divisor is found, but the iteration continues in 
the outer loop for the next value of i. Once break has been executed in the 
inner loop, j is not incremented; instead, the conditional statement in the outer 
loop is executed next. This statement determines whether the program control 
has reached this point due to a break in the inner loop or after the inner loop 
was fully executed. The complete execution of the inner loop signals that i 
under consideration is a prime number, and only then is i added to sum. 

We saw in Section 3.8 that the break statement is also used to terminate 
the processing of a particular case within switch statements. If a switch 
statement is included in a loop body, any break that terminates the processing 
of a case does not cause loop interruption. 

It is illegal to use the break statement outside a loop body or a switch 
statement. 

4.6.2 continue Statement 
The continue statement is another loop interruption statement, but unlike 
break, it does not terminate a loop; it only interrupts a particular iteration. The 
cont inue statement is of the form 

continue; 
When a continue statement is encountered within the loop body of a while 
or do-while loop, all the remaining statements in the loop body following the 
continue statement are skipped and the loop continuation condition is evalu-
ated next. Thus, the repetition behaves as if the last statement of the loop body 
has just been completed. In the case of a continue in the body of a for loop, 
any statements following the continue in the scope of the particular for 
statement are skipped, and the reinitialization expression (third expression) is 
evaluated next. The execution of the repetition continues thereafter as normal. 

);. j++) i is not prime */ 

i is prime */ 
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For example, reconsider the problem of determining the sum of integers 
from 1 to n, with the added constraint that 5 and integers divisible by 5 not be 
included in the sum. The following program fragment obtains the desired sum: 

for (i = 1; i <= n; i++) { 
if (i % 5 == 0) continue; 
sum += i; 

} 

Following the execution of the continue statement, the assignment state-
ment, which adds i to sum, is skipped, but the reinitialization expression that 
increments i is still executed. Note that in the presence of a continue state-
ment, a while loop may not be equivalent to the for loop. If the preceding 
program were written as follows, using a while loop, 

i = 1; 
while (i <= n) { 

if (i % 5 == 0) continue; 
sum += i; 
i++; 

} 

then the loop would not terminate for n > 5, since i would get stuck at 5. How 
would you modify the above program to obtain the desired result? 

The continue statement is generally used for checking abnormal condi-
tions at the beginning of the loop and skipping the rest of the loop if such con-
ditions arise. It is possible to avoid most uses of the continue statement by 
using an appropriate if statement. The condition of the if statement would 
be the opposite of the condition that would have caused the continue state-
ment to be executed. Thus, the program for obtaining the sum of integers from 
1 to n, excluding those divisible by 5, can be rewritten without using a con-
tinue as follows: 

for (i = 1; i <= n; i++) 
if (i % 5 != 0) 

sum += i; 
Indiscriminate use of continue statements may render a program diffi-

cult to understand. As a rule of thumb, use a continue primarily to avoid 
excessive nesting within a loop. 

It is invalid to use the cont inue statement outside a loop body. 

4.6.3 Illustrative Examples 
We now give some example programs to further illustrate the concepts intro-
duced in this section. 
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• Example 1 
• • Write a program fragment equivalent to the following that does not use break or 

continue statements: 

count = 0; 
while ((c = getchar()) != EOF) { 

if (c != '\t' && c != '\n') continue; 
if (c == '\n') break; 
if (c == '\t') count++; 

} 

The only effective action that takes place inside the loop is that count is 
incremented, provided that the necessary conditions are satisfied. The break 
statement provides an alternative condition for exiting the loop, but since this 
break condition is tested before the condition for incrementing count, the 
break statement can be avoided altogether by adding the negation of the 
break condition to the loop continuation condition. We then have: 

count = 0; 
while ((c = getchar()) != EOF && c != 'An') 

{ 
if (c != '\t' && c != '\n') continue; 
if (c == '\t') count++; 

- } 

The second condition of the first if statement, that is c ! = ' \n', is now also a 
loop continuation condition, and hence must always be true whenever the loop 
is entered. Therefore, we can simplify this condition to get: 

count = 0; 
while ((c = getchar()) != EOF && c != 'An') { 

if (c != '\t') continue; 
if (c == '\t') count++; 

} 

It is now apparent that the continue and the associated if test are redun-
dant, and we can write: 

count = 0; 
while ((c = getchar ()) != EOF && c != '\n') 

if (c == '\t') count++; 
This program fragment can be written more compactly as: 

for (count = 0; 
(c = getchar ()) != EOF && c != '\n'; ) 

if (c == '\t') count++; 
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This for loop makes it obvious that this program fragment is counting the 
number of tab characters in a line. The original program fragment also 
accomplishes the same task, but is relatively harder to understand. This exam-
ple clearly brings out that, while there are several alternative ways in which a 
program can be written, the choice of right constructs makes a program much 
more readable. 

Example 2 
Two measures of interest in statistics are the arithmetic mean and variance defined for a 
set of numbers x-i, x2,..., x„ as follows: 

arithmetic mean 

variance n i=1 

n 

i=1 

n 

_ 1 V 2 -L 
" » f1Xi " n2 !=1 V 

Write a program that reads a set of numbers and prints the above statistics on them. 
The program should ignore any number that is greater than 100 or less than -100. 

The following program computes the desired statistics: • 

•include <stdio.h> 
•define THRESHOLD 100 

int main(void) { . 
int n; 
float x, sum, sum_sqr; 

sum = sum_sqr = n = 0; 
for ( ; ; ) { 

if (scanf("%f", &x) == EOF) break; 

if (x > THRESHOLD || x < -THRESHOLD) 
continue; 

n++; 
sum += x; 
sum_sqr += x * x; 
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printf("arithmetic mean = %f\n", sum/n); 
printf("variance = %f\n", 

sum_sqr/n - (sum * sum)/(n * n) ) ; 

return 0; 
} 

Rewrite this program without using break or continue statements. 

4.7 NULL STATEMENT 
C permits a statement consisting of a solitary semicolon to be placed wherever 
a program statement can appear. This statement, known as the null statement, 
is of the form 

Execution of a null statement has no effect, and hence may seem quite useless. 
Its use, however, becomes necessary when, although no action is desired, the 
language syntax requires a statement. Consider, for example, the following 
iterative statement: 

for (count=0; getchar() != EOF; count++) 

This statement counts the number of characters in input. A null statement had 
to be supplied, as the syntax rules require a for to have a statement following 
the right parenthesis. 

It is a good programming practice to place the null statement on a line by 
itself after proper indentation. 

4.8 COMMA OPERATOR 
The comma operator ( , ) is used to combine two related expressions into one, 
making programs more compact. The compound expression so formed is eval-
uated from left to right, and the type and value of the result are the type and 
value of the right operand. The value of the left operand is discarded; it is eval-
uated only for side effects. The comma operator has the lowest precedence of 
any other operator, and hence can safely be used to turn any list of expressions 
into a single expression. For example, given that 

int i; 
float x; 

the expressions 

i = 1 
and 

x = i + 1 
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can be combined by the comma operator into a single expression as 

i = l , x = i + l 
The left operand of the comma operator assigns 1 to i, and is discarded. The 
right operand is then evaluated, and its type (float) and value (2) become the 
type and value of the compound expression. Similarly, the assignment state-
ments 

t = x; 
x = y; 
y =- t; 

that interchange the values of x and y, can be combined into a single statement 
as 

t = x, x = y, y = t; 
The assignments are made from left to right; first x is assigned to t, then y to 
x, and finally t to y. 

When writing a for loop, very often, more than one variable requires ini-
tialization. Similarly, sometimes one likes to have more than one variable con-
trolling a for loop, and all these loop variables require reinitialization before 
the next iteration begins. The comma operator is specially useful in such situa-
tions as it can group several expressions into a single expression. For example, 
the for statement 

for (x = .85, y = 1.05, z = 0; 
x <= y; x *= 1.06, y *= 1.04) z++; 

initializes the values of x, y, and z to 0.85, 1.05, and 0 respectively before the 
loop begins, and increases the value of x to 1.06 times its current value and that 
of y to 1.04 times its current value after each execution of the loop body. Note 
that this for loop is a one-line version of the do-while loop used in the popu-
lation program in Section 4.3.1. 

The comma operator is frequently used to issue a prompt before an input 
request. Using the comma operator, the loop considered in Section 4.6.1 can be 
rewritten without using a break as: 

while (printf( 
"principal, rate, and years of investment? "), 

scanf( 
"%f %f %d", sprincipal, &rate, Syears) != EOF) 

{ 
interest = principal * rate / 100 * years; 
printf("interest = %f\n", interest); 

} 

The test for end-of-file still controls the loop termination, since the operands 
are evaluated from left to right. 

The comma operator can also be used to eliminate embedded assignments 
from tests. For example, 
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while ( (c = getchar()) != EOF) putchar(c); 
can be rewritten as 

while (c = getchar(), c != EOF) putchar(c); 
separating the reading of the character from testing the end-of-file. 

4.8.1 Illustrative Example 
We now give a program that uses the comma operator to initialize multiple 
variables in a for loop. 

-r Example 
/ <- A small test rocket is being designed for use in testing a retrorocket that is intended to 

permit "soft" landings. The designer believes that the following equations predict the 
performance of the test rocket: 

/ ryj x.2.751 
Acceleration in ft/sec2 = 4.25 - 0.015 t2 + ' L 9995 

, n . . 0.01513 6.07 f3'751 
Velocity m ft/sec = 4.25 t - —-— + -3.751 • 9995 

4.25 t2 0.015 f4 . 6.07 f4'751 
Height in ft/sec = 90 + -^-r— - ,, + 12 4.751 • 37491 

where t is the time elapsed in seconds. The first term (90) in the equation for Height is 
the height in feet above ground level of the launch platform. 

To check the predicted performance, the flight of the rocket is to be simulated for a maxi-
mum of 100 seconds. Increments of time are to be 2 seconds from launch through the 
ascending and descending portions of the trajectory until the rocket descends to within 
75 feet of ground level. Below 75 feet, the time increments are to be 0.05 seconds. If the 
rocket impacts prior to 100 seconds, the simulation should be stopped immediately after 
impact. At each time increment, the simulator should print the elapsed time, the accel-
eration, the velocity, and the height above ground level. 

The following program provides a solution to the problem: 

•include <math.h> 
•include <stdio.h> 
•define STEP1 2.0 
•define STEP2 0.5 
•define TOTALTIME 100 
•define THRESHOLD 75 
•define YES 1 
•define NO 0 
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int main(void) { 
double t, acceleration, velocity, height, 

step, previous_height; 
int descending; 

for (t=0, step=STEPl, descending=NO, 
previous_height=0; t <= TOTALTIME; t += step) 

{ 
acceleration = 4.25 - 0.015 * t * t + 

(6.07 * pow(t,2.751)) / 9995; 
velocity = 4.25 * t - (0.015 * t * t * t) / 3 + 

(6.07 * pow(t,3.751)) / (3.751 * 9995); 
height = 90 + (4.25* t * t) / 2 -

(0.015 * pow(t,4.0)) / 12 + 
(6.07 * pow(t,4.751)) / (4.751 * 37491); 

if (height <= 0) { 
printf( 

"rocket impacted at or before %f\n", t); 
break; 

} 
else 

printf("%f %f %f %f\n", 
t, acceleration, velocity, height); 

if (height < previous_height) 
descending = YES; 

else 
previous_height = height; 

if (descending && height <= THRESHOLD) 
step = STEP2; 

return 0; 
} 

Note that the program determines that the rocket is in the descending por-
tion of its trajectory, if the current height of the rocket is less than its height at 
the previous observation. 



EXERCISES 4 133 

Exercises 4 

1. How many times will the loops defined by the following for statements be exe-
cuted? 

a. for(i=10; i<=10; i++); b. for(i=10; i<10; i++); 
c. for(i=10; i>-l; i-=4); d. for(i=10; i==l; i-=4); 
e. for (x=. 1; x<=. 5; x=.2); /. for(x=.l; x<=.5; x-=.2); 

2. What will be the output of the following program fragment? 

for (sum =0, i = 2; i <= 8; i += 2) { 
j = i; 
while (j < 4) { 

k = j; 
do 

{ 
sum++; 
k += 2; 

} 
while (k <= 3); 
j++; 

} 
• } 

printf("%d %d %d %d\n", sum, i, j, k) ; 
3. What will be the output of each of the following program fragments? 

a. for (j=2,i=3; i <= 8; i += 2) 

j += i; 
} 

printf("%d %d\n", i, j); 
b. for (j=2,i=3; i <= 8; i += 2) 

{ 
j += i; 
if (j > 6) break; 

} 
printf("%d %d\n", i, j); 

c. for (j=2,i=3; i <= 8; i += 2) 
{ 
if (j == 5) continue; 
j += i; . 

} 
printf("%d %d\n", i, j); 
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4. Rewrite the following program fragments without using any continue or break 
statements: 

a. while (go_on) 
{ 
if (interrupt) continue; 
do_some_work(); 

} 
b. do 

{ 
if (!go_on) continue; 
else do_some_work(); 
do_more_work(); 

} 
while (go_on); 

c. while ( (c=getchar()) != EOF) 
{ 
if (c=='\n') continue; 
if (c=='\t') continue; 
if (c==' ') continue; 
if (c<'0') {special++;continue;} 
if (c<='9') {digit++;continue;} 
if (c<'A') {special++;continue;} 
if (c<='Z') {alpha++;continue;} 
if (c<'a') {special++;continue;} 
if (c<='z') {alpha++;continue;} 
special++; 

} 
d. i = 1; 

j = over = 0; 
while (lover) { 

if (i == n) break; 
if (n % i) 

{i++; continue;} 
j += i++; 
if (j > MAXJ) over++; 

} 
5. Write a program that reads numbers until a negative number is read, and prints the 

number of values read, the largest value, the smallest value, and the range. 

6. A perfect square is an integer which is the square of another integer. Write a pro-
gram that reads a number and computes the first perfect square larger than this 
number. 

7. Write a program that reads numbers from input and prints ye s if the numbers read 
are in increasing order (latest number read is larger than the one immediately 
before). 

Modify the program so that it keeps track of the length of subsequences of the 
input numbers that are in increasing order, and prints the length each time such a : 
subsequence terminates. 
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8. Write a program to print the first ten partial sums of the continued fraction 

1 1 + 
i + ! 

i +
 1 
l + • • • 

given that if Sk is the fcth partial sum, then 

S1 = l , S2 = 1+7, S3 = 1 + 1 1 / '-M x
 ' -i / 

1 + T 
9. Adam has invested $1000 at 10.0% simple interest, whereas Smith has invested $750 

at 7.5% interest compounded annually. Write a program to determine the number of 
years it will take for the value of Smith's investment to exceed that of Adam's. 

10. If there are 23 people in a room, the probability is a little more than half that two will 
have the same birthday. Do you find it surprising? Pick a person. This eliminates 
one birthday, and the probability that the next person you pick will have a different 
birthday is 365/366 (includes February 29 birthdays). This eliminates two birthdays. 
The probability that the third person will have yet another birthday is 364/366. For 
the fourth person, the probability is 363/366, and so on. Thus, the probability that at 
least two of them have the same birthday is 

365 364 363 366 - 2 3 + 1 
366 ' 366 ' 366 ' ' 366 

Write a program that reads the number of people in a room and computes the 
probability of at least two people having the same birthday. Use your program to 
find the number of people it takes to make the probability 0.9 or better. 

11. Here is an ecological simulation of wolf and rabbit populations. Rabbits eat grass 
and wolves eat rabbits. There is plenty of grass; therefore, wolves are the only obsta-
cle to the rabbits' population increasing. The wolf population increases with the 
population of rabbits. The day-by-day changes in the rabbit population R and the 
wolf population W can be expressed by the following formulas: 

Rltomorrow] = (1+a) • R - c • R • W [today] 

W[tomorrow]= (1 -b) •W+c-d-R-W [today] 

a = 0.01 Fractional increase in rabbit population without competition 
from wolves 

b = 0.005 Fractional decrease in wolf population without rabbits to eat 
c = 0.00001 Likelihood that a wolf will encounter and eat a rabbit 
d=0.01 Fractional increase in wolf population attributed to a devoured rabbit 

Assume that initially there are 10,000 rabbits and 1000 wolves. Write a program to 
calculate populations of rabbits and wolves over a 1000-day period. Have the pro-
gram print the populations every 25 days. See what happens when you start with 
500 wolves instead of 1000. Try starting with 2000 wolves too. 

12. Capital assets are depreciated for tax purposes on a year-by-year basis. One way of 
calculating depreciation is by the straight-line method. Each year the asset is depre-
ciated by an amount equal to cost of the asset divided by its expected life, and the 
book value of the asset is decreased by this amount. 
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Another way of calculating depreciation is by the sum-of-digit methods. For 
example, suppose that a microcomputer costing $1000 is to be depreciated over 
five years. The sum of the years' digits, sum, in this case is 

sum = 1 + 2 + 3 + 4 + 5 = 15 

According to this method, 5/15 of $1000 may be depreciated in the first year, 4/15 
the second year, 3/15 the third year, and so on. 

Write a program that reads the cost and expected life of an asset, and prints 
the depreciation and the book value each year, over the expected life of the asset, 
by the above two methods of depreciating assets. 

13. Super-Duper Micros currently sells 100 Super-Dupers per month at a profit of $500 
per Super-Duper. They have a fixed operating cost of $10,000 that does not depend 
on the volume of sales. They currently spend $1000 per month on advertising. A 
marketing consultant advised them that if they double the amount spent on adver-
tising, sales would increase by 20%. Write a program that begins with the 
company's current status, and successively doubles the amount spent on advertis-
ing until the net profit begins to decline. Have the program print the number of 
Super-Duper sales, the advertising budget, and the net profit just before the profit 
begins to decline. 

14. Write a program to approximate the area under the curve f(x) = x3 from x = 0 to 
x = 1 using the following trapezoidal rule: 

area = | [/(0) + 2f(h) + 2f(2h) + 2f(3h) + ... + 2f(l-h) + /<!)] 

The step size h should be such that l / h is an integer. Compute the area for h = 0.1, 
0 .01,0.001, and 0.0001 and compare the results. 

15. The equation x2 + y2 = r2 represents a circle with center at the origin and radius r. 
Write a program that reads r and determines the number of points with integer coor-
dinates that lie within the circle. 

16. Write a program that, for all positive integers i, j, k, and I from 1 through 1000, deter-
mines all combinations of i, j, k, and I such that i+j + k=l and i<j <k<l. 

17. Write a program that reads a positive integer N and determines the smallest integer 
n such that n > N and x2 + y3 + z4 = n, where x > y > z, and x, y, z are positive integers. 

18. Write a program Using nested loops to generate the following pattern: 

zyxwvwxyz 
zyxwxyz 
zyxyz 
zyz 



Functions 

AC program is usually made up of many small functions, each performing 
a particular task, rather than one large main function. A program is 

usually kept in more than one source file, each file consisting of closely related 
functions. Source files may be compiled separately and loaded together, 
possibly along with previously compiled library functions. Once a function has 
been designed, its result can be used in complex computations without concern 
for details of how the result was obtained. Functions can be developed, tested, 
and debugged independently and possibly concurrently by different members 
of a programming team. They avoid duplication of effort as the same 
processing may be needed more than once in a program or in more than one 
program. Separating a program into functions also aids in maintenance and 
enhancement of programs by localizing the effects of changes. 

In this chapter, we discuss how functions are defined and used. 

5.1 OVERVIEW 
Let us consider a function that computes the sum of the cubes of the digits of a 
given positive integer. The function is defined as follows: 

int cubesum(int number) { 
int sum, residue, digit; 

residue = number; 
sum = 0; 

do 
{ 
digit = residue % 10;/* rightmost digit */ 
sum += digit * digit * digit; 
residue /= 10;/* after removing this digit */ 

} 

while (residue != 0); 

return sum; 

137 
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The type of this function is int as indicated by the type specification just 
before the function name, cube sum. The function name is followed by the 
parameter declarations enclosed in parentheses. This function has only one 
parameter, number, which is of type int. The opening brace { following the 
parameter declarations marks the beginning of the function body. The function 
body consists of the declarations of local variables and function statements. There 
are three local variables: sum, residue, and digit. These variables are only 
accessible in the body of cubesum, and not in any other function. The function 
statements following the variable declarations compute the sum of the cubes of 
the digits of number. The return statement terminates the execution of the 
function and communicates the value sum computed by the function to the 
calling function. The closing brace } marks the end of the function body. 

All that a calling function has to knowabout cubesum is that it can com-
pute the sum of the cubes of the digits of a given number; the calling function 
does not have to know the details of how this sum is computed. Any function 
that requires this sum can call cube sum. 

We will use the function cubesum to determine narcissistic cubes. Narcis-
. sistic cubes are positive integers that equal the sum of the cubes of their digits. 
For example, 153 is a narcissistic cube since 

153 = l 3 + 53 + 33. 

Besides 153, only four other narcissistic cubes exist: 1, 370, 371, and 407. The 
following program finds all of them: 

•include <stdio.h> 
•define MAX 5 

int main(void) { 
int i, count; 
int cubesum(int number); 

for(i=l, count=0; count < MAX; i++) 

if (i == cubesum(i)) { 
printf("%d\n", i); 
count++; 

} 
return 0; 

} 

The declaration of cubesum in main is the function prototype for cubesum. 
This specifies that cubesum can be called with one argument of type int, and 
it returns a value of type int. Function prototypes have been introduced by 
ANSI C, and they help the compiler check whether or not the function has been 
called correctly. 
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A function is called by specifying the name of the function followed by a 
list of arguments enclosed in parentheses. Thus, within the body of main, 
cubesum (i) is the call to the function cubesum with the current value of i as 
the argument. When a function is called, its parameters are initialized to the 
value of the arguments supplied with the function call. The function body is 
then executed. On encountering a return statement in the function body, the 
program control returns to the calling function, and the value returned by the 
function is substituted for the function call in the calling function. Thus, this 
program repeatedly checks whether the sum of the cubes of the digits of the 
candidate number i equals i itself, till all the narcissistic cubes have been 
found. 

We now discuss in detail various aspects of a function definition and its 
use. 

5.2 FUNCTION DEFINITION 
A function definition introduces a new function by declaring the type of value it 
returns and its parameters, and specifying the statements that are executed 
when the function is called. The general format of the function definition is: 

function-type function-name (parameter-declarations) 
{ 

variable-declarations 

function-statements } 
Function-type specifies the type of the function and corresponds to the type 

of value returned by the function. Functions in C are used not only to deter-
mine values, but also to group together related actions, such as printing the 
headers of a report. A function that does not return any value, but only causes 
some side effects, is declared to be of type void. The specification of function 
type is optional; if it is omitted, it is taken to be int. 

Function-name is the name of the function being defined. Parameter-declara-
tions specify the types and names of the parameters (also called formal parame-
ters) of the function, separated by commas. If a function does not have any 
parameters, the keyword void is written in place of parameter declarations. 
The rules for naming functions and parameters are the same as for naming 
variables discussed in Section 2.4.1. 

Thus, the function definition 

float interest (float prin, float rate, int yrs) 
{ 

} 

defines interest to be a function that returns a value of type float, and has 
three parameters: prin and rate, which are of type float, and yrs, which is 
of type int; the function definition 
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void initialize(void) { 

} 
defines initialize to be a function that neither returns any value nor takes 
any arguments; and the function definition 

quotient (int i, int j) { 

} 
defines quotient to be a function that returns an integer value and has two 
integer parameters i and j. Note that the type of quotient is taken to be int, 
since its type has not been explicitly specified. 

The function-body consists of variable-declarations followed by function-state-
ments, enclosed within the opening brace { and the matching closing brace }. 
Variable-declarations specify types and names of the variables that are local to 
the function. A local variable is one whose value can only be accessed by the 
function in which it is declared. Variables declared local to a function super-
sede any identically named variables outside the function. Parameters are 
treated as if they were declared at the top of the function body. Thus, functions 
may be developed independently, without any concern for variable names 
used in other functions. For example, the functions 1cm and gcd 

i-nt 1cm (int m, int n) { 
int i; 

} 
int gcd(int m, int n) { 

int i; 

} 
have identically named parameters and local variables, but any reference to m, 
n, or i in gcd has nothing to do with m, n, or i in 1cm. 

Function-statements can be any valid C statements that are to be executed 
when the function is called. The execution of the function terminates when 
either the execution reaches the closing brace at the end of the function body, or 
a return statement is encountered. 

5.2.1 return Statement 
A return statement can be of one of the following two forms: 

return expression; 
return; 
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If the return statement is of the first form, the value of the expression is 
returned to the calling function. For example, the function smaller 

double smaller(double x, double y) { 
return x < y ? x : y; 

} 

returns the value of the smaller of the two arguments in the function call. If the 
type of the expression does not match the type of the function, it is converted to 
the type of the function. For example, in the function 

int trunc(void) { 
return 1.5; 

} 

the return statement is equivalent to 

return (int) 1.5; 
and returns 1 to the calling function. 

The return statement of the second form returns no value to the calling 
function. This form of the return statement should be used only when 
the function is of type void; otherwise, the value returned is unpredictable. If a 
function is declared to be of type void, it is an error to supply an expression in 
any return statement in the function. Flowing off the end of a function, with-
out encountering a return statement, is equivalent to executing a return 
statement of the second form as the last statement of the function. More than 
one return statement can be used in the same function, as is the case with the 
following function definition: 

int factorial(int n) { 

int i, result; 

if (n < 0) return -1; 

if (n == 0) return 1; 

for (i = 1, result = 1; i <= n; i++) result *= i; 

return result; 
} 

The first executed return statement terminates the execution of the function, 
and the rest of the function body is not executed. Thus, if factorial is called 
with argument 0, the function will return with the value 1, and the for loop 
will not be executed. 
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5.3 FUNCTION CALL 
A function call is an expression of the form 

function-name ( argument-list ) 

where function-name is the name of the function called, and argument-list is a 
comma-separated list of expressions that constitute the arguments (also called 
actual arguments) to the function. Thus, the expression 

cubesum(i) 
is a function call that invokes the function named cubesum with the argument 
i. 

The type of a function-call expression is the same as the type of the func-
tion being called, and its value is the value returned by the function. A function 
call can occur in any place where an expression can occur, such as in 

if (i == cubesum(i)) printf("%d\n", i); 
A function call, followed by a semicolon, becomes an expression statement. 

Thus, the expression in the statement 

printf("hello there"); 
is a call to the function named printf with the argument "hello there". 

Function calls can be embedded in other function calls. Thus, the state-
ments 

t = cubesum(i); 
j = cubesum(t); 

are equivalent to 

j = cubesum( cubesum(i) ); 
Another example of an embedded function call is the statement 

printf("sum of the cube of the digits of %d = %d", 
i, cubesum(i)); 

in which the call to cubesum is embedded in printf. 
Parentheses must be present in a function call even when the argument list 

is empty. Thus, 

initialize() ; 
is a call to the function named initialize, which does not take any argu-
ment. 

The commas that separate function arguments are not comma operators, 
but a separate syntactic entity. In such contexts, expressions involving the 
comma operator must be enclosed in parentheses. For example, 

f((a=0, a+=l), b) 
has two arguments, the first of which has the value 1. 

The function in which the function call is contained is said to be the calling 
function and the function named in the call is said to be the called function. A 
function call alters the sequential execution of the program. Upon call, the pro-
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gram control passes from the calling function to the called function, and execu-
tion begins from the first executable statement of the called function. The called 
function is executed until a return or the closing brace of the function is 
encountered, at which point the control passes back to the point after the func-
tion call. The calling function may choose to ignore the value returned by the 
called function. 

When a function is called, parameters in the called function are bound to 
the corresponding arguments supplied by the calling function. The names of 
the parameters need not be identical to those of the arguments. The difference 
between parameters and arguments can be understood by drawing an analogy 
with the proof of a theorem in elementary geometry. Such a proof is written in 
terms of angles and lengths. These angles and lengths correspond to the 
parameters of a function. If we replace angles and lengths in the proof by par-
ticular values, such as 60° and 10 inches, every statement of the proof would 
still be true, and we would have proved a particular case of the theorem. This 
process is analogous to providing arguments to a function. As a proof is true 
for a class of figures, a function represents a class of computations. A call to a 
function performs a specific computation belonging to the corresponding class 
of computations. 

C only provides call by value parameter passing, meaning thereby that the 
called function is only provided with the current values of the arguments, but 
not their addresses, and the corresponding parameters are assigned these val-
ues. Since the addresses of the arguments are not available to the called func-
tion,.any change in the value of a parameter inside the called function does not 
cause a change in the corresponding argument. This form of parameter passing 
is different from the call by reference parameter passing supported by some lan-
guages, such as FORTRAN. In call by reference, the address of the argument is 
supplied to the called function, and any change in the value of a parameter is 
automatically reflected in the corresponding argument. The following program 
illustrates parameter passing by value: 

•include <stdio.h> 
int main(void) { 

int i = 1, j = 2; 
void exchange (int, int); 

return 0; 
} 

void exchange(int i, int j) { 
int t; 
t = i, i = j, j = t ; 
printf("exchange: i = %d j= %d\n", i, j); 

I 

printf("main 
exchange(i,j); 
printf("main 

i = %d j= %d\n", i, j); 

i = %d j= %d\n", i, j); 
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The following is the output of this program: 

main 
exchange 
main 

i = 1 j= 2 
i = 2 j= 1 
i = 1 j= 2 

The change in the value of the parameters is not reflected in the arguments and 
they retain their values. Thus, the parameters can be treated as initialized local 
variables in the called function. This feature many times avoids extraneous 
variables in the program. For instance, the function cubesum in the narcissistic 
cubes example, given in Section 5.1, can be rewritten without using the local 
variable residue as follows: 

int cubesum(int n) 

int sum, digit; 

sum = 0; 

do 
{ 
digit = n % 10; /* rightmost digit of n */ 
sum += digit * digit * digit; 
n /= 10; /* n without the rightmost digit */ 

} 

while (n != 0); 

return sum; 
What if the programmer wants the called function to modify the values of 

the variables supplied as arguments to the called function, such as in the call to 
the function exchange in the preceding example? There are two possible solu-
tions. The calling function may explicitly pass the address of the variable 
(called the pointer to the variable) as the argument, and the called function can 
then use this address to manipulate the value of the variable. We will discuss 
this approach in detail after we have introduced pointers in Chapter 7. The 
other approach is to make such variables external to both calling and called 
functions. External variables are global in nature, and they can be changed by 
any function that has access to them. We will discuss communication between 
functions through external variables in Section 5.6. 

Before calling a function, it must be declared with a prototype of its parame-
ters. The general form for a function declaration is 

function-type function-name (parameter-type-list) ; 

where the function-type and function-name are type and name respectively of the 
function being declared. The parameter-type-list is the comma-separated list of 

5.4 FUNCTION PROTOTYPES 
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,'t 
pairs of type and name of the parameters of the function. Thus, the function 
declaration 

i n t cubesum(int n ) ; 

in the narcissistic cubes program in Section 5.1 is a function prototype. Simi-
larly, the function declaration of i n t e r e s t contained in the following main 
function to compute the interest earned is a function prototype: 

i n t main(void) { 
i n t p r i n , y r s ; 
f l o a t r a t e , i n t r ; 
f l o a t i n t e r e s t ( f l o a t p r i n , f l o a t r a t e , i n t y r s ) ; 

scanf("%d %f %d,"Oprin, Orate, Oyrs) ; 
i n t r = i n t e r e s t ( p r i n , r a t e , yrs ) 
p r i n t f ( " % f \ n " , i n t r ) ; 
re turn 0 ; 

} 

The prototype of a function must agree with the function definition and its 
use. However, the parameter names in the prototype can be different from the 
names used in the function definition. These names are effectively treated as 
comments, and may even be omitted. Thus, the preceding prototypes could 
have been equivalently written as 

i n t cubesum(int ) ; 
f l o a t i n t e r e s t ( f l o a t , f l o a t , i n t ) ; 

When a function for which a prototype has been specified is called, the 
arguments to the function are converted, as if by assignment, to the declared 
types of the parameters. Thus, the call 

i n t e r e s t (pr in , r a t e , yrs ) 

where p r i n and yrs are of type i n t and r a t e is of type f l o a t , is equivalent 
to 

i n t e r e s t ( ( f l o a t ) p r i n , r a t e , yrs ) 

and no explicit casting is necessary. It is an error if the number of arguments in 
the call is different from the number in the prototype, or if their types are not 
the same as or convertible to the types in the prototype. 

, At the time of a function call, if there is no prototype for this function, the 
function is implicitly declared to be of type i n t , and the result can be meaning-
less computation if the function actually returns a value of a different type. 
Thus, if a source file looks as follows 

i n t main(void) { 

i n t e r e s t (1000, 0 . 0 7 5 , 5 ) ; 

} 
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float interest (float principal, float rate, int yrs) { 

} 

then while processing main, interest will be implicitly declared as 

int interest (int, float, int); 
which is inconsistent with its subsequent definition. If main and interest 
are defined in separate files, there is no way for a compiler to detect such incon-
sistencies. We strongly encourage you, therefore, to ensure before calling a 
function that its prototype is available. 

A function definition in the prototype form serves as a prototype for any 
subsequent call to the function in the same source file. For example, a proto-
type would not be necessary for interest if the source file were organized as 

float interest (float principal, float rate, int yrs) { 

} 

int main(void) { 

interest (1000, 0.075, 5); 

} 

A program may contain more than one declaration of a function; however, 
all these declarations must be consistent. 

5.4.1 Illustrative Examples 
We now give some example programs to consolidate the concepts introduced 
in this chapter so far. 

Example 1 
• Write a program to determine the positive integer that has the largest persistence 
• among two-digit integers. 

Multiplying the digits of an integer and continuing the process gives the 
surprising result that the sequence of products always arrives at a single-digit 
number. For example, 

36 -> 18 -> 8 
39 27 —> 14 —»4 
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The number of products necessary to reach the single digit is called the persis-
tence number of that integer. Thus, the persistence number of 36 is 2 and that of 
39 is 3. There is only one two-digit integer, 77, with a persistence number 
greater than 3. The following program determines this integer. 

•include <stdio.h> 
•define START 10 
•define END 99 

int main(void) { 
int n, p, number, maxp; 

/* computes the persistence number of n */ 
int p_number(int n); 

for(n = START, maxp = 0; n <= END; n++) { 
p = p_number(n); 

if (p > maxp) /* save values */ 
{ 
maxp = p; 
number = n; 

} 
} 

printf("number = %d persistence = %d\n", 
number, maxp); 

return 0; 
} . 

int p_number(int n) { 
int p; 

/* computes the product of the digits of n * / 
int digitprod(int n); 

/* loop while the digit product does not 
become a single-digit number */ 

for(p = 0; n/10 != 0; p++) 
n = digitprod(n); 

return p; 
} 
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int digitprod(int n) { 
int digit, prod; 
prod = 1; 
do 

{ 
digit = n % 10;/* rightmost digit */ 
prod *= digit; 
n /= 10;/* number after deleting rightmost digit */ 

} 

while (n != 0); 
return prod; } 

• Example 2 
• Write a program for a consumer service organization that will help people bargain for a 

low price while purchasing a personal computer. The program will take as input the list 
price for the basic configuration, the list price for the desired options, and an indication 
whether it is an imported model. It will output the lowest price that the dealer would 
accept. The buyer can then hold out for this price. 

The consumer service organization knows that dealers will accept a price 
that is 20% above the cost to the dealer of the basic configuration plus options. 
The wholesale cost to the dealer is half the list price, but the dealers pay a 10% 
surcharge on the imported models. The desired program is as follows: 

•include <stdio.h> 

• define MARKUP 0.2 /* 20% over cost */ 
•define WHOLESALE 0.5 /* wholesale is 50% of list price */ 
•define SURCHARGE 0.1 /* 10% surcharge on imported models */ 

int main(void) { 
float base_price; /* list price of the basic configuration */ 
float options; /* list price of the options */ 
int imported;/* nonzero value implies an imported model */ 
float lowest_price(float, float, int); 

scanf("%f %f %d", 
&base_price, Soptions, Simported); 

printf("Lowest Price = %f", 
lowest_price(base_price, options, imported)); 

return 0; 
} 
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float lowest_price(float base_price, 
float options, int imported) 

{ 
float dealer_cost(float base_price, 

float options, int imported); 

return (1 + MARKUP) * 
dealer cost (base price, options, imported); 

float dealer_cost(float base_price, 
float options, int imported) 

{ 
float base_cost, options_cost; 

base_cost = imported ? 
, (1 + SURCHARGE) * WHOLESALE * base_price : 
WHOLESALE * base_price; 

options_cost = WHOLESALE * options; 

return base_cost + options_cost; 
} 

5.5 BLOCK STRUCTURE 
A block is a sequence of variable declarations and statements enclosed within 
braces. C does not allow a function to be defined inside another function, but it 
is permissible to nest blocks and to declare variables and initialize them at the 
beginning of any block. The scope of a variable declared in a block extends from 
its point of declaration to the end of the block. Such a declaration hides any 
identically named variable in the outer blocks. 

Consider, for example, the factorial function given in Section 5.2. It can 
be rewritten as 

int factorial(int n) { 
if (n < 0) 

return -1; 
else if (n == 0) 

return 1; 
else { 

int. i, result = 1 ; 

for (i = 1; i <= n; i++) result *= i; 
return result; 

} 
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In this version, the variables i and result are declared inside the block 
associated with the second else, rather than at the beginning of the function 
block. This version is more readable as these variables are now declared near 
the place of their use. 

As another example, reconsider the problem of determining the sum of 
prime numbers between two given numbers, discussed in Section 4.6.1. The 
code for determining this sum can be rewritten as 

•include <math.h> 

int primesum(int from, int to) { 
int i, j, sum = 0; 

for (i = from; i <= to; i++) { 
int sqrt_i = (int) sqrt(i); 

for (j = 2; j <= sqrt_i; j++) 
if (i % j == 0) /* i is not prime */ 

break; 

if (j > sqrt_i) /* i is prime */ 
sum += i; 

} 

return sum; 
} 

Rather than computing the square root of i for every iteration of the inner 
loop, it is computed only once for a given value of i and saved in sqrt__i, a 
variable declared local to the block associated with the outer for. 

5.6 EXTERNAL VARIABLES 
Local variables can only be accessed in the function in which they are defined; 
they are unknown to other functions in the same program. Even if variables in 
different functions have the same name, they are not related in any way. 

Data must often be shared between functions. One safe way to accomplish 
this sharing is to use function parameters to pass data among functions. We 
have seen several examples of this method in the previous sections. This 
method, however, becomes quite cumbersome if a large number of variables 
have to be shared. 

An alternative is to set up variables that are available across function 
boundaries. If a variable is defined outside any function at the same level as 
function definitions, it is available to all the functions defined below in the 
same source file, and is called an external variable. Technically, that part of the 
program within which a name can be used is called its scope. The scope of a 
local variable is the function in which its has been defined, whereas the scope 



SECTION 5.6 / EXTERNAL VARIABLES 151 

of an external variable is the rest of the source file starting from its definition. 
Note that the scope of external variables defined before any function definition 
will be the whole program, and hence such variables are sometimes referred to 
as global variables. 

External variables can be used instead of long parameter lists to communi-
cate data among functions, since their scope spans function boundaries. The 
following program fragment illustrates the definition and use of external vari-
ables: 

int i, j; /* external variables accessible in 
' input, compute, and output */ 

void input(void) { 
scanf("%d %d", si, &j); 

} 

int k; /* external variable accessible in compute and output */ 

void compute(void) { 
k = power(i,j); 

} 

void output(void) { 
printf("i = %d j = %d k = %d", i, j, k); 

} 

A local variable definition supersedes that of an external variable. If an 
external variable and a local variable have identical names, all references to 
that name inside the function will refer to the local variable. Thus, the follow-
ing definition of the function power can be inserted between the functions 
compute and output without affecting i in output: 

int power(int base, int exponent) { 
int i, result; 

for (i = 1, result = 1; i <= exponent; i++) 
result *= base; 

return result; 
} 

The variable i defined in power is local to power and has nothing to do 
with the external variable i defined before input. Thus, any change in i in 
power is not reflected in the external i, and output remains unaffected. 

You may have noticed that all the functions considered so far in the text 
returned only one value. What if a function has to return two or more values? 
External variables can be used for this purpose, as shown in the following 
example: 
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float rootl, root2; 

int roots(float a, float b, float c) { 
float discriminant; 

if (a == 0) { 
printf("not a quadratic equation\n"); 
return 1; 

} 

discriminant = b*b - 4*a*c; 

if (discriminant < 0) { 
printf("equation has no real roots\n"); 
return 1; 

} 

rootl = (-b + sqrt(discriminant)) / (2*a); 
root2 = (-b - sqrt(discriminant)) / (2*a); 
return 0; 

- } 

This function returns the two roots of a quadratic equation in external vari-
ables rootl and root2. In Chapter 7, we will study an alternative way of 
returning more than one result from a function computation. 

You may ask at this stage why external variables should not always be 
used if some data is to be shared between functions, as they certainly appear 
somewhat convenient. The heavy use of external variables hides the relation-
ship between different parts of the program, and leads to programs that are 
harder to understand and modify. Such programs are prone to errors as 
changes in one part of the program may affect some other part in unexpected 
ways. For instance, in the first example, a change of names of external variables 
i, j, and k to, say, base, exponent, and result would require a careful 
study of the whole program, as changes are not localized. Moreover, embed-
ding the names of external variables in the function body destroys the general-
ity of the function. Any program that uses roots, for example, has to make 
sure that it uses variable names rootl and root2 for obtaining the results of 
calling roots. External variables, therefore, must be used with utmost discre-
tion. 

5.6.1 Illustrative Examples 
We now give some example programs to further illustrate the concept of exter-
nal variables. 
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Example 1 
Rewrite the computer bargaining program given in Section 5.4.1, using external vari-
ables. 

The desired program is as follows: 

•include <stdio.h> 
• define MARKUP 0.2 /* 20% over cost */ 
•define WHOLESALE 0.5 /* wholesale is 50% of list price */ 
•define SURCHARGE 0.1 /* 10% surcharge on imported models */ 

/* external variables */ 
float base_price;/* list price of the basic configuration */ 
float options; /* list price of the options */ 
int imported; /* nonzero value implies an imported model */ 

/* function prototypes */ 
float lowest_price(void); 
float dealer_cost(void); 
int main(void) { 

scanf("%f %f %d", 
&base_price, &options, &imported); 

printf("Lowest Price = %f\n", lowest_price()); 
return 0; 

} 

float lowest_price(void) { 
return (1 + MARKUP) * dealer_cost(); 

} 

float dealer_cost(void) { 
float base_cost, options_cost; 
base_cost = (imported) ? 

(1 + SURCHARGE) * WHOLESALE * base_price : 
WHOLESALE * base_price; 

options__cost = WHOLESALE * options; 
return base_cost + options_cost; 

Example 2 
Write a program for transforming rectangular coordinates to polar coordinates. 

The polar coordinates (r,Q) corresponding to the rectangular coordinates 
(x,y) of points other than the origin are given by 
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r = (x2 + y2)/2, tan0 = xj/x, -n<Q<n. 

The desired program is as follows: 

•include <math.h> 
•include <stdio.h> 
•define PI 3.1415927 

float r, theta; 
void polar (float x, float y); 

int main(void) 
• { 

float x, y; 

scanf("%f %f", &x, &y); 
printf("x = %f, y = %f\n", x, y); 
polar(x, y); 
printf("r = %f, theta = %f\n", r, theta); 
return 0; 

} 

void polar (float x, float y) { 
if (x == 0 && y == 0) /* origin */ 

r = theta = 0; 
else { 

r = sqrt(x*x + y*y); 
theta = atan2(y,x); 

} 
} 

The function at an 2 (y, x), defined in the standard math library, computes 
the value of arctangent of y / x (see Appendix A). 

5.7 STORAGE CLASSES 
A variable belongs to one of the two storage classes: automatic and static. The 
storage class determines the lifetime of the storage associated with the variable. 

5.7.1 Automatic Variables 
A variable is said to be automatic if it is allocated storage upon entry to a seg-
ment of code, and the storage is deallocated upon exit from this segment. A 
variable is specified to be automatic by prefixing its type declaration with the 
storage class specifier auto in the following manner: 

auto type variable-name; 
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Variables can be declared to be automatic only within a block. If the storage 
class has not been explicitly specified, a variable declared within a block is 
taken to be auto. Thus, the declarations of the variables i and result in' 

int factorial(int n) { 
int i, result; 

} 

are equivalent to 

int factorial(int n) { 
auto int i, result; 

} 

and declare i and result to be automatic variables of type integer. 
An automatic variable may be initialized at the time of its declaration by 

following its name with an equal sign and an expression. The expression is 
evaluated and its value is assigned to the automatic variable each time the 
block is entered. Thus, the auto variable result, when initialized as 

int factorial(int n) { 
int i, result = 1; 

' } 

will be set to 1 each time factorial is called. The function parameters can 
also be used in the initialization expression. Thus, the auto variable last 
when initialized as 

int sort(int n) { 
int last = n - 1; 

} 

is set to one less than the value of the actual argument supplied with a call to 
sort. 

In the absence of explicit initialization, the initial value of an automatic 
variable is undefined. 

5.7.2 Static Variables 
A variable is said to be static if it is allocated storage at the beginning of the 
program execution and the storage remains allocated until the program execu-
tion terminates. Variables declared outside all blocks at the same level as func-
tion definitions are always static, Within a block, a variable can be specified to 
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be static by prefixing its type declaration with the storage class specifier 
static in the following manner: 

static type variable-name; 

Thus, the declaration of i in 

int f (void) { 
static int i; 

} 

specifies that i is a static variable of type integer. 
Variables declared static can be initialized only with constant expres-

sions. Unlike with auto variables, the initialization takes place only once, 
when the block is entered for the first time. If not explicitly initialized, static 
variables are assigned the default initial value of zero. The values assigned to 
static variables are retained across calls to the function in which they have 
been declared. 

The following program illustrates the difference between auto and 
static variables: 

•include <stdio.h> 
int main(void) . { 

int i; 
void incr(void); 

for (i = 0; i < 3; i++) incr(); 
return 0; 

} 

void incr(void) { 
int auto_i = 0; 
static int static_i = 0; 
printf("auto = %d static = %d\n", 

auto_i++, static_i++); 
} 

The output generated by this program is: 

0 
1 
2 

The output shows the value of auto i as 0 for each line of display, and that of 
static_i incremented by 1 from 0 through 2. This is what is expected, for 
while auto_i is assigned the value 0 each time the function incr is called, 
static_i is assigned the value 0 only once, when incr is first executed, and 
its value is retained from one function call to the next. 

auto = 0 static = 
auto = 0 static = 
auto = 0 static = 
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The choice between an automatic variable and a static variable depends 
upon the intended use of the variable. An automatic variable is the logical 
choice when the value of a variable must be initialized at the beginning of each 
function call. However, if the value of a variable local to a function is to be 
retained from one function call to the next, a static variable is the obvious 
choice. 

5.7.3 Illustrative Example 
We now give an example to further illustrate the concept of static variables. 

Example 
Write a program to simulate the outcome of the following betting game: Two coins are 
tossed. The bettor wins if the outcome is two heads, and loses if it is two tails. The coins 
are tossed again if the outcome is one head and one tail. This time, the bettor wins if the 
outcome is two heads, but loses otherwise. Assume that the bettor started with $10,000 
and played 10,000 games, and each bet is for $1. 

Simulation programs usually require a random number generator that pro-
duces a sequence of numbers selected at random from a given range. A com-
monly used method to generate random numbers is the linear congruential 
method. In this method, each number rjt in the sequence of random numbers is 
calculated from its predecessor rt-1 using the formula 

r/c = (multiplier x r^-1 + increment) % modulus 

where multiplier, increment; and modulus are appropriately chosen constants. 
The sequence generated by this formula is really pseudo-random, since the value 
of r/c can always be predicted, given rQ. However, pseudo-random sequences 
are sufficient for most purposes. 

The program given below uses a pseudo-random number generator rand, 
based on the linear congruential method. This generator generates 65536 
pseudo-random numbers in the range 0 through 1 before repeating itself, and 
will work correctly on a computer for which maxint > 231. 

•include <stdio.h> 
•define MULTIPLIER 25173 
•define INCREMENT 13849 
•define MODULUS 65536 . 
•define SEED 21973 
•define KITTY 10000 
•define GAMES 10000 

/ * returns 2 if both coins have a head; 
returns 1 if one coin has a head and the other a tail; 
returns 0 if both coins have a tail * / 

int play(void); 
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/* returns outcome of one toss: ' H' (head) o r ' T ' (tail) */ 
char toss(void); 
/* pseudo-random number generator */ 
double rand(unsigned int seedO); 
int main(void) { 

int i, heads, balance; 
for (i = 1, balance = KITTY; i <= GAMES; i++) { 

heads = play (); 
if (heads ==1) /* toss again */ 

heads = play(); 
heads == 2 ? balance++ : balance —; 

} 

printf("kitty = %d; take home = %d\n", 
KITTY, balance); 

return 0; 
} 

int play(void) { 
char flipl, flip2; 
flipl = toss (); 
flip2 = toss (); 
if (flipl == 'H' 
if (flipl == 'T' 
return 1.; 

} 

char toss(void) { 
return rand(SEED) <0.5 ? 'H' : 'T'; 

} 

double rand(unsigned int seedO) { 
static unsigned int number; 
static int initialized = 0; 

if (!initialized) { 
number = seedO % MODULUS; 
initialized = 1; 

} 

&& flip2 == 'H') return 2; 
&& flip2 == 'T') return 0; 
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number = (MULTIPLIER * number + INCREMENT) 
% MODULUS; 

return (double) number / (MODULUS - 1) ; 
} 

The first time rand is called, the variable initialized is set to 0. Therefore, 
number is initialized to seedO, and initialized is set to 1. Since both num-
ber and initialized are static variables, their values are preserved 
across function calls, and the variable initialized is initialized only once. 
Consequently, number is also initialized with seedO only once, and every call 
to rand generates a new pseudo-random value using the previous value saved 
in number. 

Note that the argument seedO, although required only in the first call, is 
supplied in every call to rand. The next section contains a more pleasing ver-
sion of this program. 

5.8 SEPARATE COMPILATION AND DATA ABSTRACTION 
A large program is developed by partitioning it into logically related functions, 
called modules, each of which can reside in a separate file. These files can be 
compiled separately, and linked later to form an executable program. Hence, if 
a compilation error is found, only the file in which the error occurs needs to be 
corrected and recompiled. The program can also be tested module-by-module 
by writing small driver programs that test the functions contained within a sin-
gle file. 

Abstract data objects can be implemented through a careful use of mod-
ules. An abstract data object is one that can be manipulated using only the opera-
tions supplied by the definer of the object. Details of how an abstract data 
object is implemented are hidden from the user. This design prevents objects 
from becoming dependent on specific implementation details of other objects, 
allowing local changes to an object without affecting the others. The designer 
of a module may allow only certain functions defined in a file to be referenced 
from other functions. Implementation details of these functions, such as the 
data structures used and shared by them, can be hidden from the users of the 
module. 

We will first discuss how a function can access a variable defined in 
another file, and then describe the facilities provided in C to realize informa-
tion hiding. 

5.8.1 extern Declaration 
We studied in Section 5.6 that if a variable is defined outside any function, it 
can be accessed by any statement following this definition in the rest of the 
source file by simply naming the variable. However, if this variable is needed 
in another file, or in the same file but at a point earlier than that at which it has 
been defined, it must be declared with the keyword extern before it can be 
used. An extern declaration is of the form 
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extern type identifier; 

At this stage, it will be useful to understand the distinction between the 
declaration and the definition of an external variable. The declaration of an exter-
nal variable, specified using the keyword extern, declares for the rest of the 
source file the type of the variable, but does not allocate any storage for the 
variable. On the other hand, the definition of an external variable, specified 
without the keyword extern, causes the storage to be allocated, and also 
serves as the declaration for the rest of that source file. An external variable can 
be initialized only at the time of its definition. There must be only one defini-
tion of an external variable; all other files that need access to this variable must 
contain an extern declaration for this variable. 

All function names are considered global and are visible in any part of the 
program, be it the file in which the function has been defined or any other file 
that is part of the source for the program. Thus, a file need not contain extern 
declarations for functions external to it. 

The following example program shows the definition, declaration, and use 
of external variables. The program consists of two modules, residing in files 
main. c and compute. c. 
/********************** main.c *********************/ 
•include <stdio.h> 

extern int i; /* extern declaration of i in the same file */ 
void mod(void); 
int main(void) { 

scanf("%d", &i); 
mod() ; 
return 0; 

} 

int i; /* definition of i */ 
extern j; /* extern declaration of j */ 
void output(void) { 

printf("%d %d\n", i, j); 
} 

/******************** compute.c ********************/ 

•include <stdio.h> 
•define MODULUS 10 
extern int i; /* extern declaration of i in a different file */ 
void output(void); 

int j = MODULUS;/* declaration and definition of j */ 
int k; /* external variable used only in compute.c */ 
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void input(void) { 
scanf("%d", &k); 

} 

void mod(void) { 
input(); 
i %= j+k; 
output (); 

} 

The declarations common to more than one module are usually collected in 
a single file, known as the header file. These are then copied into the modules 
that use them by means of the #include facility. By convention, the names of 
the header files are suffixed with . h. For instance, the preceding program can 
be rewritten by collecting constants and external declarations in a file named 
global. h as follows, 
/********************* global.h ********************/ 
•include <stdio.h> 
•define MODULUS 10 
extern int i, j; 
void mod(void), output(void); 
/********************** main.c *********************/ 
•include "global.h" 

int main(void) { 
scanf("%d", &i); 
mod(); 
return 0; 

} 

int i; 
void output(void) { 

printf("%d %d\n", i, j); 
} 

/******************** compute.c ********************/ 
•include "global.h" 

int j = MODULUS; 
int k; 
void input(void) { 

scanf("%d", &k); 
} 
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void mod(void) { 
input(); 
i %= j+k; 
output (); 

} 

For a very large program, there may be more than one header file; each 
module then includes only those header files that contain information relevant 
to it. However, the larger the number of header files, the more difficult it 
becomes to maintain them. For programs of up to moderate size, therefore, 
often only one header file, containing everything to be shared between any two 
parts of the program, is used. 

Each module of a large program is separately compiled. Separate compila-
tion speeds up debugging, as the whole program does not have to be recom-
piled if the changes are confined to one module. If your IBM PC has the 
Microsoft C compiler, you may compile a module by using the / c option with 
the cl command. Thus, the two modules of the preceding program can be sep-
arately compiled using the commands: 

cl /c main.c 
cl /c compute.c 

Successful compilation of main.c and compute.c produces the files 
main.obj and compute.obj respectively. These .obj files are then linked 
together using the command 

cl /Femod main compute 
that produces the executable file named mod. exe. The Fe option allows you to 
give a name of your choice to the executable file produced. Without the Fe 
option, cl gives the base name of the first file on the command line, plus the 
extension . exe to the executable file it creates. Thus, the command 

cl main compute 
willcreatemain.exe. 

On a Unix System V Release 4 machine, you may compile a module by pro-
viding the -c flag with the cc command: 

cc -c main.c 
cc -c compute.c 

Successful compilation of main. c and compute. c produces the files main. o 
and compute. o respectively. These . o files are then linked together using the 
command 

cc -o mod main.o compute.o 
that produces an executable title named mod. 
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5.8.2 Information Hiding 
Information hiding is accomplished by defining external variables and func-
tions with the prefix stat ic as follows: 

static type identifier ; 

Such a declaration limits the scope of the declared object to the rest of the source 
file being compiled. These objects then become invisible in other files, although 
they can be shared in the file they have been defined in. For instance, the designer 
of the program given in Section 5.8.1 may decide that the external variable k and 
the function input defined in the file compute. c should not be visible in the file 
main. c. This can be achieved by rewriting compute. c as follows. 
/******************** compute.c ********************/ 
•include "global.h" 

int j = MODULUS; /* j can be accessed from other files */ 
static int k; /* k cannot be accessed from other files */ 

static void input (void)/* input cannot be accessed 
from other files */ 

{ 
scanf("%d", &k) ; } ' 

void mod (void) /* mod can be accessed from other files */ 
{ 
input () ; 
i %= j+k; 
output (); 

} 

Note that the effect of prefixing an external variable declaration with the 
keyword static is different from that of making a variable static within a 
block. The former is a device for realizing information hiding, whereas the lat-
ter provides private permanent storage within a function. 

5.8.3 Illustrative Example 
We now give an example to further illustrate the concepts of separate compila-
tion and information hiding. 

• • • • Example 
Rewrite the simulation of the betting game, given in Section 5.7.3, by partitioning it 
into separate files. 
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We will organize the betting game program into four files, according to the 
following: 

1. global .h: symbolic constants and external declarations. 
2. main.c: the main function and the initialization of the pseudo-ran-

dom number generator. 
3. simulate. c: simulation routines. 
4. random. c: pseudo-random number generator. 

The desired program is as follows: 
/********************* global.h ********************/ 

•include <stdio.h> 
•define SEED 21973 
•define KITTY 10000 
•define GAMES 10000 

void srand(unsigned int seedO); 
double rand(void); 

int simulate(int kitty, int games); 

/********************** main.c *********************/ 

•include "global.h" static void initialize(void); 

int main(void) { 

'int balance; 

initialize (); 
balance = simulate(KITTY, GAMES); 
printf("kitty = %d; take home = %d\n", 

KITTY, balance); 
return 0; 

} 

static void initialize(void) { 
srand(SEED); 

} 

/******************** simulate.c *******************/ 

•include "global.h" 
static int play(void); 
static char toss(void); 
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int simulate(int kitty, int games) 
{ 
int i, heads, balance; 

for (i = 1, balance = kitty; i <= games; i++) { 
heads = play(); 
if (heads == 1) /* toss again */ 

heads = play(); 

(heads ==2) ? balance++ : balance --; 
} 

return balance; 
} 

static int play(void) { 
int flipl, flip2; 

flipl = toss(); 
flip2 = toss (); 

if (flipl == 'H' && flip2 == 'H') return 2; 
if (flipl == 'T' && flip2 == 'T') return 0; 
return 1; 

} 

static char toss(void) { 
return rand() <= 0.5 ? 'H' : ' T' ; 

} 

/********************* random.c ********************/ 

•include "global.h" 
•define MULTIPLIER 25173 
•define INCREMENT 13849 
•define MODULUS 65536 

static unsigned int number = 1; /* default seed */ 

void srand(unsigned int seedO) { 
number = seedO % MODULUS; 

} 

double rand() { 
number = (MULTIPLIER * number + INCREMENT) 

% MODULUS; 
return (double) number / (MODULUS - 1); 

I 
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The pseudo-random number generator, contained in the file random, c,, 
uses an external variable number to keep track of the last number generated. 
The variable number has been made static so that any function not in ran-
dom . c may not access it. The file random. c really implements an abstract data 
object. The pseudo-random number generator in random, c can only be 
accessed using the functions, srand and rand: the first initializes the pseudo-
random number generator, and the second returns a new pseudo-random 
number every time it is called. The user of this pseudo-random number gener-
ator does not have to know which algorithm has been used to implement the 
random number generation. The advantage of this approach is that the 
implementor of the pseudo-random number generator may use a different ran-
dom number generation algorithm, without affecting the rest of the program, 
as long as the current interface to the pseudo-random number generator is pre-
served; that is, the function prototypes for srand and rand specified in 
global.h are not changed. Only random, c will require recompilation and 
linking with the compiled versions of other source files. Note that we kept the 
symbolic constants MULTIPLIER, INCREMENT, and MODULUS in the file ran-
dom . c, rather than global. h, since these constants are closely tied to the cur-
rent algorithm being used for random number generation. 

The file simulate. c contains the routines that implement the simulation 
of the betting game. In contrast to the program given in Section 5.7.3, a new 
function simulate has been added in this version of the program. The advan-
tage of this approach is that if the rules of the game were changed in any way, 
only the file simulate. c would need modifications. The functions play and 
toss are local to this module, and they have been made static so that they 
cannot be called by functions outside this module. Note that the function pro-
totypes of play and toss have not been included in global. h. 

The file main. c contains the main function. We have chosen to provide 
two parameters to simulate, rather than burying the symbolic constants in 
the body of simulate, for the simple reason that if we later decide to modify 
the program to read as input parameters the size of the kitty and the number of 
games for which the simulation should be run, it could be accomplished by 
adding a call to scanf in initialize without having to modify simulate. 
In general, you should strive to design programs in such a way that they are 
amenable to additions and improvements. The decoupling of the modules by 
communicating values to functions across modules only through parameters 
goes a long way toward achieving this goal. 

Finally, the file global .h contains some symbolic constants and the pro-
totypes of the functions that are called across modules. One could argue that 
these symbolic constants should have been part of main. c as that is the only 
file where they are used. Our viewpoint is that these constants represent exter-
nal properties of the program, and putting them in global. h helps in the doc-
umentation of the program. The disadvantage of this choice is that a redefini-
tion of any of these constants will force the recompilation of not only main. c 
but all other source files that include global. h. 
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5.9 RECURSION 
Recursion is the process whereby a construct operates on itself. In C, functions 
may be defined recursively; that is, a function may directly or indirectly call 
itself in the course of its execution. If the call to a function occurs inside the 
function itself, the recursion is said to be direct. However, if a function calls 
another function, which in turn makes a call to the first one, the recursion is 
said to be indirect. The chain of calls may be more involved; there may be sev-
eral intermediate calls before the original function is called back. 

The factorial function, defined as 

factorial(O) = 1 

factorial(n) = n* factorial(n-l), n > 0 

is the classic example of recursion. This function can be coded as 
int factorial(int n) { 

if (n == 0) 
return 1; /* termination condition */ 

else 
return n * factorial (n-1);/* recurse */ 

} 

or more succinctly as: 

int factorial(int n) { 
return n == 0 ? 1 : n * factorial(n-1); 

} 

Figure 5.1 provides a visual representation of the recursive evaluation of fac-
torial (3). 

Note that if factorial were called with a negative value, it would never 
terminate. Why? One way to ensure termination is to write the function fac-
torial as follows: 

int factorial(int n) { 
if (n > 0) 

return n * factorial(n-1); 
else if (n == 0) 

return 1; 
else { 

printf("no factorial for negative values\n"); 
return -1; 

} 
} 
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input output 

Figure 5.1. Recursive evaluation of f a c t o r i a l (3) 

As another example of recursion, consider the Fibonacci sequence of num-
bers 

1 ,1 ,2 ,3 ,5 ,8 ,13 ,21 , . . . 

defined by 

fib(O) = fib(l) = 1 
fib(n) = fib (n-1) + fib(n-2), n> 1 

This recursive definition can be translated into a recursive C function in a 
straightforward manner as 

i n t f i b ( i n t n) { 

re turn n == 0 || n == 1 ? 
1 : f i b ( n - 1 ) + f i b ( n - 2 ) ; 

} 
Note that f i b contains two calls to itself in its body. Figure 5.2 provides a 

visual representation of the recursive evaluation of f ib (3). 

5.9.1 Recursion Versus Iteration 
In theory, any recursive function can be transformed into an iterative function. 
We have given a nonrecursive function for computing factorials in Section 5.5. 
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input output 

Figure 5.2. Recursive evaluation of f ib (3) 

The following is a nonrecursive function for computing the nth Fibonacci num-
ber: 

int fib(int n) { 

int i, result, n_minusl = 1, n_minus2 = 1; 

if (n == 0 || n == 1) return 1; 

for (i = 2; i <= n; i++) 
{ 
result = n_minusl + n_minus2; 
n_minus2 = n_minusl; 
n_minusl = result; 

} 

return result; 
} 

It is obvious that the recursive versions of these functions are more concise 
and understandable than their iterative counterparts, and their correctness can 
easily be verified by appealing to the corresponding mathematical definitions. 
Why would then one ever want to use iterative versions of these functions? 
The problem with the recursive solutions is that, compared to their iterative 
versions, they can be far more inefficient. Iterative versions are generally faster 
as they avoid the overhead of passing arguments and returning values in a 
series of function calls and returns. The other source of inefficiency in recursive 
solutions is redundant computations. For example, in calculating fib (3), 
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4 ^ \ 
f i b (1) is calculated two times, and in calculating f i b ( 4 ) , f i b ( 2 ) is calcu-
lated two times, f i b (1) three times, and f i b (0) two times. As n increases, 
this duplication of calculation increases exponentially, resulting in prohibitive 
execution time. 

* 

5.9.2 Illustrative Example 
We now give an example of a problem whose recursive solution is rather 
straightforward, but an iterative solution is quite cumbersome. 

m * Example 
• t * Write a program to solve the Tower of Hanoi puzzle. 

The Tower of Hanoi puzzle was quite popular in Europe toward the late 
nineteenth century. Part of its popularity is attributed to the following legend 
that accompanied the puzzle: 

In the great temple at Benares, beneath the dome that marks the center of the world, 
rests a brass plate in which are fixed three diamond needles, each a cubit high and 
as thick as the body of the bee. On one of these needles, at the creation, God placed 
sixty-four disks of pure gold, the largest disk resting on the brass plate and the oth-
ers getting smaller and smaller up to the top one. This is the Tower of Brahma. Day 
and night unceasingly, the priests transfer the disks from one diamond needle to 
another according to the fixed and immutable laws of Brahma, which require that 
the priest on duty must not move more than one disk at a time, and that he must 
place this disk on a needle so that there is no smaller disk below it. When all the 
sixty-four disks shall have been thus transferred from the needle on which at the 
creation God placed them to one of the other needles, the tower, the temple and the 
priests alike will crumble into dust, and with a thunderclap the world will vanish. 

The promoters of the puzzle renamed the Tower of Brahma as the Tower of 
Hanoi, and it is by this name that the puzzle is now popularly known. 

If the needles have been numbered 1,2, and 3, and the priests are moving 
the tower of 64 disks from needle 1 to needle 2, using needle 3 as the spare 
needle, this task can be represented as 

move(64,1,2,3) 

The insight that leads to a simple solution is to think about the bottom disk 
on needle 1 rather than the top one. The task move(64,1,2,3) can then be seen 
to be equivalent to the following sequence of subtasks: 

move(63,l,3,2) 
move a disk from needle 1 to 2 
move (63,3,2,1) 

that is, first move the tower of the top 63 disks from needle 1 to needle 3, then 
move the 64th disk on needle 1 to needle 2, and finally move the tower of 63 
disks from needle 3 to needle 2. We can thus write the program to solve the 
puzzle as: 
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•include <stdio.h> 
/* 

* Move n disks from tower x to tower y, 
* where z is the third tower 
* / 

void move (int n, int x, int y, int z) { 
if (n == 1) 

printf("move the top disk on %d to %d\n", 
X/ y) f 

else { 
/* move the top n-1 disks on tower x to tower z */ 
move(n-1, x, z, y) ; 

/ * move the bottommost disk on tower x to tower y * / 
printf("move the top disk on %d to %d\n", 

y) ; 

/* now move the n-1 disks on tower z to tower y */ 
move(n-1, z, y, x) ; 

- } 

} 

int main(void) { 
int disks; 

scanf("%d", Sdisks); 
move(disks, 1, 2, 3); 
return 0; 

} 

The following is the solution of the puzzle for 3 disks: 

move the top disk on 1 to 2 
move the top disk on 1 to 3 
move the top disk on 2 to 3 
move the top disk on 1 to 2 
move the top disk on 3 to 1 
move the top disk on 3 to 2 
move the top disk on 1 to 2 
Do not try to run this program for 64 disks. The 64-disk game, at a million 

moves per second, would require something like 584,542 years of CPU time. It 
shows that the existence of an algorithm to perform a task does not necessarily 
mean that the task can really be performed (which might be good in this case, 
just in case the legend was really true). 
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Exercises 5 
1. Analyze the output of the following programs: 

a. #include <stdio.h> 

int i = 0; 

void f(void) 
{ 
int i; 
i = 1; 

} 

void g(void) { 
i = 2; 

} 

void h (int i) { 
i = 3; 

} 

int main(void) { 
{ 
int i = 4; 
printf("%d\n", i); 

} 
printf("%d\n", i); 
f(); 
printf("%d\n", i) ; 
g() ; 
printf("%d\n", i); 
h(i) ; 
printf("%d\n", i) ; 
return 0; 

} 
b. #include <stdio.h> 

void hill(int n) { 
printf("%d n); 
if (n <= 100) { 

hill(3*n - 1); 
printf("%d n); 

} 
} 

int main(void) { 
hill(1) ; 
return 0; 

} 
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c. #include <stdio.h> 

void flathill(int n) { 
printf("%d ", n); 
if (n <= 100) flathill(3*n - 1); 
printf("%d ", n); 

} 

int main(void) { 
flathill (1) ; 
return 0; 

} 
d. #include <stdio.h> 

int g(int n, int x, int y) { 
return n == 0 ? x : g(n-l, y, x+y); 

} 

int f(int n) { 
return g(n, 0, 1) ; 

) 

int main(void) { 
int i; 

for (i = 1; i <= 10; i++) 
printf("%d\n", f(i)); 

return 0; 
} 

e. #include <stdio.h> 

void print(void) { 
int c; 

if ((c = getchar()) != '\n') print (); 
else return; 
putchar (c); 

} 

int main(void) { 
print (); 
putchar ('\n'); 
return 0; 

} 

Input: ABLE WAS I ERE I SAW ELBA 
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2. Define a function to calculate 

(x2 + y2 + zY 
and use it to calculate 

a=l/(u2 + v2 + wY, p = + + 
y = (4m2 + 9v2 + 25 w2)^, 6 = (3«2)w(12o2)^(27ro2)w 

where u, v, and w are read from input. 

3. Two positive integers are said to be buddies if each one is equal to the sum of the 
divisors of the other and the divisors include 1 but exclude the number itself. For 
example, the numbers 220 and 284 are buddies since: 

divisors of 220:1+2+4+5+10+11+20+22+44+55+110 = 284 

divisors of 284:1+2+4+71+142 = 220 

Write a program to find all the pairs of buddies in a given range of numbers. 

4. When Professor Ramanujam was presenting to his mathematics class the interesting 
property of the integer 8833 that 8833 = 882 + 332, Shakunthala observed that the 
time in her digital clock, viewed as a number without the colon, had the same prop-
erty, that is, the square of the hours digits plus the square of the minutes digits 
equaled the number she saw. Write a program to determine the time that 
Shakunthala observed. 

5. The zero of a function / is defined to be the value k such that f{k) = 0. The Newton-
Raphson method finds the zero of a function by successive approximations, using the 
relationship 

_ f(xd 
XM~Xi f'(xd 

where 

Xi = the current estimate of zero 

Xi+1 = the next estimate 

f(x;) = the function evaluated at x, 

/'(%,) = the first derivative of the function evaluated at Xj 

An initial estimate x0 is required to initiate the process, and the process terminates 
when I xi+i - X; 1 < e, where e is a small value such as 0.00001. Write a program to 
locate a zero of the function f(x) = x3 - 3x2 + 1 , using the Newton-Raphson method. 

6. The power series 

x2 x3 v x" 
M=0 

converges to ex for all values of x. Write a function that uses this series to calculate 
ex to six-place accuracy by adding terms from the series up to the first term that is 
less than 10~6 in absolute value. Use this function to print a table of values for the 
functions 

ex — e~x 
sinh(x) = —-— 

and 
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e + 
cosh(x) = —~ 

for x = -1 to 1 in increments of 0.1. 

7. Write a program to calculate the partial sums of the harmonic series 

The result is to be expressed in the form of a rational number, that is, a number of 
the form 

numerator 
denominator' 

where numerator and denominator are integers with no common factors. A method 
by which common factors can be eliminated is to divide the numerator and 
denominator by their greatest common divisor. 

8. When his teacher asked Sleepy to simplify the fraction 26/65, he simply canceled 
the digit 6 both from the numerator and denominator. To the teacher's amazement, 
Sleepy's cancellation technique produced the correct result: 

Write a program to determine all the fractions with two-digit numerators and 
denominators for which Sleepy's technique works correctly. 

9. Twin primes are defined to be two consecutive odd numbers which are both primes. 
For. example, 11 and 13 are twin primes. Write a program to generate all the twin 
primes in a given range of numbers. 

10. To understand the relationship between two sets of data, a straight line is often fitted 
to the data using the method of least squares, which minimizes the squares of the 
differences between actual and fitted function values. The general equation for a 
straight line is 

The values of m and c are computed from a set of n paired observations of x and y 
as 

c = y-mx 

where y and x are the arithmetic means of their respective data sets. 
Instead of a straight line, one may also fit a curve of the form 

y = cxm 

Taking logarithms, this equation takes the form 

log y = log c + m log x 

which, on substituting Y = log y, X = log x, and C = log c, takes the form 

Y=mX+C. 

and, thus, m and C in this equation can be computed using the equations for m 
and c for the straight line, modified for logarithms. 

2$ _ 2 
0 ~5 

y = mx + c 
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Write a program that reads pairs of values of x and y and computes m and c 
for the equations of the straight line and curve given above. 

11. The mean x and standard deviation o of a set of numbers x\, x2,..., x„ are defined as: 
n 

L * 
X n 

2 * i=i 
c2 = 

n(w-l ) 

Write a function that calculates the mean and standard deviation of a set of num-
bers, and then use this function in a program that reads a set of test scores and 
assigns letter grades to each of these scores using the following grading scheme, 
commonly called "grading on a curve": 

x = numeric score Letter Grade 

x 2 * + 1 . 5 o A 
x+ 0.5oS x<x+ 1.5a B 
* - 0 . 5 a £ x < x + 0.5a C 
x - 1 . 5 a < x < x - 0 . 5 a D 
x < x - 1 . 5 o F 

12. In the following number puzzles: 

I IS 
+AM +ZT 

OK OK 
the letters take the place of digits and each distinct letter represents a different 
digit. Write a program for each of the above puzzles to determine all possible 
combinations of digits for the letters such that the addition holds. 

13. In the game of Nim, there are three piles of sticks and two players take turns making 
moves. A move consists of picking up as many sticks as the player desires, subject to 
the constraints that the sticks must be picked up from the same pile, and a player 
must pick up at least one stick. The player w h o picks up the last stick loses. Write a 
program to play Nim with the user. The program should use the linear congruential 
random number generator discussed in Section 5.7.3 to choose the size of three piles, 
subject to the constraint that the three piles must be of different sizes and must con-
tain at least 2 and at most 10 sticks. 

14. The squaring or the inner product method for generating a sequence of pseudo-random 
numbers is as follows: Take a number having a given number of digits, say five, 
square it, and pick out the central five digits of the product as a random number. 
The five-digit random number is now squared, etc. For example, starting with 
54321, the random numbers 5 0 7 7 1 , 7 7 6 9 4 , 3 6 3 5 7 , 2 1 8 3 1 , 6 5 9 2 5 , 4 6 1 0 5 , . . . are gener-
ated as 

543212 = 29 50771 041 

507712 = 25 77694 441 
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776942 = 60 36357 636 

363572 = 13 21831 449 

218312 = 47 65925 61 

659252 = 43 46105 625 

Use this pseudo-random number generator to write a program to play a sim-
plified roulette. The roulette selects a number between 0 and 35 at random. The 
player can place a bet on a particular number or can place an even or odd bet. A 
winning bet on a particular number is paid off at 35 to 1. A winning even or odd 
bet is paid off at 2 to 1, except that any even or odd bet loses if the roulette selects 
0. 

15. If an irregular figure I is enclosed within a regular figure R, then the probability that 
a random point inside R is also inside I is given by the ratio of the area of I to the 
area of R. Thus, the area of I can be estimated by generating random points in R and 
counting those that fall inside I. Write a program that uses this technique to estimate 
the area of a circle of unit radius by enclosing it in a square. Then use the formula 
area = nr2 to get an estimate of k. 

The program should use the following power residue method for generating 
pseudo-random numbers: To obtain five-digit random numbers, form the product 
of a starting value that is neither even nor ends in a 5 with a special constant 
multiplier, and pick out the low-order five digits as the random number. The five-
digit random number is now multiplied with the constant multiplier, etc. Thus, 
starting with 54321, the random numbers 69137, 0628^, 10033, 73201, 00497, 48209, 
. . . are generated as 

" 54321 x 97 = 52 69137 

69137 x 97 = 67 06289 

06289 x 97 = 6 10033 

1 0 0 3 3 x 9 7 = 9 73201 

7 3 2 0 1 x 9 7 = 7100497 

0 0 4 9 7 x 9 7 = 48209 
i 

16. Write a recursive function to print an integer as a string. 

17. Write a recursive definition for the following sawtooth function: 

18. Write a recursive function for calculating values of Ackermann's function, Ack(m,n), 
defined for m > 0 and n > 0 by 

Ack(0,n) = n +1 for n > 0 

Ack(m,0) = Ack(m-l,V) for m > 1 

Ack(m,n) = Ack(m-\ ,Ack(m,n-\)) for m > 1, n > 1 
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Convince yourself that 

Ack{l,n) = n + 2, Ack(2,n) = 2n + 3, Ack(3,n) = 2"+3 

Ack{ 4,0) = 13, ^4cfc(4,l) = 65533, Ack(4,2) = 265536 - 3 

,n+3 

19. Write iterative and recursive functions for calculating values of the following poly-
nomials: 

Chebyshev polynomial: 

20. Given a0 and b0, a„ and b„ are defined as follows: 

= 2 + b„/3 
K = «»/3 X &«/2 + 1 

Write a program to print a table of values of a, and b, for / from 1 to an input value 
n. 

Hermite polynomial: 

Legendre polynomial: 



Arrays 

Very often, one needs to process a collection of related data items, such as 
test scores of students in a university, a set of measurements resulting from 

an experiment, income tax tables, etc. One way of handling such a situation 
would be to invent a new variable name for each of these data items. This 
approach obviously is quite cumbersome, if not altogether impossible. 

A notation, called subscript notation, exists in mathematics to handle such 
situations. For example, prices of 10 items are represented as 

Pl,P2,P3,.-v>10 

where P is the group name for all prices and the subscript (1 ,2 ,3 , . . . , 10) iden-
tifies the price of a specific item. Thus, P, represents the price of the zth item. C 
provides a capability similar to the subscript notation that enables you to struc-
ture and process a set of ordered data items. 

6.1 BASICS OF ARRAYS 
An ordered finite collection of data items, each of the same type, is called an 
array, and the individual data items are its elements. Only one name is assigned 
to an entire array, and individual elements are referenced by specifying a sub-
script. A subscript is also called an index. In C, subscripts start at 0, rather than 1, 
and cannot be negative. The single group name and the subscript are associ-
ated by enclosing the subscript in square brackets to the right of the name. 
Thus, if prices have been stored in an array named price, then price [0] 
refers to the price of the first item, price [ 4 ] to the price of the fifth item, etc. 

An array has the following properties: 

1. The type of an array is the data type of its elements. 
2. The location of an array is the location of its first element. 
3. The length of an array is the number of data elements in the array. 
4. The size of an array is the length of the array times the size of an 

element. 

Arrays whose elements are specified by one subscript are called single-sub-
scripted, linear, or one-dimensional arrays. Analogous arrays whose elements are 
specified by two and three subscripts are called double-subscripted or two-dimen-
sional and triple-subscripted or three-dimensional arrays respectively. For most 
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Student 

41 
97 
91 
89 
100 
76 
83 
91 
67 
79 

score[0] 

score[5] 

Figure 6.1. One-dimensional array score 

Test 

Student 

test score [0] [0] 

test score[3][1] 

Figure 6.2. Two-dimensional array test score 

applications, one-, two-, or three-dimensional arrays are adequate, although C 
allows arrays of any number of dimensions. Here are examples of these arrays: 

1. Test scores of ten students can be arranged in a one-dimensional array, 
often called a vector, as shown in Figure 6.1. If score is used to 
denote the array, the score of student 1 is identified as the array ele-
ment score [0] , the score of student 6 as the array element 
score [5]/etc. 

2. Four test scores of ten students can be arranged in a two-dimensional 
array, often called a matrix, having 10 rows and 4 columns, as shown 
in Figure 6.2. An element of a two-dimensional array is referred to by 
specifying two subscripts, the first designating row and the second 
column. Thus, if test_score is the name of the array, the score of 
student 1 in test 1 is identified as the matrix element test_ 
score [0] [0] and the score of student 4 in test 2 as the matrix ele-
menttest score[3][1]. 
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Figure 6.3. Three-dimensional array class score 

Note that in C the notation test_score [i] [j], rather than 
test_score [ i, j ], is used to refer to the element in row i and col-
umn j . 

3. Scores of ten students in four tests each in five subjects can be 
arranged in a three-dimensional array, say class_score, having 10 
rows, 4 columns, and 5 levels, as shown in Figure 6.3. An element of 
this array is referenced by specifying the name of the array, 
class score, together with the three subscripts listed in the order of 
row, column, and level. Thus, the score of student 2 in test 4 of subject 
1 is identified as the array element class_score [ 1 ] [ 3 ] [ 0 ]. 

The capability to represent a collection of related data items by a single 
array enables the development of concise and efficient programs. As an illus-
tration of the use of arrays, consider the following program that reads test 
scores into the array score, adds them, and prints their average. 

•include <stdio.h> 
•define STUDENTS 10 

int main(void) { 
int i, sum; 
int score[STUDENTS]; 

for (i = 0; i < STUDENTS; i++) 
scanf("%d", &score[i]); 

for (sum = 0 , i = 0; i < STUDENTS; i++) 
sum += score[i]; 
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printf("average score = %f\n", 
(float)sum/STUDENTS); 

return 0; 
} 

The declaration 

int score[STUDENTS]; 
specifies that score is a one-dimensional array of STUDENTS, that is, 10 inte-
ger elements. The first for loop reads test scores one at a time and assigns 
them to the successive elements of score. The second for loop steps through 
the elements of score and accumulates into sum the value of each score. The 
p r i n t f statement prints the average score. 

We will now look into array declaration, access to array elements, and 
array initialization in detail. 

6.1.1 Array Declaration 
Arrays, like simple variables, need to be declared before use. An array declara-
tion is of the form 

type array-name [expr-l] [expr-2] • • • [expr-n] ; 

where array-name is the name of the array being declared, type is the type of the 
elements that will be contained in the array, and expr-i is a constant integral 
expression specifying the number of elements in the ith dimension of the array. 
For example, the declaration 

int score[10]; 
declares score to be an array containing 10 integer elements; the declaration 

float test_score[10][4]; 
declares the array test_score to be a two-dimensional array with 10 rows, 4 
columns, and 10 x 4 = 40 single-precision floating point elements; and the dec-
laration 

double class_score[10][4][5]; 
declares the array class_score to be a three-dimensional array with 10 rows, 
4 columns, 5 levels, and 10 x 4 x 5 = 200 double-precision floating point ele-
ments. 

Since any constant integral expression may be used to specify the number 
of elements in an array, symbolic constants or expressions involving symbolic 
constants may also appear in array declarations. For example, the declarations 

•define CHARS_PER_LINE 80 
•define TOTAL_LINES 100 
char line[CHARS_PER_LINE]; 
char text[CHARS PER LINE * TOTAL LINES]; 
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declare line and text to be one-dimensional character arrays of 80 and 8000 
elements respectively. 

Besides specifying the amount of storage that must be allocated, an array 
declaration also places bounds on the valid values for the subscripts of the 
array. For example, given the declaration 

float price[100]; 
the valid range of values for the subscript of price is 0 through 99. 

While declaring an array, the type can be prefixed with auto, static, or 
ext ern. We can therefore write 

auto int score[10]; 
static float test_score[10][4]; 
extern double class_score[10][4][5]; 

The length may be omitted in an extern declaration of a one-dimensional 
array, since this declaration does not allocate storage but refers to an object 
defined elsewhere. The extern declaration of an ^-dimensional array (n > 1), 
however, must include the last n-1 dimensions so that the accessing algorithm 
can be determined. Thus, the following are legal declarations: 

extern int score[]; 
extern float test_score[][4]; 
extern double class_score[][4][5]; 

6.1.2 Accessing Array Elements 
A particular element of an array can be accessed by specifying appropriate sub-
scripts with the array name. Any integral expression can be used as a subscript. 
Thus, if score has been declared to be a one-dimensional array and offset 
an int, the following are all valid references to the elements of score: 

score[offset] 
score[3*offset] 
score[offset/5] 

Subscripts should not have values outside the array bounds. C does not auto-
matically check subscripts to lie within the array bounds. It is imperative, 
therefore, that you check the value of a subscript before^using it to access an 
array element whenever the characteristics of a program make it possible for 
the subscript to have a value outside the array bounds. The omission of bounds 
checking is among the most common causes of error in C programs. 

An individual array element can be used anywhere that a simple variable 
could be used. For example, we can assign a value to it, display its value, or 
perform arithmetic operations on it. Thus, the assignment statement 

matrix [0] [5] = 1; 
assigns 1 to the element at row 0 and column 5, that is, to the element defined 
by the first row and sixth column of matrix ; the assignment statement 

p = (price [0] + price [9]) / 2; 
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assigns the average price of the first and the tenth item to p; and the state-
ment 

--matrix[0][5]; 
decrements the contents of matrix [ 0 ] [ 5 ] by 1. Further, the assignment state-
ments 

i = 5; 
p = price [++i]; 

assign the value of price [ 6 ] to p, whereas the statements 
i = 5; 
p = price[i++]; 

assign the value of price [ 5 ] to p, since i is incremented before use in the first 
case, but after use in the second case. 

An array cannot be copied into another array by assigning it to the other 
array. Thus, an array from declared as 

int from[10]; 
cannot be copied into an array to declared as 

int to[10]; 
by writing assignment statements such as 

to = from; /* illegal */ 
or 

to [ ] = from [ ] ; /* illegal */ 
It should be copied element-by-element through individual assignments by 
setting up an appropriate loop such as 

for(i = 0; i < 10; i++) to[i] = from[i]; 

6.1.3 Array Initialization 
Elements of an array, be it an external, static, or automatic array, can be 
assigned initial values by following the array definition with a list of initializers 
enclosed in braces and separated by commas. For example, the declaration 

int score[5] = { 41, 97, 91, 89, 100 }; 
defines the array score to contain five integer elements and initializes 
score [0] to 41, score [1] to 97, score [2] to 91, score [3] to 89, and 
score [ 4 ] to 100. Similarly, the declaration 

char letter [3] = { 'a', 'b', 'c' }; 
defines the array letter to contain three character elements and initializes 
letter [0] to 'a', letter [1] to 'b', and letter [2] to 'c'. 

Multi-dimensional arrays are initialized analogously, with initializers 
listed by rows. Brace pairs are used to separate the list of initializers for one 
row from the next, and commas are placed after each brace (except for the last 
row) that closes off a row. Thus, to define and initialize the two-dimensional 
array test_score to the values shown below 
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0 1 2 3 

0 95 98 97 96 

1 79 89 79 85 

2 99 98 99 99 

3 90 89 83 86 

4 70 72 79 69 

the following declaration can be used: 

int test_score[5][4] = { 
{ 95, 98, 97, 96 }, 
{ 79, 89, 79, 85 }, 
{ 99, 98, 99, 99 }, 
{ 90, 89, 83, 86 }, 
{ 75, 72, 79, 69 } 

- }; • 
The inner pairs of braces are optional. Thus, the above declaration can equiva-
lently be written as 

int test_score[5][4] = { 
95, 98, 97, 96, 79, 89, 79, 85, 99, 98, 
99, 99, 90, 89, 83, 86, 75, 72, 79, 69 

} ; 

A three-dimensional array can be initialized as 

int sales [4] [2] [3] = { 
{ { 5, 8, 7 }, { 6, 7, 7 } }, 
{ { 9, 9, 9 }, { 9, 9, 8 } }, 
{ { 9, 8, 9 }, { 8, 8, 7 } }, 
{ { 4, 5, 3 }, { 5, 3, 3 } } 

} ; 

A possible interpretation of this s a l e s array can be that it gives the sales fig-
ures for four salesmen. Each salesman has been assigned two territories and 
sells three products. Thus, the first line corresponds to the sales data for the 
first salesman. Sales figures for the two territories have been separated by inner 
braces. Within a territory, sales figures for the three products have been listed 
consecutively separated by commas. The above declaration can equivalently be 
written as 
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iint-isales [4] [2] [3] = { 
5, 8, 7, 6, 7, 1, 9, 9, 9, 9, 9, 8, 
9, 8, 9, 8, 8, 7, 4, 5, 3, 5, 3, 3 

} ; 

Some special rules govern array initialization: 

1. If the number of initializers is less than the number of elements in the 
array, the remaining elements are set to zero. Thus, the initializations 

int score[5] = { 41, 97, 91 }; 

int test_score[5][4] = { 
{ 0, 98 }, 
{ 79, 89, 79 }, 
{ 0, 0, 0, 99 }, 
{ 90 }, 

} ; 

are equivalent to 

int score [5] = { 41, 97, 91, 0, 0 }; 

int test_score[5][4] = { 
{ 0, 98, 0, 0 }, 
{ 79, 89,. 79, 0 }, 
{ 0, 0, 0, 99 }, 
{ 90, 0, 0, 0 }, 
{ 0 , 0, 0, 0 } 

} ; 

It is an error to specify more initializers than the number of elements 
in the array. 

2. If initializers have been provided for an array, it is not necessary to 
explicitly specify the array length, in which case the length is derived 
from the initializers. For example, 

float sqroot[] = { 0, 1.0, 1.414, 1.732, 2.0 }; 
is equivalent to 

float sqroot[5] = { 0, 1.0, 1.414, 1.732, 2.0 }; 
3. A character array may be initialized by a string constant, resulting in 

the first element of the array being set to the first character in the 
string, the second element to the second character, and so on. The 
array also receives the terminating ' \ 0' in the string constant. Thus, 

char os [4] = "AIX"; 
char computer[] = "sierra"; 

are equivalent to 
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char os [ 4 ] = { 'A', 'I', 'X'., '\0' }; 
char computer[7] = 

{ 's', 'i', 'e', 'r', 'r', 'a', '\0' }; 

It is also possible to initialize a character array with an explicit length 
specification by a string constant with exactly as many characters. The 
array does not receive the terminating ' \ 0' in that case. For example, 

char os [3] . = "AIX"; 
is equivalent to 

char os [3] = { ' A', 'I', 'X' } ; 
However, the string constant must not have more characters than the 
length of the character array being initialized. Thus, it is an error to 
initialize os as 

char os [3] = "ultrix"; 
C does not provide a mechanism to specify a repetition count for initializ-

ing several elements of an array to the same value. Consequently, if you want 
to initialize all the 100 elements of some array observations to 1, then you 
must either explicitly provide all the 100 ones in the list of initializers in the 
declaration, or set up an appropriate for loop of the form 

for (i = 0 ; i < 100; i++) observations[i] = 1; 
in the function body. 

6.2 ARRAYS AS FUNCTION ARGUMENTS 
You can pass an array element or an entire array as argument to a function. 
Passing an entire array as argument is quite different from passing its individ-
ual elements as arguments. 

6.2.1 Passing Array Elements as Arguments 
To pass an array element to a function, the array element is specified in the 
function call just as a simple variable is specified. For example, given the func-
tion definition 

•include <math.h> 
double cuberoot(double x) { 

return pow(x, 1.0/3.0); 
} 

and the declarations 

double' z [10] ; 
double zzz [10] [5] [20]; 
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the function call 
cuberoot(z[5]) 

returns the cube root of the value of the element z [ 5], and the function call 
cuberoot (zzz [5] [0] [10]) 

returns the cube root of the value of the element zzz[5] [0] [10]. 
Individual array elements, like simple variables, are passed by value. Their 

values are copied into the corresponding parameters and cannot be changed by 
the called function. If the type of the array element is different from the argu-
ment type expected by the function, the same conversion rules as for simple 
variables apply. 

6.2.2 Passing Arrays as Arguments 
Functions can be defined to take arrays as arguments. For example, here is a 
definition of a function array_cuberoot that takes an array containing 10 
elements of type double as argument: 

void array_cuberoot(double x[10]) 
t 
int i; 

for(i = 0; i < 10; i++) 
x[i] = cuberoot(x[i]); 

} 
To pass an entire array to a function, just the name of the array, without any 

subscripts or brackets, is specified as the argument in the function call. Thus, 
the array z, defined as 

double z[10]; 
can be passed to array_cuberoot as 

array_cuberoot(z); 
This function call will alter every element of z to the cube root of its current 
value. 

Did you notice that we just now said something quite different from what 
we had been saying all along about parameter passing? How could 
array_cuberoot alter the elements of the argument array z by altering its 
parameter array x? Didn't we say earlier that the parameters are passed by 
value in C and changes to formal parameters do not affect actual arguments? 
The explanation is that the passing of arrays as arguments is the only exception 
to the rule of parameter passing by value. When an array is passed as argu-
ment, the address of the beginning of the array is passed; the elements of the 
array are not copied into the parameter array. Any references to the parameter 
array inside the called function refer to the appropriate elements of the argu-
ment array. Thus, an assignment to x [ i ] inside.array cuberoot actually 
results in an assignment to z [ i ] . 

Since only its starting address is provided when an array is passed as argu-
ment, we only need to indicate that an array is expected and can omit the dec-
laration of the number of elements in the parameter array. This feature can be 
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used to generalize functions that manipulate arrays. For example, the function 
array_cuberoot, as defined above, cannot be used to determine the cube 
roots of the elements of an array y declared as 

double y[100]; 
since array_cuberoot can only handle arrays of 10 elements. This function 
can be generalized by not specifying the number of elements in the declaration 
of the parameter array x, but making the number of elements an additional 
parameter. The function array_cuberoot can then be written as 

void array_cuberoot(double x[], int length) { 
int i ; 

for(i = 0; i < length; i++) 
x[i] = cuberoot (x[i]); 

} 

The new parameter length is bound to the number of elements in the argu-
ment array at the time of the function call. The function array_cuberoot can 
now be used to compute the cube roots of the elements of z as well as y by 
invoking it as 

array_cuberoot(z, 10); 
and 

array_cuberoot(y, 100); 
respectively. 

When declaring a multi-dimensional array as a parameter, it is necessary to 
specify the lengths of all but the first dimension. Thus, the prototype of a func-
tion to compute the cube root of every element of a two-dimensional array can 
be written as 

void matrix_cuberoot(double xx[10][5]); 
or as 

void matrix_cuberoot(double xx[][5], int rows); 
but not as 

void matrix_cuberoot(double xx[][], 
int rows, int cols); 

6.3 ILLUSTRATIVE EXAMPLES 
We now give some programs to illustrate the use of arrays. 

Example 1 
Write a program that cyclically permutes the elements of a given sequence. 



190 CHAPTER 7 / POINTERS 

Given a sequence xi, x2, x 3 , . . x n , its cyclic permutation is defined to be the 
sequence X2, X3, • • x„, xh The desired program is as follows. 

•include <stdio.h> 
•define LAST 10 

int main(void) { 
float array[LAST], temp; 
int i; 

/* read array */ 
for (i = 0 ; i < LAST; i++) 

scanf("%f", sarray[i]); 

/* permute array */ 
temp = array [0]; 
for (i = 1; i < LAST; i++) 

array[i-1] = array[i]; 
array[LAST-1] = temp; 

/* output the permuted array */ 
for (i = 0; i < LAST; i++) 

printf ("%f\n", array[i]); 

return 0; 
} 

The first element of array is saved in temp. The second element is then 
assigned to the first, the third element to the second, and so on. Finally, the last 
element of array is set to the value saved in temp. Thus, given the sequence 

3 4 2 4 3 9 7 8 0 2 
the program prints 

4 2 4 3 9 7 8 0 2 3 
How would you generalize the preceding program so that the sequence is 

cyclically permuted by a user-specified number of elements? 

Example 2 
Four tests are given to a class of ten students. Write a program that calculates the aver-
age score of each student, the class average in each test, and the class average over all 
tests. 

Test scores are stored in a matrix score of size TESTS+1 x STUDENTS+1. 
The scores in test i are stored in row i, and the scores of student / are stored in 
column/. Thus, the element (i,j), for i, j > 0, contains the score in test i of student 
/. We will use row 0 and column 0 for accumulating intermediate results. The 
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element (0,j) in row 0 will be used to accumulate the total score of student j 
over all tests. The element (z, 0) in column 0 will be used to accumulate the total 
score of all students in test i. The scores of all students over all tests will be 
accumulated in the element (0,0). 

The desired program is as follows. 

•include <stdio.h> 
•define TESTS 4 
•define STUDENTS 10 

int main(void) { 
int score[TESTS+1][STUDENTS+1] = { 

{0, 0, 0, 0, 0, o, 0, o, 0, o, 0}, 
{0, 4, 3, 4, 2, 1, 0, 3, 4, 1, 0}, 
{0, 4, 4, 3, 3, 2, 1, 2, 3, 1/ 2}, 
{0, 4, 3, 4, 3, 2, 2, 2, 3, 0, 1}, 
{0, 4, 3, 4, 4, 1, 3, 3, 3, 1, 2} 

i, j; 

(i = = l; 1 i < = TESTS ; i++) 
for (j = 1; j <= = STUDENTS; j++) 

{ 
/* total for a test */ 
score[i][0] += score[i][j]; 
/* total for a student */ 
score [0][j] += score[i][j]; 
/* total for the class */ 
score[0][0] += score[i][j]; 

} 

for (j = 1; j <= STUDENTS; j++) 
printf("student %d: average score = %f\n", 

j, (float)score[0][j]/TESTS); 

for (i = 1; i <= TESTS; i++) 
printf ("test %d: average score = %f\n", 

i, (float)score [i] [0]/STUDENTS); 

printf("class average = %f\n", 
(float)score[0][0]/(STUDENTS*TESTS)); 

return 0; 
} 

Compare this problem to that in Example 1 of Section 4.5.1. How would 
you modify the program of that problem if you were also required to calculate 
the average score in each test as in this problem? 



192 CHAPTER 6 / ARRAYS 

• Example 3 
• Income data for people in different states has been recorded so that each line of input 

contains the state number and the income of a person in that state. Thus, there are as 
many input lines for a state as the number of people in the state. However, input is not 
in any particular order. Write a program that computes and prints the average income 
for each state and for the whole nation. 

Assuming all states have been coded from 1 to STATES, each line of input 
is a pair <state, individual_income>, where state is the state number, 
and individual_income is the income of an individual in that state. We cre-
ate an array, state_income, and accumulate income values for state i in ele-
ment i of this array. Another array, people, is used to count the number of 
people in every state whose income values have been accumulated. Both 
state_income and people are of size STATES+1. The state number read 
from input provides the subscript for accessing appropriate elements from 
state_income and people. Elements of these arrays with a subscript of 0 are 
used to accumulate the values of total income and total number of people in 
the nation. 

The desired program is as follows. 

•include <stdio.h> 
• define STATES' 50 
•define NATION 0 

void zeroize(float state_income[], int people[]); 
void accumulate(float state_income[], int people[]); 
void print (float state_income[], int people []); 

int main(void) { 
float state_income[STATES+1]; 
int people[STATES+1]; 

zeroize(state_income, people); 
accumulate(state_income, people); 
print(state_income, people); 
return 0; 

} 

void zeroize (float state_income[], int people[]) { 
int state; 

for (state = 0; state <= STATES; state++) 
state_income[state] = people[state] = 0; 

} 
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void accumulate(float state_income[], int people[]) { 
int state; 
float individual_income; 

while (scanf("%d %f", &state, &individual_income) 
!= EOF) 

if (state >= 1 && state <= STATES) 
{ 
state_income[state] +=• individual_income; 
people[state]++; 

} 
} 

void print(float state_income[], int people[]) { 

int state; 

/* print state averages */ 

for (state = 1; state <= STATES; state++) 
if (people[state]) { 

printf ("state %d: %f\n", state, 
state_income[state]/people[state]); 

/* accumulate values for the national average */ 
state_income[NATION] += 

state_income[state]; 
people[NATION] += people[state]; 

} 
else 

printf("state %d: no data\n", state); 

/* print the national average */ 

if (people[NATION]) 
printf ("national average = %f\n", 

state_income[NATION]/people[NATION]); 
else 

printf ("no data\n"); } 

Note that the test 

state >= 1 && state <= STATES 
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>H • 

in accumulate ensures that the subscript state is within the bounds of the 
state_income and people arrays. If a data line contains an invalid state 
number, the program simply ignores this line. 

Example 4 
Write a program that reads two matrices and determines their product matrix. 

Let Mi be an I x m matrix and M2 an mxn matrix. The product P of Mi 
with M2 is an / x n matrix, whose element P(i,j) is the sum of the products of the 
elements in row i of Mi with the elements of column j of M2; that is, 

P(i,j) = Mi(z',l) x M2(l,;) + Mi(i,2) x M2(2,/) + . . . + M1(i,m) x M2(m,j) 

For example, if 

p _ 20 24 18 12 16 
[ l 2 20 18 16 24 

The desired matrix multiplication program is as follows. 

•include <stdio.h> 
•define MAXROWS 10 
•define MAXCOLS 10 

void readm(float matrix[] [MAXCOLS], 
int rows, int cols); 

void writem(float matrix[][MAXCOLS], 
int rows, int cols); 

void multiply(float matrixl[][MAXCOLS], 

int main(void) { 
float matrixl[MAXROWS][MAXCOLS], 

matrix2[MAXROWS][MAXCOLS], 
product[MAXROWS][MAXCOLS]; 

int rowsl, colsl, rows2, cols2.; 

1 2 3 4 5 
and M2 = 2 5 3 1 4 

5 4 3 2 1 

then 

int rowsl, int colsl, 
float matrix2[][MAXCOLS], int cols2, 
float product[] [MAXCOLS]); 
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/* get the actual dimensions of the matrices */ 

do 
{ 
printf("dimensions of matrixl?\n"); 
scanf("%d %d", &rowsl, &colsl); 
printf("dimensions of matrix2?\n"); 
scanf("%d %d", &rows2, &cols2); 

if (colsl != rows2) 
printf("columns in matrixl must " 

"equal rows in matrix2\n"); 
else if (rowsl > MAXROWS || colsl > MAXCOLS) 

printf("matrixl is too big\n"); 
else if (rows2 > MAXROWS || cols2 > MAXCOLS) 

printf("matrix2 is too big\n"); 
else 

break; 
} 

while (l); 

/* read the matrices */ 

printf("enter row-wise the elements of matrixl\n"); 
readm(matrixl, rowsl, colsl); 

printf("enter row-wise the elements of matrix2\n"); 
readm(matrix2, rows2, cols2); 

/* compute the product matrix */ 

multiply (matrixlrowsl, colsl, 
matrix2, cols2, product); 

/* print results */ 

printf("product matrix:\n"); 
writem(product, rowsl, cols2); 

return 0; 

} 
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void readm(float m a t r i x [ ] [ M A X C O L S ] , 
int rows, int cols) 

{ 
int i, j; 

for (i = 0; i < rows; i++) 
for (j = 0; j < cols; j++) 

• scanf("%f", smatrix[i][j]); 
} 

void multiply(float m a t r i x l [ ] [ M A X C O L S ] , 
int rowsl, int colsl, 
float matrix2[][MAXCOLS], int cols2, 
float p r o d u c t [ ] [ M A X C O L S ] ) 

{ 
int i, j, k; 

for (i = 0;. i < rowsl; i++) 
for (j = 0; j < cols2; j++) { 

product [i] [j] = 0; 
for (k = 0; k < colsl; k++) 

product[i][j] += 
matrixl[i][k] * matrix2[k][j]; 

} 
} 

void writem(float m a t r i x [ ] [ M A X C O L S ] , 
int rows, int cols) 

{ 
int i, j; 

for (i = 0 ; i < rows; i++) { 
for (j = 0; j < cols; j++) 

printf("%f ", matrix[i][ j ] ) ; 
printf("\n");; 

} 
} 

The program first obtains the dimensions of the matrices to be multiplied. 
It then checks that the number of columns colsl in matrixl is equal to the 
number of rows rows2 in matrix2, for otherwise the product of the two 
matrices is not defined and a new set of inputs is obtained. The program can 
handle matrices of up to M A X R O W S x M A X C O L S elements, and it is ensured that 
none of the input matrices exceeds this limit. The two matrices are then read 
row-wise using the function readm, and the product matrix product is com-
puted using the function multiply. The computation of product is a direct 
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implementation of the definition of the product of two matrices. Finally, the 
function writ em prints out product. Note that we have omitted row lengths 
in the declaration of matrices in the parameter list of these functions, but it is 
necessary to specify column lengths in these declarations. 

An important observation with regard to this program is in order. We did 
not know a priori the size of the input matrices. We therefore allocated arrays 
sufficiently large to cover a wide range of values. Functions manipulating these 
arrays were then provided with the actual number of rows and columns in use, 
thus avoiding the processing of unused entries. This approach has the disad-
vantage that you may end up allocating arrays that are either too small for the 
problem on hand, or too large, thus wasting memory. In Chapter 7, we will 
study dynamic creation of arrays of exact sizes. 

• Example 5 
• Write a program for sorting a list of integers in descending order using the bubble sort 

algorithm. 

Sorting a list of items is the process of arranging these items in descending 
or ascending order. The bubble sort algorithm for sorting a list of items in 
descending order consists of the following steps: 

1. Compare the first item with the second. If the second is larger, switch 
the order of the items. 

2. Compare the third item with the second, then the fourth with the 
third, and so on, until the last item in the list has been compared with 
its predecessor. At each comparison, switch the order of the items if 
the item being compared is larger than its predecessor. The effect of 
this step is that the larger items "sink" toward the left of the list, and 
the smallest item "bubbles up" to the rightmost (last) position on the 
list. 

3. Repeatedly perform the steps (1) and (2), leaving the last item out of 
the scan every time as it is already in its proper position. The list is 
sorted when no interchange takes place during a scan. 

For example, the following scans are performed to sort the list (0, 5, 3, 2,1, 
4, 6) in descending order: 

Scan # Rearranged List Interchanges 

1 5, 3, 2, 1, 4, 6, 0 (0,5), (0,3), (0,2), (0,1), (0,4), (0,6) 
2 5, 3, 2, 4, 6, 1, 0 (1,4), (1,6) 
3 5, 3, 4, 6, 2, 1, 0 (2,4), (2,6) 
4 5 , 4 , 6 , 3 , 2 , 1 , 0 (3,4), (3,6) 
5 5, 6, 4, 3, 2, 1, 0 (4,6) 
6 6, 5, 4, 3, 2, 1, 0 (6,5) 

The following program implements the bubble sort algorithm: 
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•include <stdio.h> 
•define MAXSIZE 100 

int readl(int arr[], int length); 
void writel(int arr[], int last); 
void bsort(int arr[], int last); 

int main(void) { 
int list[MAXSIZE], total_elements; 

total_elements = readl(list, MAXSIZE); 
bsort (list, total_elements); 
writel (list, total_elements); 
return 0; 

} 

int readl(int arr[], int length) { 
.int i; 

for (i = 0; i < length && 
scanf("%d", &arr[i]) != EOF; i++) 

r 

return i; 
} 

void bsort(int arr[], int last) { 

int i, not_done; 

do 
{ 

not_done = 0; 

/* scan and interchange as needed */ 

for (i = 1; i < last; i++) 
if (arr[i-l] < arr[i]) { 

int t; 

t = arr[i]; 
arr[i] = arr[i-l]; 
arr[i-l] = t; 
not done++; 

} 
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/* do not scan the last data item in the next iteration */ 

last--; 
} 

while (not_done) ; 
} 

void writel(int arr[], int last) { 
int i; 

for (i = 0; i < last; i++) 
printf("%d\n", arr[i]); 

} 

The function readl reads the input list into the array list and returns a 
count of the number of items in the list in total elements. The function 
bsort repeatedly performs the scan-interchange step outlined above until no 
interchange takes place, which is signaled by the variable not_done remain-
ing false at the end of the do-while loop. The number of items compared in 
each scan is controlled by the variable last which is reduced by 1 after each 
loop iteration. The function writel prints the sorted list at the end. 

How would you change the preceding program if the items were required 
to be sorted in ascending order? 

• Example 6 
• Write a program that uses the binary search to look up the price in an item-price 

database, given an item number. 

Searching a database for a specified item and retrieving associated infor-
mation about the item is a frequently encountered problem. The binary search is 
an efficient algorithm for searching large data sets, if the data to be searched 
has been sorted. The basic idea of the binary search is to repeatedly reduce the 
search space by dividing it into two halves and determining the half to which 
the desired item belongs, until the item is found. The binary search algorithm is 
given in Figure 6.4. 

To illustrate the binary search algorithm, assume that the data to be 
searched is the list X consisting of (20, 19, 17, 16, 12, 11, 10, 5, 4, 1) sorted in 
descending order. If the item to be located is the number 11, the following 
sequence of scans takes place. 

Scan# first last mid Test 

1 1 10 5 X(5) >11 
2 6 . 1 0 8 X(8) < 11 
3 6 7 6 X(6) = 11 
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1 

f i r s t - 1 

l a s t = N 

f i r s t = 

mid + 1 

ITEM found 

at the 

position mid 

0 
Figure 6.4. Binary search for ITEM in the list X ( 1 ) , X ( 2 ) , . . . , X ( N ) sorted in descend-

ing order 

The search succeeds when the item is found at position 6. However, if the item 
to be located were the number 18, the following scans would take place: 

Scan # first last mid Test 

1 1 10 5 X(5) <18 
2 1 4 2 X(2) >18 
3 3 4 3 X(3) <18 
4 3 2 first > last 
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The search fails at the fourth iteration when first becomes greater than last. 
The following program first builds an item-price database, and then uses 

the binary search to look up the price of an item, given its item number: 

•include <stdio.h> 
•define ITEMS 1000 
•define NOT_FOUND -1 

void bld_database(int item[], 
float price[], int total_items); 

int bsearch(int value, int arr[], int length); 

int main(void) { 
int item[ITEMS], item_no, index; 
float price[ITEMS]; 

/* build the item-price database */ 

bld_database(item, price, ITEMS); 

/ * get item_no of the item whose price is to be found * / 

scanf("%d", &item_no); 

/* binary search */ 

index = bsearch(item_no, item, ITEMS); 

/* output */ 

if (index == NOT_FOUND) 
printf("item %d is not in the database\n", 

item_no); 
else 

printf ("price of item %d = %f\n", 
item_no, price[index]); 

return 0; 
} 

void bld_database(int item[], 
float price[], int total_items) 

{ 
int i; 

for (i = 0; i < total_items; 
scanf("%d %f", &item[i], 

} 

i++) 
Sprice[i]); 
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int bsearch(int value, int a r r [ ] , int length) { 
int first = 0, last = length-1, mid; 

while (first <= last) { 
mid = (first + last) / 2; 

if (value == arr [mid]) /* search succeeds */ 
return mid; 

else if (value > arr [mid])/* search lower half */ 
last = mid - 1; 

else /* search upper half */ 
first = mid + 1; 

} 

return NOT_FOUND; 
} 

The function bld_database builds the item-price data base by reading 
from input <item number, price> pairs and storing them in the arrays item and 
price respectively. It is assumed that the input data is sorted on item number 
in descending order. The item_no of the item, whose price is to be looked up, 
is then read from the input. The function bsearch then makes a binary search 
in the item array for the item_no. If the search succeeds, bsearch returns 
the position at which the item was found, and is used as the index into the 
price array to fetch the desired price information. 

How would you change the preceding program if the items were sorted in 
ascending order? 

Exercises 6 
1. Find the number of elements in each of the following arrays: 

a. float f [4 ] [ 8 ] [2 ] ; . b. double d [2 ] [5] [4 ] [ 3] ; 
c. char sl[] = "ibm"; d. char s2[] = {' i' , ' b' , ' m' } ; 
e. char s3 [5] = "ibm"; 

2. Write appropriate type declarations to create the following: 

a. An array to record the heights of 25 students in a class. 

b. A two-dimensional array to classify students by sex and by one of five occupa-
tions that the students intend to take up after the completion of their studies. 

c. A three-dimensional array to classify students by age (15 years to 25 years), 
years of study (10 to 15 years), and one of 10 major subjects of study. 

3. Analyze the output of the following programs: 
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a. #include <stdio.h> 

int n[10] = {1, 1}; 

int main(void) { 
int i; 

for (i = 2; i < 10; i++) 

n[i] = n[i-1] + n[i-2]; 

for (i = 0; i < 10; i++) printf("%d\n", n[i]); 

return 0; } 

b. #include <stdio.h> 

int n[10]. =. {1}; 
int main(void) { 

int i, j; 

for (i = 0; i < 10; i++) 
for (j = 0; j < i; j++) 

n[i] += n [ j] ; 

for (i = 0; i < 10; i++) printf ("%d\n", n [i]); 

return 0; 
} 

c. tinclude <stdio.h> 

char s[] = "radar"; 

int main(void) 
{ . 

int i, j, c; 

for (j = 0; s[j] != '\0' ; j++) ; 

for (i = 0, j — ; i < j; i++, j — ) c = s [ i], s [ i] = s[j], s[j] = c; 
printf ("%s\n", s); 
return 0; 

} 
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d. #include <stdio.h> 

int nl[4][3] = { {1}, {0,1}, {0,0,1} }; 
int n2 [4] [3] = {0,1,1,1,0,1,1,1,0,1,1,1}; 

int main(void) { 
int i, j, c = 0; 

for (i = 0; i < 4; i++) 
for (j = 0; j < 3; j++) 

if ( n l [i] [j] && n2[i] [j]) C++; 

printf("%d\n", c); 
return' 0; 

} 

e. #include <stdio.h> 

int main(void) { 
int n[10] [10], i, j, u=0, d=0, 1=0; 

for (i = 0; i < 10; i++) 
for (j = 0; j < 10; j++) 

n[i][j] = i + j; 

for (i = 0; i < 10; i++) 
for (j = 0; j < 10; j++) { 

if (i > j) u += n[i] [j] ; 
if (i == j) d += n[i][j]; 
if (i < j) 1 += n[i] [ j] ; 

} 

printf("%d %d %d\n", u, d, 1) ; 
return 0; 

} 

4. Write a program that computes for a linear array A. 

a. A^ + A^+.-. + A* 

b. (1-A1)(1-/L2)...(1-A)) 

5. U and V are linear arrays each with n elements. Write a program to compute 

{u\ + u\ + .. • + ul)Vl- (vi + vl + .. • + vl)Vi 

(UiVi + U2V2 + . . . + 
by using a function that calculates the inner product 

i\b\ +a2b2+ ...+a„b„. 

of two linear arrays A and B. 

6. A common problem in statistics is that of generating the frequency distribution of the 
given data. Assuming that the data consists of 500 positive integers in the range 1 to 
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25, write a program that prints the number of times each of the integers occurs in the 
input. 

Modify this program so that it prints the number of integers that are in the 
range 1 to 100, 101 to 200, 201 to 300, and so on, assuming that the integers are in 
the range 1 to 1000. 

7. The prime numbers in the range 2 through n can efficiently be found using the fol-
lowing sieve of Eratosthenes:. 

i. Make a list of all consecutive integers 2 through n. 

ii. Cross out all multiples of 2, as they cannot be primes. 

iii. Find the next integer remaining in the list beyond the one whose multiples were 
just crossed out, and cross out its multiples, as they cannot be primes. 

iv. Repeat step (iii) until an integer is reached that has not been crossed out and 
whose square is greater than n. This termination condition depends on the fact 
that if i and j are the two factors in a product then both i and / cannot exceed the 
square root of the product. 

v. All the numbers remaining in the list are the primes from 2 through n. 

Write a program that implements this algorithm and finds all the primes less than 
1000. 

8. A problem with the bubble sort algorithm given in Example 5 of Section 6.3 is that, 
although smaller values move toward their proper positions rapidly, larger values 
move slowly in the other direction. The Shell sort algorithm attempts to improve this 
situation. A series of compare-interchange scans are made as in the bubble sort, but 
the items compared on each scan are not consecutive. Instead, there is a fixed gap 
between the items that are compared. If the gap is g, then item x, is compared with 
item Xi+g and exchanged if necessary. When no more interchanges can be made 
using a given gap, the gap is cut in half and the compare-interchange scan contin-
ues. The initial gap is taken to be n/2, where n is the number of items in the list. For 
example, to sort the list ( 0 , 5 , 3 , 2 , 1 , 4 , 6 ) in descending order, the following sequence 
of scans and gaps is used: 

Scan # Gap Rearranged List Interchanges 

1 3 1, 5, 6, 2, 0, 4, 3 (0,1), (3,6) 
2 3 1, 5, 6, 2, 0, 4, 3 none 
3 1 6, 5, 1, 4, 3, 2, 0 (1,6), (2,4), (0,3) 
4 1 6, 5, 3, 4, 1, 2, 0 (1.3) 
5 1 6, 5, 3, 4, 1, 2, 0 none 
6 0 6, 5, 4, 3, 2 ,1 ,0 (3,4), (1,2) 
7 0 6, 5, 4, 3, 2, 1, 0 none 

Write a program to sort a list of items using the Shell sort algorithm. 

9. The insertion sort algorithm begins with the first item Xj, then inserts x2 into this one-
item list in the correct position to form a sorted two-item list, then inserts x3 into this 
two-item list in the correct position to form a sorted three-item list, and so on. For 
example, to sort the list (0, 5, 3, 2 , 1 , 4, 6) in descending order, the steps are as fol-
lows: 
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0 
5. 0 
5 3 0 
5 3 2 0 
5 3 2 1 0 
5 4 3 2 1 0 
6 5 4 3 2 1 0 

(shift 0 to the right one position) 
(shift 0 again) 

(shift 0 again) 
(shift 0 again) 

(shift 3 through 0 to the right) 
(shift 5 through 0 to the right) 

The element inserted at each step has been indicated in the bold print. 

Write a program to sort a list of items using the insertion sort algorithm. 

10. The exchange algorithm for sorting a list of items X\, x2,..xn in descending order 
consists of the following steps: 

i. Locate the largest item in the list x\ through xn) exchange it with x\. 

ii. Locate the largest item in the list X2 through xn; exchange it with xi. 

iii. Locate the largest item in the list X3 through xn; exchange it with X3. 

iv. Continue this process for a total of n -1 steps. 

Write a program that sorts a list of items using the exchange sort algorithm. 

11. The binary search algorithm given in Example 6 of Section 6.3 requires that the 
items to be searched be presorted in some order. The linear search algorithm does not 
require items to be kept sorted. The search is performed by examining each item for 
the desired value until a match is found or all items are exhausted. Replace the 
binary search component of the program in Example 6 with the linear search. 

12. Write a recursive version of the bsearch function given in Example 6 of Section 6.3. 

13. The first difference Dl of a sequence D of N elements is obtained by subtracting each 
element, except the last, from the next element in the array, that is, 

D1(J) = D(7 + 1) - D(I), I < N-1 

The second difference D2 is defined as the first difference of Dl, and so on. For 
example, if 

D: 1 , 2 , 4 , 7 , 1 1 , 1 6 , 2 2 
then 

D l : 1 , 2 , 3 , 4 , 5 , 6 
D2: 1 , 1 , 1 , 1 , 1 
D3: 0, 0 , 0 , 0 

Write a program that reads a sequence and finds its first, second, and third differ-

14. Each row of Pascal's triangle begins and ends with l ' s and each number in the inte-
rior is the sum of the numbers on either side of it in the row above. Write a program 
to compute and print the first 10 rows of Pascal's triangle. Printing need not be in 
the following symmetric triangle form: 

1 2 1 
1 3 3 1 

1 4 6 4 1 

15. A square matrix, that is, one having the same number of rows and columns, is called 
a diagonal matrix if its only nonzero elements are on the diagonal. It is called upper 
triangular, if all elements below the diagonal are 0, and lower triangular if all elements 
above the diagonal are 0. Write a program that determines if a given square matrix 
is one of these matrices. 

ences. 

1 
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16. Write the following matrix manipulation functions: 

i. void scalar_multiply(int matrix[ROWS][COLS]), int k); 
Multiplies each element of matrix by the scalar k. 

ii. void transpose (int matrixl [ROWS] [COLS] ) , 
int matrix2[COLS][ROWS]); 

Creates matrix2, the transpose of matrixl, by writing the rows of matrixl as 
columns. 

iii. void add(int matrixl [ROWS] [COLS] ) , 
int matrix2[ROWS][COLS], 
int sum[ROWS][COLS]); 

Creates sum by adding the corresponding elements of matrixl and matrix2. 
Use these functions to verify the correctness of the equation 

XT =mY + nZ, 

where XT is the transpose of X, m = 2, n = 3, and 

X = 1 0 0 0 0 1 Y--
"-1 3 " 1 -2 

6 - 6 , z = - 4 4 
- 3 - 1 2 1 

17. Rent-It-All rents time on ten of its machines. Each time a customer uses a machine, a 
time card is filled in. Write a program to help the company bill its customers. The 
bill should include the following information: 

i. customer number; 

it. machine number, total hours, and total costs for each machine used by the custo-
mer; 

iii. total cost for the customer. 

Rates on the machines are different for different customers and for different time 
periods during the day. Therefore, the initial input is 100 lines of data, each line 
specifying a price code (00-99) and the cost per hour for the price code. This input 
is followed by customer data, with one line of data corresponding to each time 
card. Time cards are sorted by customer number and contain the following infor-
mation: 

i. customer number 

ii. machine number (0-9) 

iii. price code (00-99) 

iv. hours 

18. Innovations Unlimited has created three prototypes of a product VZOOM in its 
research laboratory. The number of transistors, capacitors, and resistors used in each 
of the prototypes is as follows: 

Prototype Transistors Capacitors Resistors 

1 
2 
3 

20 
50 
35 

155 
125 
180 

250 
150 
140 
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1000 transistors cost $12.50,1000 capacitors $5.00, and 1000 resistors $2.50. Write a 
program that determines which prototype has the least component cost, using a 
function similar to m u l t i p l y given in Example 4 of Section 6.3. 

19. Miniaturization Unlimited sells five types of memory chips through its retail outlets 
in 10 cities. The weekly sales of the company are stored in a 5 x 10 x 7 array sale such 
that sale(m,c4) denotes the sale of the mth memory chip in the cth city on the dth day 
of the week. Write a program that computes the total weekly sales of each type of 
memory chip, the total weekly sales in each city, and the average daily sales of the 
company. 

20. A magic square is an nxn matrix in which each of the integers 1, 2, 3 , . . . , n2 appears 
exactly once and the sums of every row, column, and diagonal are equal. In fact, 
these sums will always be n (n2 +1)/2. Here is a magic square for n = 3: 

2 9 4 

7 5 3 

6 1 8 

No magic square exists for even values of n. An algorithm for creating a magic 
square for any odd integer n is as follows: 

Place 1 in the middle of the bottom row. After an integer k has been placed, 
the next integer k +1 is placed by moving diagonally downward to the left, that is, 
by moving down one row and to the left one column, unless one of the following 
occurs: 

i. If a move takes you below the bottom row in the j th column, move to the top of 
the ;'th column and put the integer there. 

ii. If a move takes you outside to the left of the square in the ith row, move to the 
rightmost column and put the integer in the ith row there. 

iii. If a move takes you to an already filled square, or if you move out of the square 
at the lower left-hand corner, place the integer immediately above k. 

Write a program to construct a magic square for any odd integer n. 



Pointers 

We shall examine in this chapter pointers, the most sophisticated feature of 
C. Pointers are used in almost every C program, partly because they at 
times provide the only way to express a computation, and partly because 

they lead to more efficient and compact code. In particular, pointers enable us 
to achieve parameter passing by reference, deal concisely and effectively with 
arrays, represent complex data structures, and work with dynamically 
allocated memory. 

7.1 BASICS OF POINTERS 
Memory, as indicated in Section 1.1.1, can be visualized as an ordered sequence 
of consecutively numbered storage locations. A data item is stored in memory 
in one or more adjacent storage locations depending upon its type. The address 
of a data item is the address of its first storage location. This address can be 
stored in another data item and manipulated in a program. The address of a 
data item is called a pointer to the data item, and a variable that holds an 
address is called a pointer variable. Thus, if ip is a pointer variable that con-
tains the address of i, an int, this situation can be depicted as shown below: 

1 
x100c 10 

address: x1000 x1004 x1008 x100c x1010 x1014 

variable name: ip i . 

Si i ip *ip 

xlOOc 10 xlOOc ' io 



210 CHAPTER 7 / POINTERS 

7.1.1 Address and Dereferencing Operators 
C provides two unary operators, & and *, for manipulating data using pointers. 
The operator &, when applied to a variable, yields its address (pointer to the 
variable), and the operator *, when applied to an address (pointer), fetches the 
value at that address. These operators can be remembered as "the address of" 
and "the value at the address" respectively. For example, if the integer variable 
i has been allocated the storage location numbered xlOOc and contains the 
integer value 10, then the address of i, indicated as &i, is 0x100c, and the value 
at the address &i, indicated as * ( s i ) , is 10. Accessing an object through a 
pointer is called dereferencing, and the operator * is referred to as the 
dereferencing or indirection operator. The operator & is referred to as the address 
operator. 

The & operator can only be applied to an lvalue, and constructs like 

&10 &'C' & (x+3) 
that involve the addresses of constants and expressions are not valid. If the 
type of the operand is T then the type of the result is "pointer to T". For exam-
ple, if i is an int, then &i is of type "pointer to int". 

The * operator can only be applied to a pointer. If the operand is "pointer 
to T", then the type of the result is T. For example, if ip is a pointer to an inte-
ger, then the type of *ip is int. 

The expression *ip, where ip is a pointer to integer i, can occur in any 
expression in any context where i can. Thus, 

j = *ip + 10; 
is equivalent to 

j = i + 10; 
and assigns 10 more than i to j ; 

k = ++(*ip); 
is equivalent to 

k = ++i; 
and increments the value of i and assigns the incremented value to k; 

x = sqrt((double) *ip); 
is equivalent to 

x = sqrt((double) i); 
and casts i to double before it is passed to sqrt, and assigns the result to x; 
and 

printf("%d\n", *ip); 
is equivalent to 

printf("%d\n", i); 
and prints the current value of i. 
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7.1.2 Pointer Type Declaration 
For each type of object that can be declared in C, a corresponding type of 
pointer can be declared. To indicate that a variable contains a pointer to a spec-
ified type of object, rather than the object itself, an asterisk is included before 
the name of the object in the type declaration. Thus, 

type * identifier; 

declares the identifier to be of type "pointer to type". Note that the declaration 
allocates space for the named pointer variable, but not for what it points to. 

For example, to declare cp to be a pointer to an object of type char, ip a 
pointer to an object of type int, and dp a pointer to an object of type double, 
we write 

char *cp; 
int *ip; 
double *dp; 

The preceding pointer declarations may appear to you somewhat obscure. C's 
philosophy is that the declaration of a variable should follow the form of use. 
Thus, when we declare 

int *ip; 
we are stating that the appearance of * ip in a program statement will have an 
int value. But, since the name ip has been prefixed with the dereferencing 
operator, ip must be a pointer to an int object. 

7.1.3 Pointer Assignment 
A pointer value may be assigned to another pointer of the same type. For 
example, in the program fragment 

int i = 1, j, *ip; 
ip = &i; 
j = *ip; 
*ip = 0; 

the first assignment statement assigns the address of variable i to ip, the sec-
ond assigns the value at address ip, that is, 1 to j, and finally the third assigns 
0 to i since * ip is the same as i. 

Note that the two statements 

ip = &i; 
j = *ip; 

are equivalent to the single assignment 

j = *(&i) ; 
or to the assignment 

j = i; 
T h a t is. the a d d r e s s o p e r a t o r & is the i n v e r s e of t h e d e r e f e r e n c i n g o p e r a t o r * . 
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Pointers and integers are not interchangeable. An exception to this rule is 
the constant zero that can be assigned to a pointer of any type. By convention, a 
pointer value of 0 is known as the NULL pointer. The standard header file 
<stdio. h> contains the definition of NULL. 

7.1.4 Pointer Initialization 
The declaration of a pointer variable may be accompanied by an initializer. The 
form of an initialization of a pointer variable is 

type *identifier = initializer; 

The initializer must either evaluate to an address of previously defined data of 
appropriate type or it can be the NULL pointer. For example, the declaration 

•include <stdio.h> 
float *fp = NULL; 

initializes f p to NULL; the declarations 

short s; 
short *sp = &s; 

initialize sp to the address of s; and the declarations 

char c [10] ; 
char *cp = &c[4]; 

initialize cp to the address of the fifth element of the array c. 
The following is a simple program that illustrates declaration, initializa-

tion, assignment, and dereferencing of pointers: 

•include <stdio.h> 

int main(void) 

printf ("i = %d, j = %d, *jpl = %d, *jp2 = %d\n", 
i, j, *jpl, *jp2); 

return 0; 
} ' 

This program prints: 

i = 1, j = 2, *jpl = 2, * jp2 = 2 

int i, j = 1; 
int *jpl, * jp2 = & j; /* jp2 points to j */ 

jpl = jp2; 
i = *jpl; 
*jp2 = *jpl + i; 

/* jpl also points to j */ 
/* i gets the value of j */ 
/* i is added to j */ 
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7.1.5 Pointer Arithmetic 
Arithmetic can be performed on pointers. However, in pointer arithmetic, a 
pointer is a valid operand only for the addition (+) and subtraction ( - ) opera-
tors. The semantics of arithmetic operations on pointers are as follows: 

1. An integral value n may be added to a pointer p. Assuming that the 
object that p points to lies within an array of such objects, the result is 
a pointer to the object that lies n objects after the one p points to. For 
example, as depicted below, if p points to the object objects then p+1 
points to the object ob jectsand p+ (-1), that is, p-1 points to the 
object objectk-i-

objectk-n objects objectk objects objectk+n 

p-n p-1 p p+1 p+n 

The value of p + n is the storage location p + «*sizeof(*p), where 
s i z e o f is an operator that yields the size in bytes of its operand. 

2. An integral value n may be subtracted from a pointer p. Assuming 
that the object that p points to lies within an array of such objects, the 
result is a pointer to the object that lies n objects before the one p 
points to. For example, if p points to the object objectk, then p-i points 
to the object objectk-\, and p- ( - 1 ) , that is, p+1 points to the object 
objectk+1- The value of p - n is the storage location p - n * 
sizeof(*p). 

3. Two pointers of the same type may be subtracted. When a pointer pi 
is subtracted from another pointer p2 of the same type, the result is a 
signed integral value n such that pi + n is p2, that is, subtracting one 
pointer from the other yields the number of objects that can fit in 
between the two pointers. For example, as depicted below, if pi 
points to objectk, and p2 to objectk+n, then the result of p2 - pi is n. 

objectk objects objectk+n 

pi P2 

The result of the subtraction of two pointers is undefined if the 
pointers do not point to objects within the same array. However, if the 
pointer p points to the last member of the array, and the value of p - q 
is n, then the expression (p+1) - q is well-defined and its value is 
n +1. The type of the result of subtracting two pointers is implementa-
tion-dependent, and is defined in the standard header <stddef .h> 
as ptrdif f_t. 
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The preceding rules of pointer arithmetic apply regardless of how the 
arithmetic operation is written. Thus, applying the increment operator ++ to a 
pointer p has the effect of incrementing p to point to the object next to the 
object that p is currently pointing to. Similarly, applying the decrement opera-
tor — to a pointer p has the effect of decrementing p to point to the previous 
object. 

7.1.6 Precedence of Address and Dereferencing Operators 
The unary address & and dereferencing * operators have equal precedence, 
which is the same as that of the other unary operators, and they associate from 
right to left. You have to be careful when you mix * with ++ or — in a pointer 
expression. Thus, if cp is a pointer to char, then 

*++cp 
is interpreted as 

*(++cp) 
and it first increments cp and then fetches the character it points to, but the 
expression 

*cp++ 
is interpreted as 

*(cp++) 
and it first fetches the character cp points to and then increments cp. Is this 
confusing? It is not if you remember that 

c = *(cp++); 
is equivalent to 

c = *cp; 
cp = cp + 1 ; 

in the same way that 

j = (i++); 
is equivalent to 

j = i; 
i = i + 1; 
Pointer expressions involving the dereferencing operator * and the incre-

ment and decrement operators ++ and — are so commonly used in C pro-
grams that they qualify to be called C idioms. The meanings of these idioms are 
summarized below: 

c = *++cp or c = *(++cp) increments the pointer cp, and then 
assigns the value pointed to by cp to c. 

c = * cp++ or c = * (cp++) assigns the value pointed to by cp to c, 
and then increments the pointer cp. 
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c = ++*cp or c = ++(*cp) increments the value pointed to by cp, 
and then assigns the new value to c; cp 
remains unchanged, 

c- (*cp)++ fetches the value pointed to by cp, 
assigns it to c, and then increments the 
value pointed to by cp; cp remains 
unchanged. 

c = *—cp or c = * (—cp) decrements the pointer cp, and then 
assigns the value pointed to by cp to c. 

c = * cp— or c = * (cp—) assigns the value pointed to by cp to c, 
and then decrements the pointer cp. 

c = — *cp or c = — (* cp) decrements the value pointed to by cp, 
and then assigns the new value to c; cp 
remains unchanged, 

c = (* cp) — fetches the value pointed to by cp, 
assigns it to c, and then decrements the 
value pointed to by cp; cp remains 
unchanged. 

7.1.7 Pointer Comparison 
The relational comparisons == and ! = are permitted between pointers of the 
same type, between a pointer of type void * and any other pointer, and 
between any pointer and the NULL pointer. Pointer operands are considered 
equal only if they point to the same object or if they are both NULL. 

The relational comparisons <, <=, >, and >= are permitted between point-
ers of the same type, and the result depends on the relative location of the two 
objects pointed to. However, the result is portable only if the objects pointed to 
lie within the same array, or at least are aligned as if they did, in which case 
"greater than" means having a higher index in the array. The pointer to the first 
element beyond the end of an array is well represented to permit relational 
comparisons with a pointer located within an array. 

For example, given that 

int a[10], *ap; 
the expression 

ap == & a[9]; 
is true if ap is pointing to the last element of the array a, and the expression 

ap < &a [10]; 
is true as long as ap is pointing to one of the elements of a. 

Recall that NULL is defined tobeOin<stdio.h>. Since 0 also represents 
false in a Boolean test, an expression involving comparison of a pointer with 
NULL may be abbreviated. Hence, the statement 

if (ip != NULL) j *ip; 
can eauivalentlv be written as 
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if (ip) j += *ip; 
Similarly, the statement 

if (ip == NULL) printf("null pointer, eh?\n"); 
can equivalently be written as 

if (lip) printf ("null pointer, eh?\n"); 
The following function that determines the sum of elements of an integer 

array arr illustrates pointer arithmetic and comparison. The pointer ap is ini-
tialized to point to the first element arr [ 0 ]. The value of the element pointed 
to by ap is added to the accumulator sum and ap is incremented to point to the 
next element as long as ap is pointing to an element within the array. Note that 
arr [length] is the first element beyond the end of the array. 

int asum(int arr[], int length) { 
int sum = 0, *ap = &arr[0]; 

while (ap < Sarr[length]) 
/ * add * ap to sum and then increment ap * / 
sum += *ap++; 

return sum; 
} 

7.1.8 Pointer Conversion 
A pointer of one type can be converted to a pointer of another type by using an 
explicit cast. The cast (T *) converts its operand into a pointer to an object of 
type T. For example, a double pointer dp can be converted into an int 
pointer ip by writing 

ip = (int *) dp; 
and back to a double pointer by writing 

dp = (double *) ip; 
The conversion of a pointer to P into a pointer to Q and back is guaranteed 

to work correctly only if Q requires less or equally strict storage alignment 
when compared to P. Thus, on an implementation that requires int objects to 
have an address that is a multiple of 4 bytes and double objects to have an 
address that is a multiple of 8 bytes, dp may be converted into ip and recov-
ered as shown in the preceding example without loss of information. On the 
other hand, if Q has a more stringent alignment requirement than P and a 
pointer to P is converted to a pointer to Q, then an addressing exception may 
occur when the resulting pointer is dereferenced. For example, given that cp is 
a character pointer, the statements 

ip = (int *) cp; 
i = *ip; 
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will cause an addressing exception if cp was pointing to an odd address. 
Sometimes, we need generic pointers to define functions whose formal 

parameters can accept pointers of any type. In such situations, the type void * 
is used as the proper type for a generic pointer. Any pointer may be converted 
to type void * and back without loss of information. An explicit cast for such 
conversion may be added for clarity, but is not necessary. Here is a prototype of 
a function that uses a generic pointer in its definition: 

void free(void *) ; 
and here is an example of a call to this function: 

free(cp); 

7.2 FUNCTIONS AND POINTERS 
A function can take a pointer to any data type as argument and can return a 
pointer to any data type. Consider, for example, the function definition: 

double *maxp(double *xp, double *yp) { 
return *xp >= *yp ? xp : yp; 

} 

This function definition specifies that the function maxp returns a pointer to a 
double object, and expects two arguments, both of which are pointers to dou-
ble objects. The function dereferences the two argument pointers to get the 
values of the corresponding variables, and returns the pointer to the variable 
that has the larger of the two values. Thus, given that 

double u = 1, v = 2, *mp; 
the statement 

mp = maxp(&u, &v); 
makes mp point to v. 

7.2.1 Call by Reference 
We stated in Section 5.3 that parameters are passed by value in C. In a call by 
value, values of the arguments are used to initialize parameters of the called 
function, but the addresses of the arguments are not provided to the called 
function. Therefore, any change in the value of a parameter in the called func-
tion is not reflected in the variable supplied as argument in the calling func-
tion. In contrast, in a call by reference, addresses of the arguments are supplied 
to the called function and changes to the parameter values in the called func-
tion cause changes in the values of the arguments. The principal application of 
call by reference is when a function produces more than one value and pro-
vides these values to the caller. 

Call by reference can be effected by passing pointers to the variables as 
arguments to the function. These pointers can then be used by the called func-
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tion to access the argument variables and change them. Thus, given that the 
function exchange is defined as 

void exchange(int *ip, int *jp) { 
int t; 

t = *ip, *ip = *jp, *jp = t; 
} • 

and that the values of the integer variables i and j are 1 and 2, they become 2 
and 1 respectively after the function call 

exchange(&i, &j); 
Compare this definition of exchange with the one given in Section 5.3. 

When a pointer is passed as an argument to a function, the pointer itself is 
copied but the object pointed to is not copied. Hence, any change made to the 
pointer parameter by the called function does not affect the pointer supplied as 
argument to the function, which is consistent with the call by value parameter 
passing. However, using the pointer supplied as the argument, the called func-
tion can access and modify the object pointed to by the pointer in the calling 
function. The following example further illustrates this point: 

•include <stdio.h> 

void change(int *ip) { 
++ (* ip) ; /* increment what ip is pointing to */ 
ip = NULL; /* set ip to NULL */ 

} 

int main(void) { 
int i = 0, *ip, *pi; 

ip = pi = &i; 

change (ip); 
printf("new value of i = %d\n", i); 
if (ip == pi) printf("no change in ip\n"); 
return 0; 

} 

The output of this program is: 

new value of i = 1 
no change in ip 
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The operator & can be applied to a parameter. However, the address of a 
parameter is not the address of the argument, but the address of the copy of the 
argument. Thus, the function exchange written as 

void exchange (int i, int j) { 
int t; 

t = *(&i), *(&i) = *(&j), *(&j) = t; /* wrong */ 
} 

does not produce the intended effect of exchanging the values of the two argu-
ments to the function. 

7.2.2 Illustrative Example 
We now give an example to further illustrate how pointers can be used to real-
ize the effect of parameter passing by reference. 

• E x a m p l e 
• Rewrite, without using external variables, the program for transforming rectangular 

coordinates to polar coordinates, given in Example 2 of Section 5.6. 

External variables were used in the program given in Section 5.6 to allow 
the function polar to communicate two values to main. Instead of external 
variables, pointers can be used to communicate these values as shown in the 
following program: 

•include <math.h> 
•include <stdio.h> 
•define PI 3.1415927 

void polar(float x, float y, 
float *pr, float *ptheta); 

int main(void) { 
float x, y; 
float r, theta; 

scanf("%f %f", &x, &y); 

/ * provide addresses of r and theta to polar * / 
polar (x, y, &r, Stheta); 

printf("%f %f\n", r, theta); 
return 0; 

} 
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void polar (float x, float y, 
float *pr, float *ptheta) 

{ 
if (x == 0 && y == 0) /* origin */ 

*pr = *ptheta = 0; 
else { 

*pr = sqrt(x*x + y*y); 
*ptheta = atan2(y,x); 

} 
} 

7.3 ARRAYS AND POINTERS 
In C, there is a close correspondence between arrays and pointers that results 
not only in notational convenience but also in code that uses less memory and 
runs faster. Any operation that can be achieved by array subscripting can also 
be done with pointers. 

C treats a variable of type "array of T" as "pointer to T", whose value is the 
address of the first element of the array. Thus, given that 

char c[MAX]; 
the array name c is a synonym for the pointer to the first element of the array, 
that is, the value of c is the same as & c [ 0 ]. Hence, if cp is a character pointer, 
the two assignments 

cp = c; 
and 

cp = &c [0] ; 
are equivalent. 

Array subscripting has also been defined in terms of pointer arithmetic. 
Thus, the expression 

c[i] 
is defined to be the same as 

*(c+i) 
Applying the operator & to both, it follows that 

&c[i] 
and 

c+i 
are also equivalent. 

This equivalence means that the pointers may also be subscripted. Thus, 

cp [i] 
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is equivalent to 

*(cp+i) 
These equivalences are summarized in the following table: 

char *cp, c[MAX]; int i; 
Array Notation Pointer Notation 

&c [0] ' c 
c[i] *(c+i) 
&c[i] c+i 
cp[i] *(cp+i) 

F o r e x a m p l e , g i v e n that 
-

char c 5] = {'a' 'b', 'c' , 'd', 'e'}; 
char *cp; 

a n d 

cp = c; 
w e h a v e 

cp: 
1 

cp+l cp+2 cp+3 cp+4 
1 1 1 1 i 

c: 'a' 'b' ' c' 'd' 'e' 
c[0] c[l] c[2] c[3] c[4] 
cp[0] cp[l] cp[2] cp [ 3] cp[4] 

a n d 

c [0] is 'a', a n d so are *cp and cp[0]. 
c[l] is 'b', a n d s o are *(cp+l) and cp[1]. 
c[2] is 'c', a n d so are *(cp+2) and cp[2]. 
c[3] is 'd', a n d s o are *(cp+3) and cp[3]. 
c[4] is 'e', a n d so are * (cp+4) and cp[4]. 
Although array names and pointers have strong similarities, array names 

are not variables. Thus, if a is an array name and ap a pointer, then the expres-
sions like 

a = ap; 
and 

a++; 
are illegal. One way of viewing array names is that they are constant pointers 
whose values may not be changed. 
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7.3.1 Arrays as Function Arguments 
An array name, as we have seen in Section 6.2.2, can be passed as argument to 
a function. When an array name is specified as argument, it is actually the 
address of the first element of the array that is passed to the called function. 
Hence, a formal parameter declared to be of type "array of T" is treated as if it 
were declared to be of type "pointer to T". Thus, the declaration for x in 

void array_cuberoot(double x[], int length); 
can equivalently be written as 

void array_cuberoot(double *x, int length); 
The following is an example of a function that finds the value of the largest 

element in an integer array: 
int max(int a[], int length) { 

int i, maxv; 
for (i = 1, maxv = a[0]; i < length; i++) 

if (a[i] > maxv) maxv = a[i]; 
return maxv; 

} 
Using pointers, this function can equivalently be written as 

int max(int *a, int length) ' ( 
int i, maxv; 
for (i = 1, maxv = *a; i < length; i++) 

if (*(a+i) > maxv)' maxv = *(a+i); 
return maxv; 

} 
Since pointers can be subscripted, the preceding function can also be written as 

int max(int *a, int length) 

int i, maxv; 
for (i = 1, maxv = a[0]; i < length; i++) 

if (a[i] > maxv) maxv = a[i]; 
return maxv; 

} 
Yet another way to write this function is 

int max(int *a, int length) { 
int maxv, *end = a + length; 
for (maxv = *a; a < end; a++) 

if (*a > maxv) maxv = *a; 
return maxv; 

} 
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In this version, end is initialized to point to the first element beyond the end of 
the array, and the pointer variable a is repeatedly incremented to step through 
all the elements of the array. 

With any of the preceding function definitions and the declaration 
int inp [5] = {10, 6, 4, 2, 8}; 

the function call 
printf("%d\n", max(inp, 5)); 

causes 10 to be printed. 
You may also provide a pointer to an element other than the first element 

of an array as an argument. To pass a pointer to the (z' + l)th element of the 
array c to the function f, we write 

f (& c [ i ] ) ; 
or 

f(c+i) ; 
In the declaration of f, the parameter declaration can read as 

void f(char a[]); 
or 

void f(char *a); 
The fact that the argument refers to an element in the middle of an array is of 
no consequence to f. What is given to f is just a pointer, and f can do what it 
likes with it. Thus, given any of the preceding definitions of the function max 
and the array inp, the function call 

printf("%d\n", max(&inp[2], 3)); 
or 

printf("%d\n", max(inp+2, 3)); 
causes 8 to be printed, whereas the function call 

printf("%d\n", max(&inp[2], 2)); 
or 

printf("%d\n", max(inp+2, 2)) 
causes 4 to be printed. 

It should now be clear why the changes in a parameter array in the called 
function are reflected in the array passed as argument. Since the called function 
is provided the address of the argument array, it is an element of the argument 
array that is accessed when an element of the parameter array is accessed in the 
called function. Thus, the function definition 

•include <math.h> 

void array_cuberoot(double x[], int length) { . 
int i; 
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for (i = 0 ; i < length; i++) 
x[i] = pow(x [ i], 1.0/3.0); 

} 

is equivalent to 

•include <math.h> 

void array_cuberoot(double *x, int length) { 
int i; 

for (i = 0 ; i < length; i++) 
*(x+i) = pow(*(x+i), 1.0/3.0); 

} 

and when it is called as 

double y[5] = {0.1, 0.2, 0.3, 0.4, 0.5}; 
array_cuberoot(y, 5); 

x is bound to the address of the first element of y and array_cuberoot con-
verts the value of every element of the argument array to the cube root of the 
current value. 

7.3.2 Illustrative Examples 
We now give some example programs to further illustrate the relationship 
between arrays and pointers. 

• Example 1 
• Rewrite, using pointers, the program of Example 1 in Section 6.3 that cyclically per-

mutes the values of an integer array. 

The desired program is as follows. 

•include <stdio.h> 
•define LAST 10 

int main(void) { 
float array[LAST], temp; 
int i; 

/* read array */ 
for (i = 0; i < LAST; i++) 

scanf("%f", array+i); 
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/* permute array */ 
temp = *a'rray; 
for (i = 1; i < LAST; i++) 

*(array+i-l) = * (array+i); 
*(array+LAST-1) = temp; 

/* output the permuted array */ 
for (i = 0 ; i < LAST; i++) 

printf("%f\n", * (array+i)); 

return 0; 
} 

In this version, the (2 + l)th element of array is referenced as * (array+i), 
and array+i is the address of this element. 

• Example 2 
• Rewrite, using pointers, the program of Example 5 in Section 6.3 for sorting a list of 

integers in descending order. 

The desired program is as follows. 

•include <stdio.h> 
•define MAXSIZE 100 

int readl(int *arr, int length); 
void writel(int *arr, int last); 
void bsort(int *arr, int last); 

int main(void) { 
int list[MAXSIZE], total_elements; 

total_elements = readl(list, MAXSIZE); 
bsort(list, total_elements); 
writel(list, total_elements); 
return 0; 

} 

int readl(int *arr, int length) ' { 
int i; 

for (i = 0; i < length 
&& scanf("%d", arr+i) != EOF; i++) 

/ 

return i; 
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void bsort(int *arr, int last) 
< 

int i, not_done; ; 

do 
{ 

not_done = 0; 

/* scan and interchange as needed */ 

for (i = 1 ; i < last; i++) 
if (*(arr+i-1) <*(arr+i) ) { 

int, t; 

t = * (arr+i); 
*(arr+i) = *(arr+i-1); 
*(arr+i-1) = t; 
not_done++; 

} 

/* do not scan the last data item in the next iteration */ 

last--; 
} 

while (not_done); , 
} 

void writel (int *arr, int last) { 
int *end = arr + last; 

while (arr < end) printf("%d\n", *arr++); 
} 

7.4 STRINGS AND POINTERS 
String manipulation is often a large part of any programming task. C does not 
have a built-in string data type, but uses null-terminated arrays of characters to 
represent strings. To create a string variable, you must allocate sufficient space 
for the number of characters in the string and the null character ' \ 0 ' . The null 
character helps find the end of a string. For example, you can define a string 
variable capable of storing the word "r2d2" as follows: 

char robot [5]; 
This variable, as we discussed in Section 6.1.3, can be initialized at the time of 
its definition as 
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char robot [5] = {'r', '2', ' d', '2', 'AO'}; 
or simply as 

char robot [5] = "r2d2"; 
in which case the compiler automatically provides the terminating null charac-
ter. The following figure shows the effect of such an initialization: 

7 r» '2' 'd' '2' ' \0' 

Since the string variable robot is an array of characters, the name robot is a 
pointer to the first character of the string and can be used to access and manip-
ulate the characters of the string. 

A string constant, syntactically, is a sequence of characters enclosed in dou-
ble quotation marks. The storage required for a string constant is one character 
more than the number of characters enclosed within the quotation marks, since 
the compiler automatically places the null character at the end. The type of a 
string constant is an "array of char." However, when a string constant appears 
anywhere (except as an initializer of a character array or an argument to the 
sizeof operator), the characters making up the string together with the null 
character are stored in consecutive memory locations, and the string constant 
becomes a pointer to the location where the first character of the string has 
been stored. For example, given the declaration for a character pointer 

char *probot; 
after the assignment 

probot = "r2d2"; 
the pointer variable probot contains the address of the first memory location 
where the string "r2d2 " has been stored, as shown in the following: 

probot: ' \0' ' r' ' 2' ' d' ' 2' ' \0' 

The characters of the string can then be accessed using this pointer. 
Before giving examples of how strings can be manipulated using pointers, 

we must emphasize the difference between a character array initialized to a 
string constant and a character pointer initialized to a string constant. The 
name of a character array, such as robot, always refers to the same storage, 
although the individual characters within the array may be changed by new 
assignments. On the other hand, a character pointer, such as probot, may be 
reassigned to point to new memory locations, but if it is pointing to a string 
constant and you try to modify the contents of the locations accessible through 
this pointer, the result is undefined. 

To illustrate string handling, we write a function strlen that computes 
the length of a given string, and returns the number of characters that precede 
the terminating null character ' \ 0 ' . This function can be written using arrays 
as 
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int strlen(char str[]) { 
int i = 0; 

while (str[i] != '\0') i++; 
return i; 

} 

Here is a pointer version of the same function: 

int strlen(char *str) { 
char *first = str; 

while (*str != '\0') str++; 
return str - first; 

} 

In this version, the desired length is determined as the difference in value 
between a pointer to the terminating null character and a pointer to the first 
character of the string. The character pointer str is initialized to point to the 
first character of the source string at the time of function call. This pointer value 
is also saved in another pointer variable first. We then check in a loop that 
str is not pointing to the terminating null character, and if not, str is 
advanced by one character. The length of the string is then determined by sub-
tracting from first the last value of s t r. 

Since the loop termination condition in the preceding function merely tests 
whether the expression is nonzero, the function can be written more succinctly 
as 

int strlen(char *str) { 
char *first = str; 

while (*str) str++; 
return str - first; 

} 

As another example of a string handling function, consider the following 
function strcpy that copies a string into another string: 

void strcpy(char *to, char *from) { 
while(*to = *from) to++, from++; 

} 

The character pointers to and from are initialized to the destination and 
source strings respectively at the time of function call. These pointers are then 
advanced one character at a time, and at each pointer position, one character is 
copied from the from string to the to string. The copy loop terminates when 
the character ' \ 0' terminating the from string has been copied into the to 
strinp-
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The preceding function can be further abbreviated to 

void strcpy(char *to, char *from) { 
while(*to++ = *from++); 

} 

Due to the relative precedence of * and ++, the value of * f rom++ is the charac-
ter that from pointed to before from was incremented; from is incremented 
only after this character has been fetched. For the same reason, this character is 
stored in the old to position before to is incremented, and is also the value 
used to control the loop termination. Thus, the complete from string, including 
' \0' , is copied into the to string. 

Finally, here is a function strcat that concatenates the string addend to 
the end of the string st r : 

void strcat(char *str, char *addend) { 
strcpy(str+strlen (str), addend); 

} 

Note that str+strlen (str) points to the position in str that contains the 
terminating ' \ 0', and strcpy copies addend into str starting at this posi-
tion. 

7.4.1 Library Functions for Processing Strings 
Although C does not have built-in string data type, it provides a rich set of 
library functions for processing strings. The standard header file <string. h> 
contains the prototypes for these functions. We now discuss the most fre-
quently used of these functions. 

In the following discussion, size_t is an unsigned integral type defined 
in the standard header file <stddef. h>. String parameters that are not modi-
fied by the function are declared to be of type const char *. The type qualifier 
const will be discussed in Chapter 12. 

size_t strlen(const char *s) ; 

computes the length of the string s, and returns the number of characters that 
precede ' \ 0 ' . 

char *strcpy(char *sl, const char *s2) ; 

copies the string s2 to si (including ' \0') , and returns si. 

char *strncpy (char *sl, const char *s2, size_t n) ; 

copies at most the first n characters of the string s2 to si (stopping after ' \ 0' 
has been copied and padding the necessary number of ' \ 0' at the end, if s2 
has fewer than n characters), and returns si. 

char *strcat (char *s l , const char *s2) ; 

concatenates the string s2 to the end of si, placing ' \ 0' at the end of the con-
catenated string, and returns si. 
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char *strncat (char *sl, const char *s2, size_t n) ; 

concatenates at m o s t the first n charac ters of the string s2 to the e n d of s i (stop-
ping before a ' \ 0' h a s b e e n a p p e n d e d ) , places ' \ 0' at the end of the concate -
nated string, a n d returns si. 

int strcmp(const char *sl, const char *s2) ; 

c o m p a r e s the string si to s2, a n d returns a negat ive va lue if si is lexicographi-
cally less than s2, zero if si is equal to s2, a n d a posit ive v a l u e if si is lexico-
graphical ly greater t h a n s2. 

int strncmp (const char *sl, const char *s2, size_t n) ; 

c o m p a r e s at m o s t the first n charac ters of the string si to s2 (s topping after a 
' \ 0' h a s been c o m p a r e d ) , a n d returns a negat ive va lue if si is lexicographi-
cally less t h a n s2, zero if si is equal to s2, a n d a posit ive v a l u e if si is lexico-
graphical ly greater t h a n s2. 

int *strchr (const char *s, int c) ; 

locates the first o c c u r r e n c e of c ( conver ted to a char) in the string s, a n d returns 
a pointer to the located charac ter if the search succeeds a n d NULL otherwise . 

int *strrchr(const char *s, int C) ; 
locates the last o c c u r r e n c e of c ( conver ted to a char) in the string s, a n d returns 
a pointer to the located charac ter if the search s u c c e e d s a n d NULL otherwise . 

T h e fol lowing table illustrates string handling functions: 

char si[MAX], s2[MAX]; 

Statement Result 

printf("%d", strlen ("cord") )'; 4 
printf("%s", strcpy(sl, "string")); string 
printf("%s". strncpy(s2, "endomorph", 4)); endo 
printf("%s", strcat(si, s2)); stringendo 
printf("%d", strcmp (si, s2)); 1 
printf("%d". strncmp(sl+6, s2, 4)); 0 
printf("%s", strchr (si, 'n')); ngendo 
printf("%s", strrchr(si, 'n')); ndo 

7.4.2 Illustrative Examples 
W e n o w give s o m e e x a m p l e p r o g r a m s t o further illustrate string m a n i p u l a t i o n s 
using pointers. 

Example 1 
Write a function that extracts a substring of specified length from a given string by 
locating the last occurrence of the starting character of the substring. 
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The prototype of the desired function is of the form 

char *subrstr(char *str, char c, int n, char *result) ; 
and it extracts from the string str at most n characters, starting from the last 
occurrence of the character c. If the remaining characters in the string are less 
than the specified length, the function returns the largest possible substring. 
The extracted substring is null-terminated and returned in the character array 
result, assumed to be large enough to hold the extracted string. The function 
returns NULL if c does not occur in st r. 

The desired function is as follows: 

•include <stdio.h> 
•include <string.h> 

char *subrstr(char *str, char c, int n, char *result) r { 
char *cp; 

if (cp = strrchrfstr, c)) { 
/* cp points to the last occurrence of c in str */ 
/* copy at most n characters from str to result */ 
strncpy(result, cp, n); 

/* null terminate result */ 
*(result + n) = '\0'; 

return result; 
} 

else 
return NULL; 

} 

Given that 

char substr[80]; 
the function call 

printf("%s\n", 
subrstr("doctor dolittle", 'd', 2, substr)); 

prints 

do 
and the function call 

printf("%s\n", 
subrstr("doctor dolittle", 'd', 10, substr)); 

prints 

dolittle 
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• • Example 2 
mm Write a function that locates the first occurrence of a character string inside another 

string. 

The desired function is as follows: 

•include <stdio.h> 
•include <string.h> 

char *strloc(char *str, char *pattern) { 
char *cp; 

for (cp = str; cp = strchr(cp, *pattern); cp++) 
if (!strncmp(cp, pattern, strlen (pattern)) 

return cp; 
return NULL; 

} 

This function returns a pointer to the starting position of the pattern string in 
the given string, and NULL if the pattern string is not found. 

The function strchr locates the position of the first character of the pat-
tern string in the given string, and strncmp checks if the following characters 
match those in the pattern string. If the comparison succeeds, this position is 
returned as the value of strloc; otherwise, the search is repeated in the 
remainder of the string. 

Thus, the function call 

printf("%s\n", 
strloc("ad majorem Dei gloriam", "or")); 

prints 

orem Dei gloriam 
and the function call 

printf("%s\n", 
strloc("ad majorem Dei gloriam", "ori")); 

prints 

oriam 

Example 3 
• Write a function that determines if a given string is a palindrome. 

A palindrome is a word or phrase that reads the same backward as forward. 
Blanks, punctuation marks and capitalizations do not count in determining 
palindromes. Here are some well-known palindromes: 

Radar 
Too hot to hoot 
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Madam! I'm Adam. 
A Man, A Plan, A Canal — Panama 
Doc, note, I dissent! A fast never prevents a fatness; I diet on cod. 

The desired function is as follows: 

•include <string.h> 
•define MAXSIZE 80 

void transform(char *rawstr, char *stdstr); 
int test(char *stdstr); 

int palindrome(char *rawstr) { 
char stdstr[MAXSIZE]; • 

transform(rawstr, stdstr); 
return test(stdstr); 

} 

void transform(char *rawstr, char *stdstr) 
{ 
for( ; *rawstr; rawstr++) 

if(*rawstr >= 'a' && *rawstr <= 'z') 
/* convert to uppercase */ 
*stdstr++ = *rawstr - 'a' + 'A'; 

else if((*rawstr >= 'A' && *rawstr <= 'Z') || 
(*rawstr >= '0' && *rawstr <= '9')) . 

*stdstr++ = *rawstr; 
} 

int test(char *str) { 
/* pointer to the first character */ 
char *left = str; 
/* pointer to the last character */ 
char *right = str + strlen(str) - 1; 

for ( ; left < right; left++, right—) 
if (*left != *right) 

return 0; 

return 1; 
} 

The function trans form converts the given string into a standard form by 
converting lowercase letters into uppercase letters and by removing all charac-
ters other than letters and numerals from the string. The function test then 
checks whether the transformed string is a palindrome by simultaneously tra-
versing it forward and backward and checking at every position that the char-
acters match. 
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7.5 MULTI-DIMENSIONAL ARRAYS AND POINTERS 
A multi-dimensional array in C is really a one-dimensional array, whose ele-
ments are themselves arrays, and is stored such that the last subscript varies 
most rapidly. The name of the multi-dimensional array is, therefore, a pointer 
to the first array. Thus, the declaration 

int matrix [3] [5] ; 
specifies that the array matrix consists of three elements, each of which is an 
array of five integer elements, and that the name matrix is a pointer to the 
first row of the matrix. 

Instead of using subscripts, an element in a multi-dimensional array can be 
referenced using an equivalent pointer expression. For example, the element 
matrix [i] [j] can be referenced using the pointer expression 

*(*(matrix+i) + j) 
since 

matrix is a pointer to the first row; 
matrix+i is a pointer to the ith row; 

*(mat r i x+i) is the ith row which is converted into a pointer 
to the first element in the ith row; 

* (matrix+i) + j is a pointer to the;th element in the ith row; and 
* (* (matrix+i) + j) is matrix [ i ] [ j ], the/th element in the ith row. 

We now illustrate how a multi-dimensional array can be processed using 
pointers by writing a function col sum that determines the sum of a given col-
umn of the matrix declared as 

int matrix[MAXROWS][MAXCOLS]; 
Since, as mentioned in Section 7.1.5, pointer arithmetic works correctly with 
pointers of any type, a two-dimensional array can be traversed by initializing a 
pointer to the first row of the array and then incrementing the pointer each 
time we need to get to the next row. Let rptr be the pointer to the rows of 
matrix. We can declare and initialize this pointer to the first row of matrix as 

int (*rptr)[MAXCOLS] = matrix; 
This declaration specifies that rptr is a pointer to an array of MAXCOLS inte-
gers. The parentheses around *rptr are necessary because the dereferencing 
operator * has lower precedence than the indexing operator [ ], and without 
the parentheses, the declaration 

int *rptr[MAXCOLS]; 
specifies rptr to be an array of MAXCOLS elements, each a pointer to an inte-
ger. Having declared rptr to be a pointer to a row of matrix, (*rptr) [ j ] 
refers to the (/ +l)th element of this row. -

The function col sum is as follows: 
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int colsum(int (*matrix)[MAXCOLS], 
int rows, int column) 

{ 
int (*rptr)[MAXCOLS] = matrix; 
int i, sum; 

for (i = 0, sum = 0; i <.rows; i++) 
sum += (*rptr++)[column]; 

return sum; 
} 

Note that the parameter declaration 

int (*matrix)[MAXCOLS] 
specifies that matrix is a pointer to an array of MAXCOLS integer elements. 
This declaration is equivalent to 

int matrix[][MAXCOLS] 
Given that 

int m[][MAXCOLS] = { 
{1, 2, 3}, 
{4, 5, 6} 

" } 

the function call 

colsum(m, 2, 0) 
produces 5 as the sum of the first column. 

We now write another function rowsum that finds the sum of the elements 
of a given row of matrix. As discussed at the beginning of this section, 
* (matrix+i) is a pointer to the first element in row i of matrix. Thus, if 
cptr points to elements of matrix in row i, it can be initialized to point to the 
first element of row i by a declaration of the form 

int *cptr = *(matrix+i); 
The function rowsum is as follows: 

int rowsum(int (*matrix)[MAXCOLS], 
int columns, int row) 

{ 
int *cptr = *(matrix+row); 
int j, sum; 

for (j = 0, sum = 0 ; j < columns; j++) 
sum += *cptr++; 

return sum; 
} 

With the same m as defined above, the function call 
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rowsum(m, 3, 1) 
produces 15 as the sum of the second row. 

7.5.1 Illustrative Example 
We now give an example program to further illustrate the processing of multi-
dimensional arrays using pointers. 

:*m*- Example 
J Rewrite, using pointers, the program given in Example 2 of Section 6.3 that calculates 

the average score of each student, the average of each test, and the class average over all 
tests. 

The desired program is as follows: 

•include <stdio.h> 
•define TESTS 4 
•define STUDENTS 10 

int score[TESTS+1][STUDENTS+1] = { 
{ 0 , 0 , o , 0 , o , 0 , o , 0 , o , 0 , 0 ) , 
{ 0 , 4 , 3 , 4 , 2 , 1 , o , 3 , 4 , 1 , 0 } , 
{ 0 , 4 , 4 , 3 , 3 , 2 , 1 , 2 , 3 , 1 , 2 } , 
{ 0 , 4 , 3 , 4 , 3 , 2 , 2 , 2 , 3 , o , 1 } , 
{ 0 , 4 , 3 , 4 , 4 , 1 , 3 , 3 , 3 , 1 , 2 } 

} ; 

int main(void) { 
int i, j; 

for (i = 1; i <= TESTS; i++) 

for (j = 1; j <= STUDENTS; j++) { 
/* total for a test */ 
* (* (score+i) + 0) += *(*(score+i) + j); 
/* total for a student */ 
* (* (score+0) + j) += *(*(score+i) + j); 
/* total for the class */ 
*(* (score+0) + 0) += *(*(score+i) + j); 

} 

for (j = 1; j <= STUDENTS; j++) 
printf("student %d: average score = %f\n", • 

j, (float)(*(*(score+0)+j))/TESTS); 
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for (i = 1; i <= TESTS; i++) 
printf("test %d: average score = %f\n", 

i, (float)(* (*(score+i)+0))/STUDENTS); 
printf("class average = %f\n", 

(float)(*(*(score+0)+0))/(STUDENTS*TESTS)); 
return 0; 

} 
In the above program, we have shown explicit addition of zero in some of 

the pointer expressions for clarity; this addition, however, is unnecessary and 
not written in practice. 

Compare this program to that given in Section 6.3. The pointer version is 
more complex and difficult to understand, but some compilers generate more 
efficient code for the pointer version. 

7.6 POINTER ARRAYS 
An array, as we have seen in Chapter 6, is an ordered collection of data items, 
each of the same type, and the type of an array is the type of its data items. 
When the data items are of pointer type, we have what is known as a pointer 
array or an array of pointers. For example, the declaration 

char *day[7]; 
defines day to be an array consisting of seven character pointers; it is not a 
pointer to an array of seven characters, since the indexing operator [ ] has pre-
cedence over the dereferencing operator *. The declaration would have been 
written as 

char (*day)[7] ; 
if day were to be a pointer to an array of seven characters. 

The elements of a pointer array, like that of any other array, can be assigned 
values by following the array definition with a list of comma-separated 
initializers enclosed in braces, as in 
char *day[7] = { 

"monday", "tuesday", "Wednesday", 
"thursday", "friday", "Saturday", "Sunday" 

} ; 
or through assignment statements as in 

char *day[7]; 
day[0] = "monday"; 
day[1] = "tuesday"; 
day[2] = "Wednesday"; 
day[3] = "thursday"; 
day[4] = "friday"; 
day[5] = "Saturday"; 
day [6] = "sunday"'; 
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In both the cases, the necessary storage is allocated for the string constants, and 
pointers to them are stored in day. The following figure depicts the result: 

day: 
day[0] 

day [1] 

day[2] 

day[3] 

day [4] 

day[5] 

day [ 6] 

' y ' 'y ' 

't' 'u' 'e' ' s' 'd' ' a' 'y ' ' \0' 't' 'u' 'e' ' s' 'd' ' a' 'y ' ' \0' 

'y ' 

't' 'h' 'u' 'r'- ' s' 'd' 'a' 'y ' ' \0' 't' 'h' 'u' 'r'- ' s' 'd' 'a' 'y ' ' \0' 

' V 'r' ' i' 'd' ' a' 'y ' '\0' ' V 'r' ' i' 'd' ' a' 'y ' '\0' 

' s' 'a' 't' 'u' ' r' 'd' 'a'. 'y ' ' \0' ' s' 'a' 't' 'u' ' r' 'd' 'a'. 'y ' ' \0' 

' y' 

Note that the arrays that store the day names are of different lengths, depend-
ing upon the number of characters in the name. 

Given the pointer array day, the following function converts a day number 
into a pointer to that day's name: 

char *dayname(int n) 
{ 

} 
return n >= 0 && n <= 6 ? day[n] : NULL; 

Instead of a pointer array, we could have used a two-dimensional character 
array to store the day names. However, such an array will have to make provi-
sion for the largest possible name. In general, fixed-length arrays could result 
in a substantial waste of storage, if there is large variance in the storage 
required for each name. 

A major application of pointer arrays is in specifying command-line argu-
ments to main, which we shall study now. 

7.6.1 Command-Line Arguments 
All C programs, as we mentioned in Section 2.1, define a function main that 
designates the entry point of the program and is invoked by the environment 
in which the program is executed. In the programs considered so far in the text, 
main did not take any arguments. However, main can be defined with formal 
parameters so that the program may accept command-line arguments, that is, 
arguments that are specified when the program is executed. Thus, one could 
compute the factorial of a desired number by executing the program facto-
rial as 

factorial 5 
instead of invoking it as 

factorial 
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and then reading 5 within the program. 
The function main is then defined as having two parameters, customarily 

called argc and argv, and appears as 

int main'(int argc, char *argv[]) { 

} 

The parameter argc (for argument count) is the count of the number of com-
mand-line arguments, and the parameter argv (for argument vector) is a 
pointer to a one-dimensional array of pointers to character strings representing 
arguments. By convention, argv [ 0 ] points to a string which is the name of the 
program, argv [ i ], where i = 1, 2 , . . ., argc-1, points to the ith argument, 
and argv [argc] is NULL. The argument count argc is at least one, since the 
first argument is the name of the program itself. 

For example, if the command line for a program printargs is 

printargs vox populi vox Dei 
then, when the function main is called, argc will be 5 and argv a null-termi-
nated array of pointers to strings as shown below: 

argc: 5 

argv: 'P' 
' v' 'o' 'x' ' \0' 

'P' 'o' 'P' ' u' '1' 'i' '\0' 

'V' 'o' 'x' ' \0' 

'D' 'e' ' i' '\0' 
NULL 

The following is the code for printargs, which simply echoes its com-
mand-line arguments: 

•include <stdio.h> 
int main(int argc, char *argv[]) { 

int i; 
for (i = 1; i < argc; i++) 

printf ("%s ", argv[i]); 
printf("\n"); 
return 0; 

} 
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Whitespaces are used to delimit the command-line arguments. If an argu-
ment contains whitespaces, it must be placed within quotation marks. Thus, if 
printargs is invoked as 

printargs "vox populi" "vox Dei" 
then argc will be 3 and argv an array of three pointers pointing to the strings 
"printargs", "vox populi", and "vox Dei" respectively. 

The command-line arguments are always stored as character strings. For 
example, the command-line arguments 3 5 and 5 6 as in 

lcm 35 56 
will be stored as character strings "35" and "56" respectively, and argv [ 1 ] 
and argv [ 2 ] will contain pointers to them. If the integer values of these argu-
ments are of interest, the strings must be converted into numbers by the pro-
gram. The standard C library provides several functions for number conver-
sions including atoi that converts a given string to int and at of that 
converts a given string to double. The header file <stdlib.h> contains the 
prototypes for these functions. 

7.6.2 Pointers to Pointers 
A pointer provides the address of the data item pointed to by it. The data item 
pointed to by a pointer can be an address of another data item. Thus, a given 
pointer can be a pointer to a pointer to an object. Accessing this object from the 
given pointer then requires two levels of indirection. First, the given pointer is 
dereferenced to get the pointer to the given object, and then this later pointer is 
dereferenced to get to the object. 

Consider, for example, the declarations 

int i = 1; 
int *p; 

that declare two objects: i, an integer, and p, a pointer to an integer. We may 
apply the address operator & to both i and p as in 

p = & i; / * make p point to i * / 
q = &p; /* make q point to p */ 

These statements imply that q is a pointer to the pointer p, which in turn points 
to the integer i. The relationship between i, p, and q is pictorially depicted 
below: 

q: p: i: 
1 1 

To handle such situations, the notation 
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which means "apply the dereferencing operator to q twice" can be used, and 
the variable q declared as 

int **q; 
In order to fetch the value of i, starting from q, we go through two levels of 

indirection. The value of *q is the content of p which is the address of i, and 
the value of * * q is * (& i) which is 1. Thus, each of the expressions 

i + 1 
*p + 1 
**q + 1 

has the value 2. 
There is no limit on the number of levels of indirection, and a declaration 

such as 

int ***p; 
means 

* * r 

*p is an integer, 
is a pointer to an integer, 

*p is a pointer to a pointer to an integer, and 
p is a pointer to a pointer to a pointer to an integer. 

In the following definition of ma i n 
int main(int argc, char *argv[]) 

argv is really a pointer to a pointer, since C passes an array argument by pass-
ing the pointer to the first element of the array. Thus, the declaration 

char *argv[] 
can be replaced by an equivalent declaration 

char **argv 
The following is the program printargs, rewritten treating argv as a 

pointer to a pointer: 

•include <stdio.h> 

int main(int argc, char **argv) { 
while (--argc) printf("%s ", *++argv); 
printf("\n"); 

return 0; 
} 

In the printf statement, argv is incremented before the string pointed to by 
argv is fetched to avoid printing the name of the program. 

If the command line for a program printargs is 

printargs vox populi vox Dei 
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then argc and argv will be as shown below: 

argc: 5 

argv: — 

NULL 

'V' 'o' 'x' '\0' 

'D' 'e' ' i' ' \0' 

'P' 'r' ' i' ' n' 't' 'a' 'r' 'g' 's' '\0' 

' v' 'o' 'x' ' \0' 

'P' '0' 'P' ' u' '1' ' i' ' \0' 

7.6.3 Illustrative Examples 
We now give some example programs to further illustrate pointer arrays. 

E x a m p l e 1 
Write,a program that converts a given day of the year into date and month. 

The desired program is as follows: 

•include <stdio.h> 
•include <stdlib.h> 
• include <limits.h> /* defines INT_MAX */ 
•define MONTHS 12 
char *mname[] = { 

"january", "february", "march", "april", 
"may", "june", "july", "august", "September", 
"october", "november", "december" 

} ; 

int { 

} ; 
int { 

} ; 
int ' 

leapt] = 

31, 2.9, 31, 30, 31, 30, 31, 
31, 30, 31, 30, 31, INT_MAX 

regular[] = 

31, 28, 31, 30, 31, 30, 31, 
31, 30, 31, 30, 31, INT_MAX 
:days[] = {leap, regular}; 
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void datemonth(int day, int year, 
int *pdate, int *pmonth) 

{ 
int normal, *pday; 

/* is it a normal or a leap year? */ 
normal = ( (year%4) ,| | ! (year%100) ) && (year%400); 

/* get the appropriate element of days array */ 
pday = days[normal] ; 

/* find the month in which this day falls */ 
while (day > *pday) day -= *pday++; 

*pdate = day; 
*pmonth = pday - days[normal] ; 

} 

char *name(int month) { 
return mname[month]; 

} 

int. main(int argc, char *argv[]) { 
int day, year, date, month; 

if (argc != 3) { 
printf("usage: %s <day> <year>\n", argv[0]); 
return 1; 

} 

day = atoi(argvfl]); 
year = atoi(argv[2]); 

datemonth(day, year, &date, &month); 

if (date > 0 && month < MONTHS) { 
printf("%d %s\n", date, name(month)); 
return 0; 

} 
else { 

printf("an out-of-range day\n"); 
return 1; 

} 
} 
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The main function obtains the values of day and year as command-line 
arguments, and uses the standard library function atoi (see Appendix A) to 
convert the string representation of these values into integers. If the correct 
number of command-line arguments is not provided, main prints the names of 
the arguments it is expecting. Thus, if this program, kept in day. c, is compiled 
as 

cc -o day day.c 
on a UNIX machine, or as 

cl day.c 
on an IBM PC using the Microsoft C Compiler, and then executed as 

day 
it will print 

usage: day <day> <year> 
It is a good feature to incorporate in all the programs you write. 

The function datemonth determines the date and month in which the 
given day of the year falls. It uses a pointer array days of two elements. As 
shown below, the first element points to an integer array leap, whose ele-
ments contain the number of days in the months of a leap year. The second 
element points to another integer array regular, whose elements contain the 
number of days in the months of a nonleap year. 

days: leap 

31 29 31 30 31 30 31 31 30 31 30 31 INT_MAX 

31 28 31 30 31 30 31 31 30 31 30 31 INT_MAX 
regular 

The function monthdate first determines whether the given year is a regular 
or a leap year, and sets pday to point to the first element of the array leap if it 
is a leap year and normal turns out to be 0; otherwise, it sets pday to point to 
the first element of the array regular. The function then steps through the 
selected array by incrementing pday to determine the month in which the 
given day falls. The last dummy entry guarantees that we will not go out of 
bounds. This technique avoids the need for bounds checking inside the search 
loop, and is often used when searching an array for a value that may not be 
present. 

The function name is straightforward. The pointer array mname stores the 
names of months as shown below: 
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mname[0] 

mname [ 1] 

mname[10] 

mname[11] 

' j' ' a' ' n' 'u' ' a' ' r' 'y' ' \0' ' j' ' a' ' n' 'u' ' a' ' r' 'y' ' \0' 

'f' 'e' 'b' ' r' ' u' 'a' 'r' 'y' ' \0' 'f' 'e' 'b' ' r' ' u' 'a' 'r' 'y' ' \0' 

'n' '0' ' v' ' e' 'm' 'b' ' e' ' r' ' \0' 'n' '0' ' v' ' e' 'm' 'b' ' e' ' r' ' \0' 

'd' ' e' ' c' 'e' 'm' 'b' ' e' ' r' ' \0' 'd' ' e' ' c' 'e' 'm' 'b' ' e' ' r' ' \0' 

The function name uses the given month to index into mname and returns a 
pointer to the corresponding name string. 

Example 2 
Write a program that converts a given nonnegative decimal integer into its equivalent 
binary, octal, or hexadecimal representation depending upon the options specified in the 
command line. 

We follow the convention used in the UNIX systems to specify the options 
by preceding an argument with a minus sign, and use -b, -o, and -x to specify 
binary, octal, and hexadecimal conversions respectively. Thus, the command 

convert -x 20 
specifies that the decimal 20 is to be converted into its equivalent hexadecimal 
form. More than one option can be specified in one command line as in 

convert -b -x 20 
to mean that the decimal 20 is to be converted into its binary as well as hexa-
decimal form. Options can also be combined as in 

convert -bx 20 
The desired program is as follows: 

•include <stdio.h> 
•include <stdlib.h> 
•include <string.h> 
•define MAXLEN 80 

char ^convert(int number, int base, char *string); 
char *strrev(char *string); 
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int main(int argc, char **argv) { 
int binary = 0, octal = 0, hex = 0, i; 
char c, *cp, *name, str[MAXLEN]; 

name = *argv++, argc--; 

for (; argc > 0 && **argv == '-'; 
argc--, argv++) 

{ 
cp = *argv; 
while (c = *++cp) 

switch (c) { 
case 'b': 

binary = 1; 
break; 

case 'o': 
octal = 1; 
break; 

case 'x': 
hex = 1; 
break; 

default: 
printf ("%s: illegal option " 

"%c\n", name, c); 
argc = 0; 
break; 

} 
} 

if (argc != 1) { 
printf("usage: %s -box <integer>\n", name); 
return 1; 

} 

i = atoi(*argv); 

if (binary) 
printf("binary: %s\n", convert(i, 2, str)); 

else if (octal) 
printf("octal: %s\n", convert(i, 8, str)); 

else /* hexadecimal */ 
printf("hex: %s\n", convert(i, 16, str)); 

return 0; 
} 
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char ^convert (int num, int base, char *str) 
{ 
char *sp = str; 
int digit; 

do 
{ 
digit = num % base; 
*sp++ = digit < 10 ? 

digit + '0' : digit - 10 + 'a'; 
num /= base; 

} 

while(num); 

*sp = ' \0' ; /* null terminate str */ 

return strrev(str); } 

char *strrev(char *str) /* reverse str in place */ 
{ 
char *left = str, 

*right = str + strlen(str) - 1, temp; 

for ( ; left < right; left++, right—) 
temp = *left, *left = *right, *right = temp; 

return str; 
} 

The program begins by saving the name of the program in name and incre-
menting argv to point to the first optional argument. The outer loop is exe-
cuted once for each optional argument. Thus, at the end of the outer loop, argc 
should be 1 and argv pointing to the string representation of the decimal inte-
ger number to be converted. 

The function convert creates the equivalent representation of the given 
number num in the character array str and returns a pointer to it. The conver-
sion depends on the value of base, which is 2 for binary, 8 for octal, and 16 for 
hexadecimal conversions. To find the base-b equivalent of a decimal integer 
number, the number is divided repeatedly by b until a quotient of zero results. 
The successive remainders are the digits from right to left of the bas e-b repre-
sentation. In the do-while loop, the remainder d resulting from dividing num 
by base is converted into the corresponding character by adding the value of 
the character 0 to it, if d is between 0 and 9. If d is between 10 and 15 for the 
hexadecimal conversion, it is converted into the corresponding hexadecimal 
digit by adding ' a' -10 to it. Thus, at the end of the do-while loop, the string 
representing the desired equivalent representation is generated in str in the 
reverse order, and the function str rev is called to put it back in the right 
order. 
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The function strrev initializes left to point to the first character of the 
string and initializes right to point to the character preceding ' \ 0 ' . The char-
acters in these two positions are exchanged, left is incremented to point to 
the next character, and right is decremented to point to the previous charac-
ter. When left and right start pointing to the same character position, or 
left goes beyond r i ght, the string has been reversed in place. 

7.7 POINTERS TO FUNCTIONS 
In C, a function itself is not a variable, but it is possible to define a pointer to a 
function. A pointer to a function can best be thought of as the address of the 
code executed when the function is called. 

While declaring a pointer to a function, the pointed-to function's type 
together with the type of its parameters is specified. For example, the declara-
tion 

int (*fp)(int i, int j); 
declares fp to be a variable of type "pointer to a function that takes two integer 
arguments and returns an integer as its value." The identifiers i and j are writ-
ten for descriptive purposes only. The preceding declaration can, therefore, also 
be written as 

int (*fp) (int, int); 
The parentheses around * f p are used to distinguish this declaration from that 
of a function, called f p, that returns a pointer to an integer. Keep in mind that: 

int i (void) ; declares i to be a function with no parameters 
that returns an int. 

int *pi (void) ; declares pi to be a function with no parameters 
that returns a pointer to an int. 

int (*ip) (void) ; declares ip to be a pointer variable that can be 
assigned to point to a function that returns an 
integer value and takes no arguments. 

In order to make a pointer point to a specific function, we assign to it the 
function name without the following parentheses and the parameter declara-
tions. For example, given that 

int (*fp)(int, int), gcd(int, int); 
the function pointer fp can be made to point to the function gcd with the 
assignment 

fp = gcd; 
To call the function pointed to by such a pointer, we simply dereference it 

like any other pointer, and include within a set of parentheses the arguments to 
be passed to the function. For example, after the previous assignment, the 
expression 

(*fp) (42, 56) 
calls the function gcd pointed to by fp, passing 42 and 56 as arguments to it. 
The parentheses around f p are necessary to ensure that the dereferencing oper-
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ator is applied before the function call is made. If the function being called 
takes no arguments, an empty argument list is provided. Thus, given that 

void (*gp)(void), initialize(void); 
gp = initialize; 

the statement 

( * g p ) 0 ; 

calls initialize. 
The result returned by a function called by dereferencing a function 

pointer is equivalent to a direct call to that function. Thus, given that fp is 
pointing to the function gcd that finds the greatest common divisor of its argu-
ments, the statement 

i = (*fp) (42, 56); 
is equivalent to 

i = gcd(42,56); 
and assigns the value ofgcd(42,56), that is 14, to i. 

A useful application of pointers to functions is in passing them as argu-
ments to other functions. Consider, for example, the following function defini-
tion: 

• include <stdio..h> 
•include <math.h> 

void table(double (*fp)(double), 
int init, int end, int incr) 

{ 
int theta; 

for (theta = init; theta <= end; theta += incr) 
printf("%d %f\n", 

theta, (*fp) (theta/180.0*PI)); 
' } 

The first parameter of table declared as 
double (*fp)(double) 

specifies that it is a pointer to a function that takes a double argument and 
returns a double value. The function table makes a table of values for the 
function passed to it as argument. For example, given that 

double sin(double theta); 
double cos(double theta); 

the function calls 
table(sin, 0, 180, 10) ; 
table(cos, 90, 180, 5) ; 

cause a table of sine values, followed by a table of cosine values, to be printed. 
The sine table is printed for 0 = 0° through 180° in increments of 10°, whereas 
the cosine table is printed for 0 = 90° through 180° in increments of 5°. 
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7.7.1 Illustrative Example 
We now give an example program to further illustrate the concept of pointers 
to functions. 

• E x a m p l e 
• Rewrite the program given in Example 6 of Section 6.3 that determines the price of a 

given item from an item-price database, without assuming that the item-price database 
is necessarily maintained in decreasing order of the item number. 

Given an item number, we determine its price by using a binary search if 
the database is indeed sorted; otherwise, we do a linear search. A linear search 
-is performed by examining each item for the desired value until a match is 
found or all items are exhausted. 

The desired program is as follows: 

•include <stdio.h> 
• include <limits.h> /* defines INT_MAX */ 
•define ITEMS 1000 
•define NOT_FOUND -1 

int bld_database(int *item, float *price, 
int total_items); 

int bsearch (int value, int *arr, int max_iterns); 
int lsearch(int value, int *arr, int max_items); 
void find_price(int (*search)(int, int *, int), 

int item_no, int *item, 
float *price, int total_items); 

int main(void) { 
int item[ITEMS], item_no, sorted; 
float price[ITEMS]; 

/* build the item-price database */ 

sorted = bld_database(item, price, ITEMS); 

/* get item_no of the item whose price is to be found */ 

scanf("%d", &item_no); 

/* print price */ 

find_price(sorted ? bsearch : lsearch, 
item_no, item, price,. ITEMS); 

return 0; 
} 
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int bld_database(int *item, float *price, 
int total_items) 

{ 
int i, last = INT_MAX, sorted = 1; 
for (i = 0; i < total_items; i++) { 

scanf("%d %f", item+i, price+i); 
if (last < *(item+i)) sorted = 0; 
last = *(item+i); 

} 

return sorted; 
} 

void find_price(int (*search) (int, int *, int), 
int item_no, int *item, 
float *price, int total_items) 

{ 
int index; 
index = (*search)(item__no, item, total_items); 

if (index == NOT_FOUND) 
printf("item %d is not in the database\n", 

item_no); 
else 

printf ("price of item %d = %f\n", 
item_no, price[index]); 

} 

/* binary search */ 
int bsearch(int val, int *arr, int length) { 

int first = 0, last = length-1, mid; 
while ( first <= last) { 

mid = (first + last) / 2; 
if (val == * (arr+mid) ) /*search succeeds*/ 

return mid; 
else if (val > * (arr+mid) )/*search lower half*/ 

last = mid - 1; 
else /*search upper half*/ 

first = mid + 1; 
] 

return NOT_FOUND; 
} 
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/* linear search */ 
int lsearch(int .val, int *arr, int length) { 

int i; 

• for (i = 0; i < length; i++) 
if (* (arr+i) == val) return i; 

return NOT__FOUND; 
} 

In this version, the function bld_database keeps track of the last item 
read to determine if the input data is indeed sorted in decreasing order of the 
item number. The function find_j?rice now has an additional parameter 
search declared as 

int (*search)(int, int *, int) 
meaning that search can be assigned a pointer to a function that returns an 
int value, and takes three arguments: an int, a pointer to an int, and another 
int. The main function passes the pointer to either bsearch or lsearch to 
find_price, depending upon the value of sorted returned by 
bld_database, to specify the function that f ind_price should use. Within 
f ind_price, when search is dereferenced as 

(*search)(item_no, item, total_items) 
the appropriate search function is called. Note that one can now modify the 
search strategy by simply passing a pointer to another search function, without 
having to modify f ind_price. 

7.8 DYNAMIC MEMORY MANAGEMENT 
In many programs, the number of objects to be processed by the program and 
their sizes are not known a priori. One way to handle such situations is to make 
provision for the maximum number of objects expected and assume each to be 
of the maximum expected size. This is the approach taken in the example pro-
grams given in Section 6.3. This approach, however, may waste considerable 
memory and may even cause the size of the executable program to exceed the 
permissible size. Another disadvantage of this approach is that any guess even-
tually goes wrong and the program is presented with objects bigger and more 
in number than expected. 

C provides a collection of dynamic memory management functions that 
enable storage to be allocated as needed and released when no longer required. 
Before describing these functions, we first introduce the sizeof operator that 
is often used in calls to these functions. 
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7.8.1 s i z e o f Operator 
The sizeof operator is a unary operator that is used to obtain the size of a 
type or data object. It takes as its operand a parenthesized type name or an 
expression, and has the following forms: 

sizeof (typename) 
sizeof expression 

The result of the sizeof operator is of type size_t, which is an unsigned 
integral type defined in the standard header file <stddef. h>. 

The sizeof operator, when applied to a typename, yields the size in bytes 
of an object of the type named. For example, on an IBM PC, sizeof (char) is 
1, sizeof (int) is2, and sizeof (long) is4. 

The sizeof operator, when applied to an expression, analyzes the expres-
sion at compile time to determine its type, and then yields the same result as if 
it had been applied to the type of the expression. For example, if 

short s, *sp; 
then 

sizeof (s) is the same as sizeof (short) 
sizeof (sp) is the same as sizeof (short *) 

sizeof (*sp) isthesameas sizeof (short) 
If the operand to sizeof is an n-element array of type T, the result of sizeof 
is n times the result of sizeof applied to the type T. Thus, if 

int a [ 10]; 
then 

sizeof (a); 
is 20 on an IBM PC. Since a string constant is a null-terminated array of charac-
ters, sizeof applied to a string constant yields the number of characters in the 
string constant including the trailing ' \ 0 ' . For example, 

sizeof("computer") 
is 9. 

The sizeof operator does not cause any of the usual type conversions in 
determining the type of the expression. For example, when applied to an array 
name, sizeof does not cause the array name to be converted to a pointer. 
However, if the expression contains operators that do perform usual type con-
versions, those conversions are taken into account in determining its type. For 
example, if 

char c; 
then sizeof (c) isthesameas sizeof (char), 
but sizeof (c+0) isthesameas sizeof (int). 

because the type of the expression c+0, after the usual type conversion, is int. 
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When sizeof is applied to an expression, the expression is compiled to 
determine its type; it is, however, not compiled into executable code, with the 
result that any side effects that are to be produced by the execution of the 
expression do not occur. Thus, on IBM PC, the expression 

int i, j; 
i = 1; 
j = sizeof (--i); 

assigns 2 to j, but i remains 1 after the assignment. 

7.8.2 Dynamic Memory Management Functions 
The four dynamic memory management functions are malloc, calloc, 
realloc, and free. The functions malloc and calloc are used to obtain 
storage for an object, the function realloc for changing the size of the storage 
allocated to an object, and the function free for releasing the storage. The allo-
cation of storage by calling malloc, calloc, and realloc yields a pointer to 
the beginning of the storage allocated and is suitably aligned, so that it may be 
assigned to a pointer to any type of object. The order and contiguity of the stor-
age allocated by successive calls to these functions is not specified. 

The prototypes for the functions malloc, calloc, realloc, and free 
are included in the header file <stdlib.h>. The functions malloc, calloc, 
and realloc return the generic pointer void * that can safely be converted 
to a pointer of any type. 

void *malloc (size_t size); 

The function malloc allocates storage for an object whose size is specified 
by size. It returns a pointer to the allocated storage and NULL if it is not possible 
to allocate the storage requested. The allocated storage is not initialized in any 
way. 

For example, if 

float *fp, fa[10]; 
then 

fp = (float *) malloc (sizeof(fa)); 
allocates the storage to hold an array of 10 floating-point elements and assigns 
the pointer to this storage to fp. Note that the generic pointer returned by 
malloc has been coerced into float * before it is assigned to fp. 
void *calloc (size_t nobj, size_t size); 

The function calloc allocates the storage for an array of nobj objects, each 
of size size. It returns a pointer to the allocated storage and NULL if it is not 
possible to allocate the storage requested. The allocated storage is initialized to 
zeros. 

For example, if 

double *dp, da[10]; 
then 
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dp = (double *) calloc(10, sizeof(double)); 
allocates the storage to hold an array of 10 double values and assigns the 
pointer to this storage to dp. 
void *realloc(void *p, size_t size); 

The function r e a 11 o c changes the size of the object pointed to by p to size. 
It returns a pointer to the new storage and NULL if it is not possible to resize the 
object, in which case the object (*p) remains unchanged. The new size may be 
larger or smaller than the original size. If the new size is larger, the original 
contents are preserved and the remaining space is uninitialized; if smaller, the 
contents are unchanged up to the new size. 

For example, if 

char *cp; 
cp = (char *) malloc(sizeof("computer")); 
strcpy(cp, "computer"); 

then cp points to an array of 9 characters containing the null-terminated string 
computer. The function call 

cp. = (char *) realloc(cp, sizeof("compute")); 
discards the trailing ' \ 0' and makes cp point to an array of 8 characters con-
taining the characters in computer, whereas the call 

cp = (char *) realloc(cp, sizeof("computerization")); 
makes cp point to an array of 16 characters, the first 9 of which contain the 
null-terminated string computer and the remaining 7 are uninitialized. 

The function realloc behaves like malloc for the specified size if p is a 
NULL pointer. 

void free(void *p) ; 

The function free deallocates the storage pointed to by p, where p is a 
pointer to the storage previously allocated by malloc, calloc, or realloc. If 
p is a null pointer, free does nothing. For example, the storage allocated 
through calling malloc, calloc, and realloc in the preceding examples can 
be deallocated by 

free(fp); 
free(dp) ; 
free(cp) ; 
The behavior of the functions realloc and free is undefined, if p does 

not match a pointer earlier returned by a call to malloc, calloc, or realloc, 
or if the storage has been deallocated by a call to realloc or free. 

7.8.3 Illustrative Examples 
We now give some example programs to illustrate the use of dynamic memory 
management. 
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E x a m p l e 1 
Write a program that allocates enough storage to hold a given string, copies the string 
into this storage, and then increases the storage to append an additional character at the 
end of the string. 

The desired program is as follows: 

•include <stdio.h> 
•include <string.h> 
•include <stdlib.h> 
•define STRING "quis custodiet ipsos custodes" 

int main(void) { 
char *cp; 

cp = (char *) malloc(sizeof(STRING)); 
if (!cp) { 

printf("no meraory\n"); 
return 1; 

} 

strcpy(cp, STRING); 

cp = (char *) realloc(cp, sizeof(STRING) + 1); 
if (!cp) { 

printf("no raemory\n"); 
return 1; 

} 

printf("%s\n", strcat (cp, "?")); 

free(cp); 

return 0; 

• E x a m p l e 2 
• Rewrite the matrix multiplication program given in Example 4 of Section 6.3, using 

the dynamic memory management functions to allocate the exact amount of storage 
needed for the matrices. 

The desired program is as follows: 

•include <stdio.h> 
•include <stdlib.h> 
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float *alloc(char *name, int rows, int cols); 
void readm(float *matrix, int rows, int cols); 
void writem(float *matrix, int rows, int cols); 
void multiply(float *matrixl, int rowsl, int colsl, 

float *matrix2, int cols2, 
float *product); 

int main(void) { 
float *matrixl, *matrix2, *product; 
int rowsl, colsl, rows2, cols2; 
for (;;) 

{ 
/* get the actual dimensions of the matrices */ 

printf("dimensions of matrixl?\n"); 
scanf("%d %d", &rowsl, Scolsl); 
printf("dimensions of matrix2?\n"); 
scanf("%d %d", &rows2, &cols2); 
if (colsl != rows2) { 

printf("columns in matrixl must " 
"equal rows in matrix2\n"); 

continue; 
} 

/ * allocate space for matrices * / 
matrixl = matrix2 = product = NULL; 
if ((matrixl = 

alloc("matrixl", rowsl, colsl)) && 
(matrix2 = 

alloc("matrix2", rows2, cols2)) && 
(product = 

alloc("product", rowsl, cols2))) 
break; 

else 
free(matrixl), free(matrix2), 
free(product); 

} 

/ * read the matrices * / 

printf("enter row-wise " 
"the elements of matrixl\n"); 

readm(matrixl, rowsl, colsl); 
printf("enter row-wise " 

"the elements of matrix2\n"); 
readm(matrix2, rows2, cols2); 
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/ * c o m p u t e t h e p r o d u c t m a t r i x * / 

multiply(matrixl, rowsl, colsl, 
matrix2, cols2, product); 

/ * pr int resul t s * / 

• printf("product matrix:\n"); 
writem(product, rowsl, cols2); 

free(matrixl), free(matrix2), free(product); 

return 0; 

} 

float *alloc(char *name, int rows, int cols) { 
float *matrix; 

matrix = 
(float *)calloc(rows, cols * sizeof (float)); 

if (Imatrix) 
printf ("%s is too big\n", name); 

return matrix; 
}. 

void readm(float *matrix, int rows, int cols) { 
float *last = matrix + rows * cols; 

while (matrix < last) 
scanf("%f", matrix++); 

} 

void multiply(float *matrixl, int rowsl, int colsl, 
float *matrix2, int cols2, 
float *product) 

{ 
int i, j, k; 
for (i = 0 ; i < rowsl; i++) 

for , (j = 0; j < cols2; j++) { 
for (k = 0, *product = 0; k < colsl; k++) 

/* p[i, j] += m l [ i , k ] * m2[k , j ] */ 

*product += matrixl[i * colsl + k] * 
matrix2[k * cols2 + j]; 

product++; 
} 
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void writem(float *matrix, int rows, int cols) { 
int i; 
for (i = 1; i <= rows*cols; i++) { 

printf("%f ", *matrix++); 
if (i % cols == 0) /* end of a row */ 

printf("\n");; 
} 

} 

This version of the matrix multiplication program relies on the fact that a 
multi-dimensional array in C is really a one-dimensional array, each of whose 
elements is an array. Multi-dimensional arrays are stored in such a way that the 
last subscript varies most rapidly. For example, the elements of a matrix 
declared as 

float m[3][2]; 
are stored as 

m[0][0], m[0][1], m[1][0], m[l][l], m[2][0], m[2][l] 
Therefore, the elements of a matrix of type T can be visited in row order by 
simply setting a pointer of type T to point to the first element of the matrix and 
then successively incrementing it. Similarly, if a matrix m has MAXCOLS col-
umns, then its element m [ i ] [ j ] can be accessed as 

m[i * MAXCOLS + j] 
With this background, the preceding program should be easy to follow. 

The matrices matrixl, matrix2, and product have been defined to be 
pointers to float. Having obtained the exact dimensions of these matrices 
from the user, to allocate storage for, say matrixl, the program calls the func-
tion calloc to allocate rowsl number of objects, each of which is of size 
colsl * sizeof (float). If the matrices are too big to fit in available storage, 
any allocated storage is freed and the user is requested to provide new dimen-
sions. 

The function readm is provided the address of the first element of the 
matrix to be read. It starts with the first element and reads the rest of the ele-
ments in row order by successively incrementing the pointer provided to it. 
The function printm is similar. It also visits the matrix elements in row order 
and prints them, but it additionally checks for the end of a row and prints a 
new line after a complete row has been printed. 

The function multiply computes the elements of the product matrix in 
row order. To compute the element product [i] [ j ], it needs access to ele-
ments matrixl [i] [k] and matrix2 [k] [ j ]. These elements are accessed as 

matrixl[i * colsl + k] 
and 

matrix2[k * cols2 + j] 
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respectively, where c o l s l a n d c o l s 2 are the number of columns in mat r i x 1 
and matrix2 respectively. 

7.9 ILLUSTRATIVE EXAMPLES 
We now give two example programs to tie together the concepts introduced in 
this chapter. 

>m Example 1 
m Write a program for evaluating integer expressions specified in the postfix form. 

In the postfix form, also called the reverse Polish notation, each operator fol-
lows its operands, and parentheses are not needed. Thus, an infix expression 
like 

1 + (2 * 3) 

is written in the postfix form as 

12 3* + 
We assume that the integer expressions use only four binary operators: + , - , * , 
and /, and that the terms of these expressions are separated by whitespaces. 
Each expression is specified on a separate line. 

Expressions in the postfix form can be conveniently evaluated using a 
stack. A stack is an abstract data object that can be manipulated by adding ele-
ments to its top and removing elements from its top; it satisfies the property 
that the last element pushed onto the stack is the first element removed from the 
stack. In evaluating an expression using a stack, the expression is scanned from 
left to right. If the next term of the expression is an operand, it is pushed onto 
the stack; if it is an operator, an appropriate number of operands (two for 
binary operators) are popped from the top of the stack, the operator is applied to 
them, and the result is pushed back onto the stack. At the end of the successful 
evaluation of an expression, there is only one item left on the stack, which is the 
value of the expression. Thus, in the evaluation of the expression 

1 2 3 * + 

first the operands 1,2, and 3 are pushed onto the stack. On seeing *, 3 and 2 are 
popped from the top, they are multiplied, and the result 6 is pushed back onto 
the stack. Finally, on encountering +, 6 and 1 are popped, they are added, and 7 
is pushed back onto the stack, which is the value of the expression. 

The desired program is as follows, and consists of five files: 

1. g l o b a l . h: macro definitions and external declarations. 
2. main.c: main and functions to evaluate and print the result of an 

expression. 
3. i o . c: functions to read and parse expressions. 
4. s t a c k . c: functions to manipulate the stack. 
5. e r r . c: functions to print error messages. 
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/********************* global.h a*******************/ 

•include <stdio.h> 

/* error codes */ 

•define STACKFULL 1 
•define STACKEMPTY 2 
•define LONGEXP 3 
•define ILLFORMEXP 4 
•define ILLEGALOP 5 
•define ZERODIVIDE 6 

/* status codes */ 

•define NOMORE 0 
•define OK 1 
•define ERR 2 
•define OPERATOR 1 
•define OPERAND 2 

/* i/o functions */ 

iint readexp (void) ; 
void printexp(void); 

int next(int *operator, int ^operand); 

/* stack functions */ 
void clearstack(void), push (int), printstack(void); 
int pop(void), stacksize(void); 

/* error function */ 

void perror(void); 

/* global variable */ 

extern int error; 

/********************** ma in.c *********************/ 

•include "global.h" 

static void evalterm(int operator); 
static void evalexp(void); 
static void result(void); 
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int main(void) { 
int status; 

/ * read expressions one at a time and evaluate them * / 
while ( (status = readexpO) != NOMORE) { 

clearstack () ; /* initialize stack */ 

if (status == ERR)/* error in reading the expression */ 
error = LONGEXP; 

else /* evaluate the expression */ 
evalexp(); 

result ( ) ; /* print result */ 
} 

return 0; 
} 

static void evalexp(void) { 

int what, operator, operand; 

error = 0; 

/ * obtain terms of the expression one at a time 
and do appropriate stack operations * / 

while((what = next(Soperator, Soperand)) != NOMORE) { 
if (what == OPERAND) 

push(operand); 
else /* OPERATOR */ 

evalterm(operator); 
if (error) return; 

1 
} 

static void evalterm(int operator) { 
int operandi, operand2; 

operand2 = pop(); 
if (error) return; 
operandi = pop(); 
if (error) return; 
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switch (operator) { 
case '+': 

push(operandi + operand2); 
break; 

case '*' : 
push(operandi * operand2); 
break; 

case '-': 
push(operandi - operand2); 
break; 

case '/' : 
if (operand2 != 0) 

push(operandi / operand2); 
else 

error = ZERODIVIDE; 
break; 

default: 
error = ILLEGALOP; 
break; 

} 
} 

static void result(void) { 
/* only the result should have been left on the stack */ 
if (stacksize() > 1 && lerror) error = ILLFORMEXP; 

if (error) { 
perror() ; /* print error message */ 
printexpO; /* print expression */ 
printstack () ; /* print stack contents */ 

} 
else 

printf ("%d\n", popO); /* print result */ 
} 

/*********************** io.c **********************/ 

•include "global.h" 

•define BUFSIZE 80 

void skip(void); 

char buf[BUFSIZ]; 
int bp; /* position in buf while parsing an expression */ 

/* set to 0 in readexp after reading an expression */ 
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int readexp(void) { 
int c, i; 

for(i = 0; i < BUFSIZE ; i++) { 
if (c = getchar (), c != EOF && c != '\n') 

buf[i] = c; 
else /* reached the end of the expression */ 

{ 
buf[i] = ' \0' ; /* null terminate the expression */ 
bp = 0 ;/*set bp to the start of the expression */ 
return c == EOF ? NOMORE : OK; 

} 
} 

/* expression cannot fit in buf */ 

buf [BUFSIZE-1 ] = ' \ 0 ' ; / * n u l l terminate whatever is in buf*/ 

/* discard the rest of the expression */ 
while(c = getchar(), c != EOF && c != '\n'); 

return ERR; 
} 

void printexp(void) 

printf("expression: %s\n", buf) ; 
} 

int next (int *operator, int *operand) { 
/* skip over whitespaces */ 
while (buf [bp] == ' ' || buf'[bp] == '\t') bp++; 

if (buf[bp] == '\0' ) 
return NOMORE; 

else if. (buf[bp] >= '0' && buf[bp] <= '9') { 
/* determine the integer value of the operand */ 
for(*operand = 0; 

buf[bp] >= '0' && buf[bp] <= '9'; bp++) 
*operand = 10 * (*operand) + 

(buf[bp] - '0'); 
return OPERAND; 

} 
else 
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{ 
*operator = buf[bp++]; 
return OPERATOR; 

} 
} 

/********************* stack.c *********************/ 

•include "global.h" 
•define STACKSIZE 80 

int stack[STACKSIZE]; 
int *sp = stack; /* pointer to the current top of the stack */ 

static int stackfull(void), stackempty(void); 

void clearstack(void) { 
sp - stack; 

} 

void push(int n) { 
error = 0; 

if (stackfull() ) 
error = STACKFULL; 

else 
/* put n on the stack and increment sp */ 
*sp++ = n; 

} 

int pop(void) { 
error = 0; 

if (stackempty()) { 
error = STACKEMPTY; 
return 0; 

} 
else 

/* decrement sp and return what it is pointing to */ 
return *--sp; 

} 
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iht stacksize(void) { 
return sp - stack; 

} 

void printstack(void) { 
int i = stacksize(); 
printf("stack: "); 
while (i) printf ("%d stack [— i] ) ; 
printf("\n"); 

} 

static int stackfull(void) 
{ 
return sp >= stack + STACKSIZE ? 1 : 0; 

} 

static int stackempty(void) { 
return sp == stack ? 1 : 0; 

} 

y********************** err.c **********************/ 
•include "global.h" 
int error = 0; 

static char *errmsgs[] = { 
"not an error", 
"no space on stack", 
"nothing to pop from stack", 
"too long an expression", 
"ill-formed expression", 
"illegal operator", 
"division by zero" 

} ; 

void perror(void) 
{ 
printf("%s\n", errmsgs[error]); 

} 
The function readexp reads an expression into the buffer buf. The func-

tion next parses this expression and returns either an operand or an operator 
until the expression is exhausted. The string representation of the operand is 
converted into its integer form before it is returned to the calling function. 

The stack has been implemented as an integer array. Observe how the cor-
respondence between arrays and pointers allows stack manipulation functions 
to be written very succinctly. In studying these functions, bear in mind that the 
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pointer to the top of the stack, sp, points to the position where the next oper-
and pushed onto the stack will be added, and not the position of the operand 
currently on top. Observe further that since the internal representation of the 
stack is unavailable to any function outside the file stack. c, its representation 
can be changed without a change being required in other source files. 

An interesting aspect of this program is the way it handles errors. Instead 
of sprinkling error messages all over the program, the global variable error is 
set to the appropriate error code whenever an error occurs. Error messages are 
kept in the pointer array, errmsgs, and by calling the function perror that 
uses error to index into the errmsgs array, a message describing the last 
error is printed. 

Example 2 
Generalize the bubble sort program given in Example 2 of Section 7.3.2 so that it can 
sort input in descending order either numerically or lexicographically. 

In a numerical sort, the relative ordering of data items depends on their 
numerical values. In a lexicographical sort, data items are compared character 
by character and the relative ordering of characters in the first position where 
the two data items differ determines their relative ordering. For example, 10 
precedes 9 in a numerical sort in descending order, whereas 9 precedes 10 in a 
lexicographical sort. 

We assume that, by default, the input is to be sorted numerically and that 
the lexicographical sort is indicated by the command line option -1 . A line of 
input contains only one data item and the data items are integer quantities for a 
numerical sort. 

The generalized sorting program is as follows, and consists of four files: 

1. global. h: macros and external declarations. 
2. main. c: main and functions for comparing the two given strings 

lexicographically and numerically. 
3. io. c: functions for reading input data and printing sorted output. 
4. bsort. c: the generalized bubble sort function. 

/********************* global.h ********************/ 

•include <stdio.h> 
•include <stdlib.h> 
•include <string.h> 
•define MAXLINES 1000 
•define MAXLEN 80 
int getdata(char **data, int maxlines); 
void printdata(char **data, int lines); 
void bsort(char **data, int last, 

int (*compare)(char *, char *)); 
int lexcmp(char *stringl, char *string2); 
int intcmp(char *stringl, char *string2); 
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/********************** main.c *********************/ 
•include "global.h" 

char *data [MAXLINES ] ; /* pointer array to hold data lines */ 

int main(int argc, char **argv) { 
int numeric = 1; /* numerical sort by default */ 
int lines; /* the number of data lines in input */ 

if (argc > 1)/* -1 option specified? */ 
if (lexcmp(*(argv+1), "-1") ==0) 

numeric = 0; 
else { 

printf("usage: %s [-l]\n", *argv); 
return 1; 

} 

/* read data */ 
lines = getdata(data, MAXLINES); 
if (lines > 0) { 

/* sort data and print result */ 
bsort(data, lines, numeric ? intcmp : lexcmp); 
printdata(data, lines); 
return 0; 

} 
else if (lines == 0) { 

printf("no data\n"); 
return 1; 

} 
else { 

printf("too much data\n"); 
return 1; 

} 
} 

/* returns -1 if si < s2, 0 if si = s2, and 1 if si > s2 */ 
int intcmp(char *sl, char *s2) { 

int i = atoi(sl), j = atoi(s2); 
return i > j ? l : i < j ? - l : 0 ; 
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/* returns < 0 if si < s2, 0 if si = s2, and > 0 if si > s2 */ 
int lexcmp(char *sl, .char *s2) { 

for ( •; *sl == *s2; sl++, s2++) 
if (*sl == '\0') return 0; 

return *sl - *s2; 
} 

/*********************** io.c **********************/ 

•include "global.h" 

/* 
* reads a data line into buf, discarding what cannot fit in buf. 
* returns 0 on end-of-file and 1 + line-length otherwise. 
* / 

static int readline(char *buf, int maxlen) { 
int c, len = 0; 
char *bufp = buf; 
while (c = getchar(), c != '\n' && c != EOF) 

if (len++ < maxlen && c != '\n' && c != EOF) 
*bufp++ = c; 

*bufp = '\0'; /* null terminate each line */ 

return c == EOF && !len ? 0 : bufp - buf + 1; 
} 

/ * -

* saves input in a pointer array data, 
* with each element of the array pointing to a data line. 
* returns the number of data lines in input and -1 if 
* the input is too large. 
* / 

int getdata(char **data, int maxlines) { 
int lines = 0, len; 
char buf[MAXLEN+1]; 
/* first read a dataline into buf to determine its size, and 

then get the necessary storage */ 
while (len = readline(buf, MAXLEN)) { 

if (lines++ >= maxlines || 
!(*data = (char *) malloc(len))) 

return -1; 
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/* copy contents of buf into storage just allocated */ 
strcpy(*data++, buf); 

} 
return lines;. 

} 

/ * 
* print sorted data 
*/ 

void printdata(char **data, int lines) { 
int i; 
for (i = 0; i < lines; i++) 

printf("%s\n", *data++); 
} 

/********************* bsort.c *********************/ 
void bsort(char **data, int last, 

int (*compare) (char *, char *) ) 
{ 

int i, not_done; 
do { 

not_done = 0; 
/* scan and interchange as needed */ 

for (i = 1 ; i < last; i++) 
if ((*compare)(data[i-1], data[i]) < 0) { 

char *p; 
/* out-of-order data; interchange pointers */ 
p = data[i-1]; 
data [i-1] = data[i]; 
data[i] = p; 

not_done++; 

} 

/ * do not scan the last data item in the next iteration * / 

last--; 

} while (not_done); 
} 



EXERCISES 7 271 

The function bsort, defined as 

void bsort(char **data, int last, 
int (*compare)(char *, char *)); 

now takes an additional argument compare which is a pointer to the function 
that is used for comparing two data items in the scan and interchange loop. 
The file main.c defines two functions, intcmp and lexcmp, that perform 
numerical and lexicographical comparisons of two strings respectively. 
Depending upon the command line argument, main supplies a pointer to one 
of these two functions when calling bsort as follows: 

bsort(data, lines, numeric ? intcmp : lexcmp); 
The input data is maintained in a pointer array data. Each element of this 

array points to a data line. The function getdata calls readline to read one 
line of the input, and then invokes malloc to allocate the exact amount of stor-
age required for this line. This dynamic allocation can result in considerable 
saving in storage, if there is large variance in the length of input lines. The use 
of the pointer array also simplifies the exchange step in bsort. The two data 
lines that are not in order are interchanged by simply exchanging the pointers 
and not the data lines themselves, as shown below: 

Exercises 7 
1. Given that 

char c, *p, s [ 10] ; 
what, if anything, is wrong with the following expressions? 

a. c = s b. c = *s 

c. * s = c d. p = s 
e. s = p /. p = c 
g. p = &c h. p = s [0] 
i. c = p j. c = *p 
k. c = &p I. ++s, 

2. Hand-simulate the execution of the following programs: 
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a. tinclude <stdio.h> 
char c[] = "hacker"; 
int main(void) { 

char *cp; 
int i; 

for (cp = &c[5]; cp >= &c[0]; ) 
printf("%c", *cp—); 

printf("\n"); 

for (cp = c+5, i = 0; cp-i >= c; ) 
printf("%c", *(—cp - i++)); 

printf("\n"); 

for (cp = &c[5], i = 0; i <= 5; i++) 
printf("%c", cp[-i]); 

printf("\n"); 
for (cp = c+5; cp >= c; cp—) 

printf("%c", c[cp-c]); 
printf("\n"); 
return 0; 

} 
b. #include <stdio.h> 

char *w[] = {"wee", "willie", "winkie"}; 
char **wp = w; 

int main(void) { 
printf ("%s ", *(wp+2)); 
printf("%s ", *++wp); 
printf("%s ", *wp++ + 3); 
printf("%s ", wp[-2]); 
printf("%c ", * (wp[-l]+2)); 
printf("\n"); 
return 0; 

} 
C. #include <stdio.h> 

float f[] = {0, 1, 2, 3}; 
float *fp[] = {f+3, f+2, f+1, f}; 
float **fpp = fp+3; 

int main(void) { 
printf("%f %f %f\n", *f, **fp, **fpp); 
printf("%d %d %d\n", *fp-f, fpp-fp, *fpp-f); 
printf("%f\n", **fpp—); 
printf("%f\n", ** (--fpp - 1)); 
printf("%f\n", **fpp++); 
printf("%d %d %d\n", *fp-f, fpp-fp, *fpp-f); 
return 0; 

} 
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3. Write a function that converts a given string to its floating-point equivalent. 

4. Write a function that appends a string to a given string. In the resultant string, any 
lowercase character in the original string needs to be converted into uppercase, and 
any uppercase character in the addend into lowercase. 

5. Write a function that replaces the first occurrence of a given substring in a source 
string by the specified substitution string. 

6. Write a program that copies its input to output, except that it removes trailing 
blanks and tabs from the end of lines and prints only one line from each group of 
adjacent identical lines. 

7. A common mistake in typing is that the same word is typed more than once. Write a 
program that finds such double words and the line numbers on which they occur in 
input. A sentence may span more than one line, and there may be more than one 
sentence on one line. 

8. Write a program that prints only those lines in its input that contain its argument. 

9. Write a program that prints the user-specified last n lines of its input. If n is more 
than the number of lines in the input, all the lines should be printed. If n is not spec-
ified, a default number of lines, say 10, should be printed. 

10. The binary search function bsearch, given in Section 7.7, assumes that the data to 
be searched is arranged in descending order. Generalize bsearch so that it can 
search data arranged either in descending or ascending order by accepting an addi-
tional argument which is a pointer to the appropriate comparison function. Use this 
function in the program given in Section 7.7. 

11. A concordance is an alphabetical list of all the words in a text along with the number 
of occurrences of each word. Write a program that makes a concordance from an 
input text. 

12. The encoding and decoding of messages is called cryptography, the original, message 
being referred to as the plain text and the encoded message as the cipher text. The 
substitution method of encoding replaces each letter of the plain text by its substitute, 
but retains the order of the characters in the message. Here is a substitution cipher: 

letter: A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z 
substitute: Q W E R T Y U I O P A S D F G H J K L Z X C V B N M 

and an example of a plain text and its cipher text: 
plain text: PURPLE CHEESE ON GREEN MOON 

cipher text: HXKHST EITTLT GF UKTTF DGGF 

Write a program that takes as input either a plain text or a cipher text and encodes 
or decodes it using the above substitution cipher. 

13. The Morse code is a standard encoding scheme used in telegraphy that employs sub-
stitutions similar to the scheme described in the previous example. The substitu-
tions used in this case are shown below: 

A - K - - U - . - -
B - . . L - . V - - . . 
C - . - M - - - W . - - -
D N . - - X . . - -
E 0 - - . Y . . . -
F . . - P . - . Z . . . . 
G - - . Q . . . 1 . . . . 
H R - 2 - . . . 
I S . . - 3 - - . . 
J . - - T . . . 4 - - - . 
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5 - . - 7 . - - 9 - - - - . 
6 . - . . 8 - . . - 0 : . 

Write a program that accepts aS input a message in plain text or in Morse code and 
encodes or decodes it using the preceding substitutions. 

14. The transposition method of encoding scrambles the characters of a message 
according to some rule. One such method is to write the plain text in a matrix row-
wise and then read the matrix column-wise to obtain the cipher text. For example, 
the cipher text of the message 

"o P E R A 
I O N D 
s E R T 
H I E L D 

is 

OISHPOEIENRER T L A D DTES 

The cipher text now depends on the size of the matrix that is used for the transpo-
sition. For example, using a 2 x 12 matrix, the cipher text of the same message is 

OSPEERRTA TSIHOINE LDDE 

The two dimensions of the matrix can be thought of as the key that is necessary to 
decode the cipher text. Write a program that accepts the key in the command l ine, 
and uses it to encode or decode the given input text. 

15. For large values of n, its factorial may not fit in a single integer. For example, 

25! = 15,511,210,043,330,985,984,000,000. 

One way to compute the factorial of such a number is to use an array to store the 
answer and partial results, using one element of the array per digit. Thus, you 
would store 12! = 479,001,600 as 

8 7 6 5 4 3 2 1 0 

4 7 9 0 0 1 6 0 0 

To find 13!, multiply each element of the array by 13, taking care to move the 
carries, to get 

9 8 7 6 5 4 3 2 1 0 

6 2 2 7 0 .2 0 8 0 0 

Write a program to compute factorials of large numbers using this scheme. 

16. You have been called upon to write a matchmaking program for a dating bureau. 
The bureau's questionnaire has fifteen statements, and applicants indicate their 
degree of agreement on a scale of 1 to 5. Responses of the applicants have been 
recorded such that each data line contains an applicant's name (up to 25 characters), 
sex (F or M), and the responses to the questionnaire (15 integers). Your program 
should match each person with the three most compatible persons of the opposite 
sex. 

The measure of compatibility of two persons is the cosine of the angle 
between their response vectors; the larger the cosine, the more compatible the 
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couple. The cosine of the angle between the vectors (x\, x2,..., x„) and 
(1/1, y2, • •yn) is given by uxv, + u2v2 + •.. + u„v„, where 

Uj = x/(x$ + x2 + ... + xlj^ 

andvi = yi/(yl + y22+... + y2„)V2. 
17. The program of the previous problem has a feature that would not be acceptable to a 

real dating service. If one person is particularly compatible, he or she will receive 
the names of three matches, but may be listed as a good match on many people's 
list. The whole thing could get out of hand with almost everybody trying to date a 
few highly compatible persons. Redo the previous problem so that no one person is 
listed for more than five other people. Print all the matches a person is involved in, 
not just the three optimal matches as before. Now another problem arises — some 
applicants may not find any match. Print a polite apology to them. 

18. Write a program that allows two users to play tic-tac-toe. The program should ask 
for moves alternately from player X and player O. The program displays the game 
positions as 

12 3 
4 5 6 
7 8 9 

The players enter their moves by providing the position number. After each move, 
the program displays the changed board. A sample board configuration is 

X X O 
O X 6 
7 X O 

Enhance the preceding program so that the computer may optionally be one of the 
two players. 

19. The game of Life takes place on a two-dimensional array of cells, each of which may 
contain an organism. Let occ(i) be the number of cells adjacent to cell i that are occu-
pied by an organism. The configuration of a new generation of organisms is ob-
tained from the previous generation by applying the following rules: 

i. An organism in cell i survives to the next generation if 2 < occ(i) < 3; otherwise, it 
dies. 

ii. An organism is b o m in an empty cell i if 2 < occ(f) < 3; otherwise, it remains 
empty. 

Write a program that reads an initial configuration of occupied cells and prints a 
series of generations. Note that the program must maintain two copies of the con-
figuration, since all changes occur simultaneously. 

20. A traveling salesman must stop in five cities, Ci, C2, • • •, C5. The distance d.y between 
each pair of cities C, and C; is given in a 5 x 5 matrix. Write a program that finds for 
the salesman a route from C, to C ; that passes through all the three other cities and 
requires the least total distance among all such routes. 



8 S — and Unions 

In Chapter 6 we introduced arrays that provide the facility for grouping 
related data items of the same type into a single object. However, at times we 

need to group related data items of different types. An example is the inventory 
record of a stock item that groups together its item number, price, quantity 
currently in stock, economic order quantity, and reorder level. In order' to 
handle such situations, C provides a facility, called structures, that allows a 
fixed number of data items, possibly of different types, to be treated as a single 
object. 

Often it is useful to have a single structure that has several variants. Such a 
structure ordinarily has one or more components that are common to all vari-
ants. In addition, each variant has several other components with names and 
data types that are unique to that variant. For example, a stock item may be 
imported or domestic, and some common and some different information may 
have to be included in the inventory record for the two types. For such situa-
tions, C provides a facility, called unions, that allows a number of different 
types of grouped data items to be referred to using the same name. 

We introduce in this chapter the techniques for defining and using struc-
tures and unions. 

8.1 BASICS OF STRUCTURES 
A structure is a collection of logically related data items grouped together under 
a single name, called a structure tag. The data items that make up a structure are 
called its members, components, or fields, and can be of different types. The gen-
eral format for defining a structure is 

struct tag { 
variable declarations 

} ; 

where struct is a key word that introduces a structure definition, tag is the 
name of the structure, and variable declarations is the set of type declarations for 
the member data items that make up the structure. 

For example, the structure for the inventory record of a stock item may be 
defined as 
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struct item { 
int itemno; 
float price; 
float quantity; 
float eoq; 
int reorderlevel;. 

} ; 

All the members of a structure can be of the same type, as in the following 
definition of the structure date: 

struct date { 
int day, month, year; 

} ; 

The name of a member variable in a structure can be the same as its tag 
since they can be differentiated by context. Similarly, the name of a member 
variable or a structure tag can be the same as that of some non-member vari-
able, and two member variables in different structures can have the same 
name. Thus, given the preceding definitions of the structures item and date, 
the following are permissible: 

int .itemno; /* no conflict with itemno in the structure item */ 
struct day /* no conflict with day in the structure date */ { 

int day; /* no conflict with the tag day */ 
int year;/* no conflict with year in the structure date */ 

} 

8.1.1 Structure Variables 
A structure definition defines a new type, and variables of this type can be 
declared by including a list of variable names between the right brace and the 
terminating semicolon in the structure definition. For example, the declaration 

struct date { 
int day, month, year; 

} order_date, arrival_date; 
declares order_date and arrival_date to be variables of type struct 
date. 

The structure tag can be thought of as the name of the type introduced by 
the structure definition, and variables can also be declared to be of a particular 
structure type by a declaration of the form: 

struct tag variable-list; 

For example, the declarations 
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struct item m68020; 
struct item intel386; 

or the single declaration 

struct item m68020, intel386; 
declares m68 020 and intel386 to be variables of type struct item. 

The structure tag may be omitted if all the variables of a particular struc-
ture type have been declared when the structure is defined. Thus, the declara-
tion 

struct { 
float r, theta; 

} polarl, polar2; 
declares polarl and polar2 to be structure variables of the same type whose 
member variables are the two floating-point variables, r and theta. However, 
in such a case, we cannot subsequently declare another variable polar 3 whose 
type is the same as that of polarl and polar2. 

Each occurrence of a structure definition introduces a new structure type 
that is neither the same nor equivalent to any other type. Thus, given that 

struct { char c; int i; } u; 
struct { char c; int i; } v; 
struct si { char c; int i; } w; 
struct s2 { char c; int i; } x; 
struct s2 y; 

the types of u, v, w, and x are all different, but the types of x and y are the same. 
Note that a structure definition does not allocate any storage; it merely 

describes a template or the shape of the structure. Storage is allocated only 
when a variable of the corresponding type is declared. 

8.1.2 Structure Initialization 
A variable of a particular structure type can be initialized by following its defi-
nition with an initializer for the corresponding structure type. If a structure 
type T has n member variables of types 7\, T2,..., Tn and Ii is an initializer for 
the type T„ then {Ii, h,. •., In) is an initializer for the type T. 

Thus, the declaration 

struct date { 
int day, month, year; 

} independence = {15, 8, 1947}; 
initializes the member variables day, month, and year of the structure vari-
able independence to 15, 8, and 194 7 respectively, and the declaration 

struct date republic = {26, 1, 1950}; 
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initializes the member variables day, month, and year of the structure vari-
able republic to 26,1, and 1950 respectively. 

If there are fewer initializers than there are member variables in the struc-
ture, the remaining member variables are initialized to zero. Thus, the initial-
ization 

struct date newyear = {1, 1}; 
is the same as 

struct date newyear = {1, 1, 0}; 
It is an error to provide more initializers than the number of member vari-

ables. 

8.1.3 Accessing Structure Members 
C provides a special operator, the structure member or dot operator, to access the 
individual members of a structure variable by a construction of the form 

structure-variable. member-name 

Thus, the statements 

struct date man_on_moon; 
man_on_moon.day = 20; 
,man_on_moon.month = 7; 
man_on_moon.year =1969; 

set the values of the member variables day, month, and year within the vari-
able man_on_moon to 20, 7, and 1969 respectively, and the statement 

struct date today; 

if (today.day == 25 && today.month == 12) 
printf("merry Christmas"); 

tests the values of day and month to check if they are 25 and 12 respectively, 
and if so, prints merry Christmas. 

The dot operator has the same precedence as that of the function call oper-
ator () , the array subscript operator [] , and the arrow operator -> (to 
be discussed shortly), but higher than that of any other C operator, and is left-
associative. 

8.1.4 Structure Assignment 
A structure variable may be assigned to another structure variable of the same 
type. Thus, given that 

struct date american, revolution = {4, 7, 1776}; 
the assignment 
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american = revolution; 
assigns 4 to american. day, 7 to american .month, and 177 6 to ameri-
can. year. 

The following program summarizes the definition, initialization, assign-
ment, and access of structures: 

•include <stdio.h>. 

/* define a structure type struct launchdate */ 
/* declare satellite to be a variable of this type */ 
struct launchdate {int day, month, year;} satellite; 

int main(void) { 
/* declare sputnik2 to be of type struct launchdate 

and initialize it */ 
struct launchdate sputnik2 = {3, 11, 1957}; 

/* assign sputnik2 to satellite */ 
satellite = sputnik2; 

/* access members of satellite */ 
printf("Laika went orbiting on %d-%d-%d\n", 

satellite.month, satellite.day, satellite.year); 

return 0; 
} 

8.1.5 Size of a Structure 
The size of a structure can be determined using the sizeof operator discussed 
in Section 7.8.1. For example, given the declaration 

struct porous { 
char c; 
long 1; 

} ; 

the statement 

i = sizeof(porous); 
assigns to i the size of the structure porous in bytes. 

The size of a structure need not be the same as the sum of the sizes of its 
members; there may be holes in structures due to the alignment requirements 
for different objects. For example, on most machines, the size of porous is 
likely to be 8, rather than 5. 
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8.1.6 Nested Structures 
Structures can be nested. For example, the structures item and date may be 
embedded inside another structure that records the ordering date and the 
quantity of an item to be purchased as in 

struct order { 
struct item purchaseitem; 
struct date orderdate; 
float quantity; 

} ; 

Note that the member variable quantity in the structure order does not con-
flict with the member variable quantity in the structure item embedded in 
it. 

Another example of a nested structure is the definition of the following 
structure that contains two occurrences of the structure date: 

struct project { 
int number; 
struct date start; 
struct date finish; 
float budget; 

- } ; 

There is no limit on the depth of nesting. For example, we can have 

struct projects { 
struct date as__of; 
float revenue; 
struct project starbase; 
struct project hal; 

} ; 

However, a structure cannot be nested within itself. Thus, the following is 
illegal: 

struct company { 
struct projects government; 
struct projects industrial; 
struct company parent; /* illegal */ 

} ; 

Variables of a nested structure type can be defined as usual by either 
including them in the structure definition between the right brace and the ter-
minating semicolon or by separate declarations. They may also be initialized at 
the time of declaration. Thus, we can have 
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struct stockindex { 
float high, low, close; 
struct date weekending; 

} dowjones = 
{2520.79, 2381.19, 2520.79, {19, 10, 1990}}; 

The inner pair of braces is optional and certainly not necessary when all the 
initializers are present. Thus, we can have 

struct stockindex sp500 = 
(312.48, 296.41, 312.48, 19, 10, 1990}; 

Here is a somewhat more involved example: 

struct projects space = 

{013, {1, 1, 1999}, {1, 1, 2001}, 500} /* hal */ 
} ; 

A particular member inside a nested structure can be accessed by repeat-
edly applying the dot operator. Thus, the statement 

space.hal.budget = 200; 
resets the budget variable in the hal structure within space from 500 to 200; 
the statement 

printf("%d", space.starbase.start.year); 
prints 1999; and the statement 

struct date newdate.= {31, 12, 2001}; 
spaoe.hal.finish = newdate; 

resets the completion date for the hal project to December 31, 2001. 

8.1.7 Pointers to Structures 
A pointer to a structure identifies its address in memory, and is created in the 
same way that a pointer to a simple data type such as int or char is created. 
For example, the declaration 

{31, 12, 2000}, 
1 0 0 0 , 

/* as_of */ 
/* revenue */ 
/* starbase */ 

007, 
{1, 6, 1999}, 
{1, 6, 2001}, 
100 

/* number */ 
/* start */ 
/* finish */ 
/* budget */ 

struct date carnival, *mardigras; 
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declares carnival to be a variable of type struct date, and the variable 
mardigras to be a pointer to a struct date variable. The address operator & 
is applied to a structure variable to obtain its address. Thus, the assignment 

mardigras = scarnival; 
makes mardigras point to carnival. 

The pointer variable mardigras can now be used to access the member 
variables of carnival using the dot operator as 

(*mardigras).day 
(*mardigras).month 
(*mardigras).year 

The parentheses are necessary because the precedence of the dot operator ( . ) is 
higher than that of the dereferencing operator (*). In the absence of the paren-
theses, the preceding expressions are interpreted as 

*(mardigras.day) 
*(mardigras.month) 
*(mardigras.year) 

which is an error since none of the member variables of the structure date is a 
pointer. 

Pointers are so commonly used with structures that C provides a special 
operator ->, called the structure pointer or arrow operator, for accessing mem-
bers of a structure variable pointed to by a pointer. The general form for the use 
of the operator -> is 

pointer-name->member-name 

Thus, the preceding expressions for accessing member variables of the struc-
ture pointed to by mardigras, written using the dot operator/can equiva-
lently be written using the arrow operator as 

mardigras->day 
mardigras->month 
'mardigras->year 

The arrow operator obviously is not only more convenient, but also more sug-
gestive of the intended operation. 

It is permissible to take addresses of the member variables of a structure 
variable; that is, it is possible for a pointer to point into the middle of a struc-
ture. For example, the statement 

float *sales = .&space.revenue; 
defines sales to be a floating-point pointer and initializes it to point to the 
member variable revenue within the structure variable space. The pointer 
expression & space. revenue is interpreted as & (space. revenue) since the 
precedence of the dot operator is higher than that of the address operator. Sim-
ilarly, the statement 

int *year = &space.as_of.year; 
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makes year point to the integer member variable year within as_of within 
space, and the statement 

struct date *completion = &space.starbase.finish; 
makes completion point to the structure member finish within starbase 
within space. Therefore, the statement 

printf("year = %d sales = %f", *year, *sales); 
prints 

year = 2000 sales = 1000.000000 
whereas the statement 

printf("starbase completion day = %d", completion->day); 
prints 

starbase completion day = 1 
The arrow operator has the same precedence as the dot operator, and is 

left-associative. 
Pointers to structures improve execution speed; the larger the structure, the 

greater is the gain because transferring pointers from one part of the program 
to another is usually faster than copying all the individual components of a 
large structure. A major use of pointers to structures, as we shall see in the next 
section, is in the interaction of structures with functions. Pointers to structures 
also enable us to create sophisticated data structures such as linked lists and 
trees, which will be discussed in Section 8.4. 

The following program summarizes various aspects of nested structures 
and pointers to structures: 

•include <stdio.h> 
struct job { 

float rate; /* wage rate */ 
float hrs; /* hours worked */ 

} ; 

struct person { 
int ssn; 
struct job regular; 
struct job moonlighting; 

} ; 

int main(void) { 
/* hardy's ssn = 123456789, 

regular rate = 25, moonlighting rate = 20 */ 
struct person hardy = {123456789, {25}, {20}}; 
/* pointer to hardy's moonlighting job structure */ 
struct job *avantgarde = Shardy.moonlighting; 
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/* access members */ 
scanf("%f", shardy.regular.hrs) ; 
scanf("%f", &avantgarde->hrs) ; 
printf("earnings of %d = %f\n", hardy.ssn, 

hardy.regular.hrs * hardy.regular.rate + 
avantgarde->hrs * avantgarde->rate); 

return 0; 
} 

We could not have omitted the inner braces in the initialization of hardy in 

struct person hardy = {123456789, {25.}, {20}}; 
since the initializers for hardy. regular. hrs and hardy .moonlight-
ing . hrs have not been specified. 

8.2 STRUCTURES AND FUNCTIONS 
A structure type definition may be local to a function or it may be external to 
any function. Structures may be passed as function arguments and functions 
may return structures. We now discuss these features. 

8.2.1 Scope of a Structure Type Definition 
The scoping rules for a structure type definition are identical to those discussed 
for variable names in Chapter 5. A structure may be defined within a function 
or outside of any function; in the former case, it is called the local, and in the 
latter, the external structure definition. An external structure definition with a 
structure tag allows subsequent definition of external and local variables of 
that structure type, whereas a local structure definition permits only local vari-
ables of that structure type to be defined within the same block. The following 
program fragment illustrates these scoping rules: 
/* external structure definition */ 
struct rate {float fromdollar, todollar;}; 
/ * external structure variable * / 
struct rate yen = {.007868, 127.10}; 
void germany(void) { 

struct rate mark = {.6760, 1.4793};/* legal */ 
struct date 

{int day, month, yr;} /* local structure definition */ 
struct date on = 

{21, 11, 90}; /* local structure variable */ 

.printf("dollar = %f mark\n", 
mark. fromdollar) ; /* legal */ 

printf("on %d-%d-%d\n", 
on.month, on.day, on.yr); /* legal */ 
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void japan(void) { 
struct date today; /* illegal; the definition of 

date unavailable */ 

printf("dollar = %f yen\n", yen.fromdollar);/* legal */ 
} 

Structure definitions are usually collected in a header file. This file is then 
included in those modules that need these structure definitions. 

8.2.2 Structures as Function Arguments 
C provides three methods of passing structures to a function. The first method 
involves supplying structure members as the arguments in a function call. 
These arguments are then treated as separate non-structure values, unless they 
themselves are structures. 

To illustrate this method of passing structures, we write a function that 
determines if a point lies within a given circle by computing the distance of the 
point from the center of the circle and comparing this distance with the radius 
of the circle. The point is represented by its coordinates and the circle by its 
radius and the coordinates of its center: 

struct point " { 
float x, y; 

} ; 

struct circle { 
float r; /* radius */ 
struct point o; /* center */ 

} 

Recalling that the distance between two points (xc, yc) and (xp, yp) is given by 
((xc - Xp)2 + ((yc - yv)2)Vl, we can write the desired function as 

float sqr(float x) { 
return x * x; 

} 

int contains(float cr, float cx, float cy, 
float px, float py) 

{ 
return sqr(cx - px) + sqr(cy - py) 

> sqr(cr) ? 0 : 1; 
} 

The first three arguments correspond to the radius and the two coordinates of 
the center of the circle, and the last two correspond to the two coordi-
•n a foe r\-f- fVio r̂ ninf TViiic rr-ixron fViot 
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s t r u c t c i r c l e c = {2 , {1 , 1 } } ; 
s t r u c t point .p = {2 , 2 } ; 

the function c o n t a i n s can be called as 

c o n t a i n s ( c . r , c . o . x , c . o . y , p . x , p .y) 

and it will return 1 (true), since the distance of the point (2,2) from the center of 
the circle (1,1) is less than 2, the radius of the circle. 

The disadvantage of this method is that the relationship between the mem-
ber variables encapsulated in a structure is lost in the called function. This 
method should only be used if a few structure members need to be passed to 
the called function. 

The second method involves passing the complete structure to a function 
by simply providing the name of the structure variable as the argument in the 
function call. The corresponding parameter in the called function must be of 
the same structure type. Thus, using this method, the function c o n t a i n s can 
be written as 

i n t c o n t a i n s ( s t r u c t c i r c l e c , s t r u c t point p ) { 
re turn s q r ( c . o . x - p . x ) + s q r ( c . o . y - p .y ) 

> s q r ( c . r ) ? 0 : 1; 
} 

and called simply as 

c o n t a i n s ( c , p) 

Unlike array names, structure names are not pointers and are passed by 
value. Thus, when a structure name is provided as argument, the entire struc-
ture is copied to the called function, and changes to member variables of the 
structure argument in the called function are not reflected in the corresponding 
structure variable in the calling function. 

The third method involves passing pointers to the structure variables as 
the function arguments. Using this method, the function c o n t a i n s can be 
written as 

i n t c o n t a i n s ( s t r u c t c i r c l e * c , s t r u c t point *p) { 
re turn s q r ( c - > o . x - p - > x ) + s q r ( c - > o . y - p->y) 

> s q r ( c - > r ) ? 0 : 1; 
} 

and called as 

c o n t a i n s ( & c , &p) 

The arrow operator has been used inside c o n t a i n s to access member vari-
ables, since c and p are now pointers to structures. Note that when a called 
function is provided with the address of a structure variable supplied as argu-
ment, any change in the called function to the member variables accessed using 
this address will be reflected in the structure variable in the calling function. 

This method becomes particularly attractive when large structures have to 
be passed as function arguments because it avoids copying overhead. Another 
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reason for using this method is that some older compilers do not allow struc-
ture variables to be passed as function arguments. 

8.2.3 Structures as Function Values 
Structures may be returned as function values. Reconsider, for example, the 
problem of converting rectangular coordinates of a point into polar coordinates 
discussed in Example 2 of Section 5.6. We need a function 

struct polar convert(struct rectangular rec); 
that takes as argument a structure of the type 

struct rectangular { 
float x, y; 

} ; 

giving the rectangular coordinates of a point, and returns a structure of the 
type 

struct polar { 
float r, theta; 

} ; 

giving the polar coordinates of the point. Recalling that the polar coordinates 
(r,0) corresponding to the rectangular coordinates (x,y) of points other than the 
origin are given by 

r = (x2 + y2)Vl, tan0 = y/x, - j c < 9 < j r , 

this function can be written as 

•include <math.h> 

struct polar convert(struct rectangular rec) { 
struct polar pol; 

if (rec.x == 0 && rec.y ==0) /* origin */ 
pol.r = pol.theta = 0; 

else { 
pol.r = sqrt(rec.x * rec.x + rec.y * rec.y); 
pol.theta = atan2(rec.y, rec.x); 

} 

return pol; 
} 

Given this function, the program fragment 
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struct rectangular r = {2, In-
struct polar p; 
p = convert(r); 
printf("%f %f", p.r, p.theta); 

prints 
2.236068 0.463648 
Instead of returning a structure, a function may also return a pointer to the 

structure. Thus, the function convert can also be written as 
•include <math.h> 
•include <stdlib.h> 
struct polar *convert(struct rectangular rec) { 

struct polar *polp; 
polp = (struct polar *)malloc(sizeof(struct polar)); 
if polp { 

if (rec.x == 0 && rec.y == 0) 
polp->r = polp->theta = 0; 

else { 
polp->r = sqrt(rec.x*rec.x + rec.y*rec.y) ; 
polp->theta = atan2(rec.y, rec.x); 

} 
} 

return polp; 
} 

and used as 
struct rectangular r = {2, In-
struct polar *pp; 
if (pp = convert(r)) printf("%f %f", pp->r, pp->theta); 
The storage allocated by calling malloc, unlike the storage allocated to the 
automatic variables, is not automatically released when the function contain-
ing the call to malloc exits. Hence, when convert returns, the storage allo-
cated to the automatic pointer variable polp in convert is released, but the 
storage allocated to the structure that polp points to is not released. Since 
convert returns the pointer to this storage, this pointer can be used in the call-
ing function to access the member variables of this structure. 

Note that it is incorrect to write the preceding function as 

struct polar *convert(struct rectangular rec) { 

struct polar pol; 

return &pol; 
} 



290 CHAPTER 8 / STRUCTURES AND UNIONS 

since this function returns a pointer to an automatic variable, and once the 
function exits, the values accessed using this pointer are meaningless. 

8.2.4 Illustrative Example 
We now give an example program to further illustrate the relationship between 
structures and functions. 

Example 
• Write a set of functions to perform input, output, relational comparison, and arithmetic 

operations on complex numbers, and use these functions to determine if three given 
numbers form a Pythagorean triplet. 

We shall represent a complex number z = x + iy by a pair of real numbers, 
the first being the real part x and the second the real coefficient y of i in the 
imaginary part iy. The file complex.c implements the abstract data object 
complex, and the main function in main. c uses the functions defined in com-
plex. c to determine if the given three numbers form a Pythagorean triplet. 

Recall that the arithmetic operations on two complex numbers Z\ = (xi, y\) 
and Z2 = (x2,1/2) are defined as follows: 

zi + z2 = (xi + x2, y\ + yi) 
2! - z2 = (xi - x2, y\ - y2) 
zi x z2 = (Xi x x2 - y\ x y2, xi x y2 + x2 x y0 

zi/z2 = (Xi x x2 + 3/1 x y2, x2 x yi - xi x y2)/(x2 + y\) 

Only equality and inequality comparisons are defined on two complex num-
bers. Two complex numbers are equal if and only if the real and imaginary 
parts of one are equal to the corresponding real and imaginary parts of the 
other number Finally, three numbers form a Pythagorean triplet if the sum of 
the squares of two numbers equals the square of the third number. 

The desired program is as follows: 

/********************* global.h ********************/ 

•include <stdio.h> 
struct complex { 

float x, y; 
} ; 

struct complex 
add(struct complex u, struct complex v); 

struct complex 
subtract(struct complex u, struct complex v); 

struct complex 
multiply (struct complex u, struct complex v); 

struct complex 
divide(struct complex u, struct complex v); 
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int equal(struct complex u, struct complex v) ; 
void readc(struct complex *u) ; 
void writec(struct complex *u); 
/******************** complex, c ************•********/ 

•include "global.h" 

struct complex add(struct complex u, 
struct complex v) 

{ 
struct complex z; 

z.x = u.x + v.x; 
z.y = u. y + v.y; 
return z; 

} 

struct complex subtract(struct complex u, 
struct complex v) 

{ 
struct complex z; 
z . x = u . x - v . x ; 
z.y = u.y - v.y; 
return z; 

} 

struct complex multiply(struct complex u, 
struct complex v) 

{ 
struct complex z; 

z.x = u.x * v.x -
z.y = u.x * v.y + u.y * v.x; 
return z; 

} 

struct complex divide(struct complex u, 
struct complex v) 

{ 
v.x /= v.x * v.x + v.y * v.y; 
v.y /= -(v.x * v.x + v.y * v.y); 
return multiply(u, v); 

} 

int equal(struct complex u, struct complex v) { 
return u.x == v.x && u.y == v.y; 

} 
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void readc(struct complex *u) { 
scanf("%f %f", &u->x, &u->y); 

} 

void writec(struct complex *u) { 
printf("(%f, %f)", u->x, u->y); 

} 

/********************** main.c *********************/ 
•include "global.h" 
int triplet (struct complex zl, 

struct complex z2, struct complex z3) 
{ 
return 

equal(add(multiply(zl,zl), multiply(z2,z2)), 
-A multiply (z3, z3)) ; 
} 

int main(void) { 
struct complex zl, z2, z3; 

. int p; 
readc(&zl) ; 
readc(&z2) ; 
readc(&z3) ; 
p = triplet(zl,z2,z3) | | 

triplet (z2,z3,zl) || triplet(z3,zl,z2); 
printf("%s\n", p ? "yes" : "no"); 
return 0; 

} 

8.3 STRUCTURES AND ARRAYS 
Arrays and structures can be freely intermixed to create arrays of structures, 
structures containing arrays, or arrays of structures that themselves contain 
arrays. 

8.3.1 Arrays of Structures 
Arrays of structures are commonly used when a large number of similar 
records are required to be processed together. For example, if there were 1000 
items used in a motor, this data can be organized in an array of structures as 
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struct item motor[1000]; 
This statement declares motor to be an array containing 1000 elements of 

the type struct item. 
Arrays of structures can be initialized in a manner similar to the initializa-

tion of multidimensional arrays as in 

struct date birthdays[3] = { 
[14, 3, 1879], /* Einstein */ 
{0 , 10} /* Gandhi */ 

} ; 

or equivalently as 

struct date birthdays[3] = { 
{14, 3, 1879}, 
{0 , 10, 0 } , 
{0 , 0, 0} 

>; 

The inner pair of braces is optional and can be omitted when all the initializers 
are present, as in 

struct date atombomb[2] = - { 
6, 8, 1945, /* hiroshima */ 
9, 8, 1945 /* nagasaki .*/ 

} ; 

A particular member variable inside an array of structures can be accessed 
using the array subscript and dot operators. Thus, the statement 

birthdays[1].day = 2; 
assigns 2 to the member variable day in the second structure element of the 
array birthdays, and the statement 

birthdays[2] = birthdays[0]; 
assigns the value of the first structure element to the third structure element of 
the array birthdays. 

Pointers can also be used to access structure elements and member vari-
ables thereof. Thus, the statement 

struct date *bday = Sbirthdays[1]; 
defines bday to be a pointer to a variable of type struct date and initializes 
it to point to the second structure element of birthdays . The preceding two 
assignments can then be written as 

bday->day = 2; 

*(bday + 1) = *(bday 1) ; 
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8.3.2 Structures Containing Arrays 
A structure may contain arrays as members. This feature is frequently used 
when a string needs to be included in a structure. For example, the structure 
date can be expanded to also include the names of the day of the week and the 
month as 

struct ndate 
{ 
int day; 
char weekday [10]; 
int month; 
char monthname[10]; 
int year; 

A structure variable of the type ndate can now be declared as 

struct ndate newcentury; 
and initialized at the same time as 

struct ndate newcentury = . „, 
{1 , { ' m ' , ' o ' , ' n ' , ' d ' , ' a ' , ' y ' , ' \ 0 ' } , 1 , 

{' j', ' a' , 'n', 'u', 'a','r',' y','\0' }, 2001}; 
or equivalently as 

struct ndate newcentury = {1, "monday", 1, "january", 2001}; 
An element of an array contained in a structure can be accessed using the 

dot and array subscript operators. Thus, the statement 

printf("%c", newcentury.monthname[2]); 
prints 

n 
Pointers can also be used to access elements of the array embedded in a struc-
ture. Thus, the statements 

int i; 
for (i = 0; newcentury.weekday[i]; i++) 

t 
printf("%d", i); 

or the statements 

char *cp = newcentury.weekday; 
while (*cp) cp++; 
printf("%d", cp - newcentury.weekday); 

print the number of characters in the name of the day of the week. 
When a structure containing an array is passed as an argument to a func-

tion, the member array is passed by value, even when it is the only member 
variable. Thus, given that 
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struct time { 
int val [3] ; 

} noon = {12, 0, 0}; 
and 

void advance(struct time tm) { 
int i; 

for (i = 0; i < 3; i++) tm.valfi] += 5; 
} 

the statements 

advance(noon); 
for (i = 0; i < 3; i++) printf("%d ", noon.val[i]); 

print 

12 0 0 

since the structure variable noon is passed by value and changes to the array 
member variable val inside advance are not reflected in the argument noon. 

8.3.3 Arrays of Structures Containing Arrays 
A natural corollary of the discussion so far is that we can define arrays of struc-
tures that contain arrays as member variables. Thus, we can have 

struct student { 
char name[10]; 
float height; 
int grades[4]; 

} students[3] = { 
{ "sleepy", 9, {1, 0, 0, 1} 
{ "happy", 7, {4, 3, 4, 4} }, 
{ "dopey", 8, {2, 2, 1, 1} } 

} ; 

Elements of the member arrays can be accessed as before using the array 
subscript and dot operators. Thus, the statement 

printf("%s %d", students[1].name, students[1].grades[1]); 
prints 

happy 3 
Pointers can also be used to access the elements of the member arrays. 

Thus, the preceding print f can also be written as 



296 CHAPTER 8 / STRUCTURES AND UNIONS 

struct student *sp = Sstudents[1]; 
printf("%s %d", sp->name, sp->grades[1]); 

or as 

printf("%s %d", sp->name, *(sp->grades + 1)); 

8.3.4 Illustrative Examples 
We now give some example programs to further illustrate the relationship 
between structures and arrays. 

• Example 1 
• Rewrite, using structures, the program given in Example 6 of Section 6.3 that deter-

mines the price of a given item from an item-price database. 

To illustrate arrays of structures containing arrays, we assume that associ-
ated with each item are five prices (presumably quoted by five different suppli-
ers), and the minimum of these prices for the given item needs to be retrieved. 
We keep the item number and the associated prices of an item in a structure 
and organize the database as an array of these structures. 

The desired program is as follows: 

•include <stdio.h> 
•define ITEMS 1000 
•define PRICES 5 

struct iteminfo { 
int item; 
float price[PRICES]; 

} ; 

void bld_database(struct iteminfo *db, 
int items, float prices); 

struct iteminfo *bsearch(int val, 
struct iteminfo *db, int length); 

float min_price(struct iteminfo *ip, int prices); 

int main(void) { 
struct iteminfo database[ITEMS], *ip; 
int item_no; 

/* build the item-price database */ 
bid database(database, ITEMS, PRICES); 
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/* get item_no of the item whose price is to be found */ 
scanf("%d", &item_no); 
/* binary search */ 
ip = bsearch(item_no, database, ITEMS); 
/* output */ 
if (ip) 

printf("price of %d = %f\n", 
item_no, min_price(ip, PRICES)); 

else 
printf("%d not in the database", item_no); 

return 0; 
} 

void bld_database(struct iteminfo *database, 
int items, float prices) 

{ 
int i, j; 
for (i = 0; i < items; i++) { 

scanf("%d", Sdatabase[i].item); 
for (j = 0 ; j < prices; j++) 

scanf("%f", sdatabase[i].price[j]); 
} 

} 

struct iteminfo *bsearch(int val, 
struct iteminfo *database, int len) 

{ 
int first = 0, last = len-1, mid; 
while (first <= last) { 

mid = (first + last) / 2; 
if (val == database[mid].item) 

/* search succeeds */ 
return Sdatabase[mid]; 

else if (val > database[mid].item) 
/* search lower half */ 

last = mid - 1; 
else 

/ * search upper half * / 
first = mid +'1; 

} 
return NULL; 

} 
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float min_price(struct iteminfo *ip, int' prices) { 
float min = ip->price[0]; 
int j; 

for (j = 1; j < prices; j++) 
if (min > ip->price[j]) min = ip->price[j]; 

return min; 
} 

Instead of returning the array subscript at which the given item_no is 
found, this version of bsearch returns a pointer to the structure containing 
the desired item number and the associated prices. The price array in this 
structure is then scanned to determine the minimum price. 

• Example 2 
• Write a program to plot the curve y = x2 for-1 <x < 1. 

To print a two-dimensional picture on a character-oriented ordinary 
printer, we conceptually lay a grid over the picture and let each grid square 
correspond to a character position on the printed page, A suitable symbol is 
then printed for each grid square. The print grid may be represented by a char-
acter matrix, initially filled with blanks. Non-blank symbols are then stored in 
those' matrix elements that correspond to dark spots in the picture. 

A point (X, Y) in the picture plane can be converted into the matrix sub-
scripts (I, J) by the conversion formulas: 

I = (X - XMIN) * WIDTH / (XMAX - XMIN) 
J = (Y - YMIN) * HEIGHT / (YMAX - YMIN) 

where the matrix dimensions are WIDTH x HEIGHT, the left and right bound-
aries of the picture are XMIN and XMAX, and the bottom and top boundaries 
are YMIN and YMAX. 

The desired program is as follows: 

•include <stdio.h> 
•include <stdlib. . h> 
•define HEIGHT 15 
•define WIDTH 25 
•define XMIN -1 
•define XMAX 1 
•define XINCR 0.05 
•define YMIN 0 
•define YMAX 1 
•define SYMBOL ' + ' 

struct point { 
float x, y; 

} ; 
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sttuct grid { 
char *matrix; 
int ht, wid; 

In-
struct plotdata 

{ 
struct grid frame; 
struct { float min, max; } x, y; 
char symbol; } ; 

char *create(struct grid *frame); 
void paint(struct plotdata *p, struct point pt); 
void print(struct grid *frame); 
int main(void) { 

struct plotdata plot = { 
NULL, HEIGHT, WIDTH, 
XMIN, XMAX, YMIN, YMAX, 
SYMBOL 

} ; 
struct point pt; 
/* create and initialize the matrix */ 
if (!create(splot.frame)) return 1; 
/* form the desired picture in this matrix */ 
for (pt.x = XMIN; pt.x <= XMAX; pt.x += XINCR) 

{ 
pt.y = pt.x * pt.x; 
paint(Splot, pt); 

} 

/* print it */ 
print(&plot.frame); 
return 0; 

} 

char *create(struct grid *frame) { 
int i; 
frame->matrix = (char *) 

calloc(frame->ht, frame->wid * sizeof (char)); 
if (frame->matrix) /* initialize */ 

for (i = 0 ; i < frame->ht * frame->wid; i++) 
frame->matrix[i] = ' ';. 
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return frame->matrix; 
} 

void paint (struct plotdata *p, struct point pt) { 

int i, j; 

/* normalize */ pt.x = (pt.x - p->x.min) * p->frame.wid 
/ (p->x.max - p->x.min); 

pt.y = (pt.y - p->y.min) * p~>frame.ht 
/ (p->y.max - p->y.min); 

i = (int) (pt.x + 0.5); /* round off */ 
j = (int) (pt.y + 0.5); /* round off */ 

if (i >= 0 && i < p->frame.wid && 
j >= 0 && j < p->frame.ht) 
/* matrix[i][j] = symbol */ 
p->frame.matrix[j * p->frame.wid + i] 

= p->symbol; 
} 

void print(struct grid *frame) { 
int i, j; 

/* print from top to bottom */ 
for (j = frame->ht - 1; j >=0; j—) { 

for (i = 0; i < frame->wid; i++) 
printf("%c", /* print matrix[i][j] */ 

frame->matrix[j * frame->wid + i]); 
printf ("\n"); 

} 
} 

The function create allocates space for matrix and fills it with blank 
characters. The function paint transforms the coordinates of a point in the pic-
ture plane into array subscripts and puts the desired SYMBOL into the corre-
sponding array element. The main program repeatedly calls paint, passing it 
the various points in the picture plane. Finally, a call to print results in the 
curve being printed. The for loop steps backward from ht-1 to 0 as the high 
values of j correspond to points at the top of picture and must be printed first 
to get the picture right side up. 

Note that matrix and the other information required for forming the 
curve in the memory have been encapsulated in one structure variable. When 
main calls paint, it passes a pointer to this structure variable to avoid copying 
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and to ensure that the changes made to matrix by paint persist after return-
ing from it. The point in the picture plane, on the other hand, is passed by value 
to paint. This allows the parameter pt to be used as a local variable inside 
paint. 

As in the matrix multiplication program presented in Section 7.8.3, this 
program also dynamically obtains the storage required for matrix by calling 
calloc to allocate frame->ht number of objects, each of which is of size 
f rame->wid * sizeof (char). It also exploits the fact that the elements of a 
two-dimensional matrix are stored in row order and accesses the matrix ele-
ment matrix[i] [j] as matrix[j * frame->wid + i]. 

8.4 STRUCTURES CONTAINING POINTERS 
A structure can contain pointers as member variables. For example, the struc-
ture definition 

s t r u c t l o c a t i o n 
{ 

char *name; 
char *addr; 

} ; 

defines a structure l o c a t i o n that contains two character pointers, name and 
addr, as member variables. Variables of type s t r u c t l o c a t i o n can now be 
defined and manipulated as in: 

s t r u c t l o c a t i o n a t t = 
{"bell labs", "murray hill, new jersey"}; 

struct location ibm; 

ibm.name = "almaden research center"; 
ibm.addr = "san j o s e , California"; 
printf ("%s", att.name); 

8.4.1 Self-Referential Structures 
We mentioned in Section 8.1.6 that a structure may not be nested within itself. 
However, structures may contain pointers to structures of their own type. For 
example, 

struct company { 
struct projects government; 
struct projects industrial; 
struct company *parent; /* legal */ 

} ; 

is a legal structure declaration, since parent in this example is a pointer to the 
company structure, and not an embedded occurrence of the company struc-
ture. 
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list pointer: 

*1 Xi *1 Xi Xn NULL 

Figure 8.1. A singly linked list 

Structures that contain pointers to structures of their own type provide a 
basis for several useful data structures. We discuss two of these: linked lists and 
trees. 

Linked Lists 

A list is a sequence of zero or more elements of a given type. Lists arise rou-
tinely in applications such as information retrieval, programming language 
translation, and simulation. Arrays can be used to implement lists but have the 
disadvantage that the insertion or deletion of elements in the middle of a list 
requires shifting of elements to make room for the new elements or to close up 
gaps created by deleted elements. An array implementation may also waste 
space because the maximum space is used irrespective of the number of ele-
ments actually in the list. On the other hand, the maximum size, if underesti-
mated, may cause runtime error. 

In the linked implementation of a list, pointers are used to link successive 
list elements. A singly linked list is made up of nodes, each node consisting of an 
element of the list and a pointer to the next node on the list. If the list is X\, xi, 
..., x„, the node containing x, has a pointer to the node containing x,+1, for i = 1, 
2 , . . . , n-1. The node containing x„ has a NULL pointer to indicate the end of the 
list. The first element of the list X\ is sometimes referred to as the head of the list, 
and the last element xn as the tail of the list. There is also a list pointer, pointing 
to the head of the list. Figure 8.1 depicts a linked list of this form. 

The advantage of linked lists is that the list elements can be inserted and 
deleted by adjusting the pointers without shifting other elements, and storage 
for a new element can be allocated dynamically and freed when an element is 
deleted. 

We now write some functions to illustrate operations on linked lists. The 
structure for a node of a linked list can be defined as 

s t r u c t node 

i n t da ta ; 
s t r u c t node * n e x t ; 

} ; 

and a function that allocates storage for a node, initializes it, and returns a 
pointer to it as 

s t r u c t node *mknode(int data) { 

s t r u c t node *np; 
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np = (struct node *) malloc(sizeof(struct node)); 
if (np) 

{ 
np->data = data; 
np->next = NULL; 

} 
return np; 

} 

A node created by calling mknode is not yet inserted into the linked list. The 
following function inserts the node into the list in such a way that all preceding 
nodes on the list have larger data values: 

struct node *insert(struct node **list, int data) { 
struct node *np; 

if (np = mknode(data)) { 
struct node *curr = *list, *prev = NULL; 

/* locate the position of this node in the list */ 
for ( ; curr && data < curr->data; 

curr = curr->next) prev = curr; 

/* let this node point to the node next in the list */ 
np->next = curr; 

/ * let the previous node in the list point to this node * / 
if (prev) 

prev->next = np; 
else 

*list = np; /* this node is the first in the list */ 
} 

return np; 
} 

This function takes as one of its arguments a pointer to the list pointer, since the 
list pointer may be updated if the new node becomes the head node. Note that 
the new node has been inserted in the list by simply adjusting the pointers. Fig-
ure 8.2 depicts the insertion process. 

The following function prints the data values of all the elements in the list: 

void print(struct node *list) { 
for ( ; list; list = list->next) 

printf("%d list->data); 
printf ("\n"); 

} 

Here is an insertion-sort function that uses the preceding functions to sort 
and print in descending order the numbers in its input: 
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New first item 

NULL NULL becomes NULL NULL 

New middle item 

NULL becomes NULL NULL 

New last item 

NULL becomes 

Figure 8.2. Insertion of a node into a singly linked list 

void sort(void) { 
struct node *list = NULL; 
int i; 

while (scanf("%d", &i) != EOF && 
insert(Slist, i) ) /* build list */ 

t 
print(list); 

} 

We encourage you to write a function that deletes a specified node from the 

list. 

Trees 
A tree imposes a hierarchical structure on a collection of items. Organization 
and genealogical charts are familiar examples of trees. Trees also arise in many 
computer science applications, such as the organization of information in a 
database system and the representation of the syntactic structure of source pro-
grams in compilers. Trees are also used in the representation of sets, in decision 
making, and in computer games. 

A tree T is defined recursively as a finite set of zero or more nodes such that 
if there is a nonzero number of nodes then (i) there is a specially designated 
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( b ) ( e j 

c ) T d ) ( f 

Figure 8.3. A binary tree 

node n called the root; (ii) the remaining nodes are partitioned into m > 0 dis-
joint sets Ti, T2,.. . , Tm, where each of these sets is a tree. T\, T2, . . . , Tm are called 
the subtrees of n and their roots the children of n. A tree with zero nodes is called 
an empty tree. 

A binary tree is a special kind of tree in which each node has at most two 
children: the left and the right child. Figure 8.3 depicts a binary tree. 

There are several ways in which the nodes of a tree can be systematically 
traversed. The three most important traversal orderings are called preorder, 
inorder, and postorder. For a binary tree T, these orderings can be defined recur-
sively as follows: 

If T consists of a single node, then that node by itself is the preorder, inorder, 
and postorder traversal of T; otherwise 

i. the preorder traversal of T is the root n of T, followed by the preorder 
traversal of nodes in the left subtree of «, and then the preorder tra-
versal of nodes in the right subtree of n; 

ii. the inorder traversal of T is the inorder traversal of nodes in the left 
subtree of root n of T, followed by the root n, and then the inorder 
traversal of nodes in the right subtree of n, and 

iii. the postorder traversal of T is the postorder traversal of nodes in the 
left subtree of root n of T, followed by the postorder traversal of nodes 
in the right subtree of n, and then the root n. 

Thus, the preorder traversal of the binary tree given in Figure 8.3 is 
(a, b, c, d, e, f), the inorder traversal is (c, b, d, a, e, f), and the postorder traversal 
is (c,d,b,f,e,a). 

We now write some functions for manipulating binary trees. The structure 
for a node of a binary tree can be defined as 

struct node { 
char data; 
struct node *lchild; 
struct node *rchild; 

} ; 

The following function reads the data for a binary tree specified in pre-
order and builds the tree, where a ' -' in input signifies an empty subtree: 



306 CHAPTER 8 / STRUCTURES AND UNIONS 

s t r u c t node *mktree(void) { 

i n t c ; 
s t r u c t node *np; 

c = g e t c h a r ( ) ; 
i f (c != ' ) { 

np = ( s t r u c t node * ) m a l l o c ( s i z e o f ( s t r u c t node) ) ; 
np->data = c; 
n p - > l c h i l d = m k t r e e ( ) ; /* build left subtree */ 
n p - > r c h i l d = m k t r e e ( ) ; /* build right subtree */ 
re turn np; 

} 
e l s e 

re turn NULL; 
} 

We have omitted the check for the value returned by mal loc for clarity; you 
should rewrite the preceding function to include this check. 

The following function traverses a binary tree in postorder: 

void p o s t o r d e r ( s t r u c t node *parent ) 
{ 

i f (parent) { 

pos torder ( p a r e n t - > l c h i l d ) ;/* traverse left subtree */ 
pos torder ( p a r e n t - > r c h i l d ) ;/* traverse right subtree */ 
p r i n t f ( " % c " , p a r e n t - > d a t a ) ; 

} 
} 

The following function uses the preceding functions to read a binary tree speci-
fied in preorder and prints it in postorder: 

void t rans form(void) { 

s t r u c t node * r o o t ; 

root = m k t r e e ( ) ; 
p o s t o r d e r ( r o o t ) ; 

} 

8.4.2 Illustrative Examples 
We now give some example programs to further illustrate the use of self-refer-
ential structures. 

*um Example 1 
• • Rewrite the expression evaluation program given in Example 1 of Section 7.9 using a 

linked list representation for the stack. 
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In the linked list representation of a stack, new elements are pushed onto 
the stack by allocating storage for them and appending them to the front of the 
list. Elements are popped from the stack by deleting them from the front of the 
list and freeing the storage. The following figure depicts a linked-list represen-
tation of a stack: 

top: 

In the program given in Section 7.9, the stack was implemented as an 
abstract data object. If the interface of the externally visible stack functions is 
not changed, we can simply replace the file stack. c with another version 
without having to make any change in other source files. Here is the new 
stack. c that uses a linked-list representation for implementing the stack: 
/********************* stack.c *********************/ 

•include "global.h" 
•include <stdlib.h> 

static void removenode(void); 

struct node { 
int val; /* data value */ 
struct node *prev; /* pointer to the previous stack node */ 

In-

struct node *top = NULL;/*pointer to the top stack element */ 

void clearstack(void) { 
while (top) /* remove all nodes starting from top */ 

removenode(); 
} 

void push (int n) { 
struct node *np; 

error = 0; 
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np = (struct node *)malloc(sizeof(struct node)); 
if (np) { 

np->val = n;/* fill data value in the new node */ 
np->prev = top;/* it points to the current top node */ 
top = np; /* reset top to point to the new node */ 

} 
else 

error = STACKFULL; 
} 

int pop(void) { 
int val; 

error = 0; 
if (top) { 

val = top->val; /*fetch data value from the top node */ 
removenode () ; /* remove the top node */ 
return val; 

} 
else . { 

error = STACKEMPTY; 
return 0; 

} 
} 

int stacksize(void) { 
struct node *np; 
int size = 0; 

for (np = top; np; np = np->prev) size++; 
return size; 

} 

void printstack(void) { 
struct node *np; 
printf("stack:");' 
for (np = top; np; np = np->prev) 

printf("%d np->val); 
printf("\n"); 
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static void removenode(void) { 
struct node *np; 
np = top; /*save a pointer to the current top node*/ 
top = top->prev;/*reset top to point to the previous node*/ 
free(np); /*delete what used to be the top node*/ 

} 

The pointer variable top always points to the head of the list. The function 
clearstack starts from the top and removes one by one the elements on the 
stack and frees storage allocated to them. The function push obtains a new 
node, fills the data value in it, makes this node point to the node currently at 
the top of the stack, and then sets top to point to this node. The function pop 
takes reverse actions: it resets top to point to the previous node and frees the 
storage allocated to the old top of the stack node. Both stacksize and 
printstack traverse the list starting from the top to the end, the difference 
being that the former increments a counter every time a node is traversed while 
the latter prints the data value associated with the node. 

> • Example 2 
• Rewrite the program given in Example 6 of Section 6.3 so that the item-price database 

is maintained as a binary tree and the price of a given item is determined by searching 
this tree. 

If the input data for building the item-price data is not sorted, then one 
option is to maintain the database as an unordered list and use a linear search 
for finding the desired item. This option was considered in the example pro-
gram given in Section 7.7.1. Another alternative is to build a binary search tree 
as the data is being read, and this option is the one considered in this example. 
The tree is built in such a way that the left subtree of any node contains only 
item numbers greater than the item number of the node, and the right subtree 
contains only item numbers that are smaller. 

To determine the price of a given item, we start at the root and compare its 
item number with the given item number. If the two match, the corresponding 
price is the result of the query. If the given item number is greater, the left sub-
tree is searched; otherwise, the right subtree is searched. This search procedure 
is applied recursively. If there are no more nodes in the required direction, the 
given item is not in the database. 

The desired program is as follows: 

•include <stdio.h> 
•include <stdlib.h> 
•define ITEMS 1000 

struct iteminfo { 
int item; 
float price; 



310 CHAPTER 8 / STRUCTURES AND UNIONS 

struct node { 
struct iteminfo itemrec; 
struct node *lchild; 
struct node *rchild; 

} ; 

struct node *bld_database(int items); 
struct node *addtree(struct node *p, 

int item, float price); 
struct node *mknode(int item, float price);~ 
struct iteminfo *search(int val, struct node *db); 

int main(void) { 
struct node ^database; 
struct iteminfo *ip; 
int itenv_no; 

/* build the item-price database */ 
if (!(database = bld_database(ITEMS))) • { 

printf("too big a database\n"); 
return 1; 

} 

/* get item_no of the item whose price is to be found */ 
scanf ("%d", &item_no) ,\ 

/* search */ 
ip = search (item__no, database); 

/* output */ 
if (ip) 

printf ("price of item %d = %f\n", 
item_no, ip->price); 

else 
printf("item %d is not in the database\n", 

item_no); 

return 0; 
} 

struct node *bld_database(int items) { 
struct node *database = NULL; 
int item, i; 
float price; 
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for (i = 0; i < items; i++) 
t 
scanf("%d %f", Sitem, sprice); 
database = addtree(database, item, price); 
if (!database) return NULL; 

} ' 
return database; 

} 

struct node *addtree(struct node *np, 
int item, float price) 

{ 
if (!np) 

np = mknode(item, price); 
else if (item > np->itemrec.item) 

np->lchild = addtree(np->lchild, item, price); 
else 

np->rchild = addtree(np->rchild, item, price); 
return np; 

} 

struct node *mknode(int item, float price) 
( 
struct node *np; 
np = (struct node *) malloc(sizeof(struct node)); 
if (np) { 

np->itemrec.item = item; 
np->itemrec.price = price; 
np->lchild = np->rchild = NULL; 

} 
return np; 

} 

struct iteminfo *search{int val, struct node *db) { 
struct iteminfo *ip; 
if (!db) 

/* item not in the database */ 
ip = NULL; 

else if (val == db->itemrec.item) 
/* found the item's record */ 

ip = &db->itemrec; 
else if (val > db->itemrec.item) 

/* search the left subtree */ 
ip = search(val, db->lchild); 

else 
/* search the right subtree */ 
ip = search(val, db->rchild); 
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return ip; 
} 

8.5 UNIONS 
The union is a construct that allows different types of data items to share the 
same block of memory. The compiler automatically allocates sufficient space to 
hold the largest data item in the union. However, it is the programmer's 
responsibility to keep track of what is currently stored in the union. 

The syntax for defining and accessing a union is similar to that for struc-
tures, except that the keyword union is used in place of struct. For example, 
the statement 

union chameleon { 
double d; 
int i; 
char *cp; 

} data; 
defines a variable data that can hold either a double, an int, or a pointer to 
char. When data needs to be accessed as a double, it is accessed as 

data.d 
when it needs to be accessed as an int, it is accessed as 

data.i 
and when it needs to be accessed as a pointer to char, it is accessed as 

data.cp 
Although a union contains sufficient storage for the largest type, it may 

contain only one value at a time; it is incorrect to store something as one type 
and then extract as another. Thus, the following statements 

data.d = 1.0; 
printf ("%s", data.cp); 

produce anomalous results. 
To keep track of what is currently stored in data, another variable dtype 

may be defined. Whenever a value is assigned to data, the variable dtype is 
also set to indicate its type. Later in the program, dtype may be tested to deter-
mine the type of the value in data. Thus, following the definitions 

1 
2 
3 

the statements 

data.cp = "anolis"; 
dtype = CP; 

•define DOUBLE 
•define INT 
•define CP 
int dtype; 
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place a pointer to the string " anol i s " (a genus of lizards capable of changing 
their colors) in data. The following statement can then be used to print data. 

switch (dtype) 
{ ! 

case DOUBLE: 
printf("%f", data.d) ; 
break; 

case INT: 
printf("%d", data, in-
break; 

case CP: 
printf ("%s", data.cp); 
break; 

default: 
printf ("unknown type of data"); 

} 
Union variables may be initialized, albeit in a restricted way — a union 

variable may only be initialized with a value of the type of its first member. 
Unions may occur within arrays and structures and vice versa. Consider, 

for example, the following definition of the structure item: 
struct item { 

int itemno; 
struct { 

int stype; 
union { 

struct { 
char *streetaddr; 
char *city; 
char *state; 

} domestic; 
struct { 

char *country; 
char *completeaddr; 

} foreign; 
} addr; 

float price; 
} suppliers[MAXSUPPLIERS]; 

} items[MAXITEMS]; 
The above definition stores information about the items in an array. Associated 
with each item is a list of supplier and price pairs. Suppliers can be domestic or 
foreign, and addresses of these two categories of suppliers are stored in differ-
ent forms. Therefore, a union type has been used for addresses. The variable 
stype is used to keep track of the type of the supplier. Note that by using a 
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union, we have been able to create arrays that contain different types of ele-
ments. 

The method of accessing a member of a union in a structure or that of a 
structure in a union is identical to the method of accessing a member of a struc-
ture in a structure. For example, the following program fragment prints the 
names of the countries of all the foreign suppliers: 

for (i = 0; i < MAXITEMS; i++) 
for (s = 0; s < MAXSUPPLIERS; s++) 

if (stype == FOREIGN) 
printf ("%s\n", 

items[i] .suppliers [s] .addr.foreign.country); 
As in the case of structures, unions may not contain instances of them-

selves, although they may contain pointers to instances of themselves. 

8.5.1 Illustrative Examples 
We now give an example program to further illustrate the definition and use of 
a union. 

Example 
Rewrite the expression evaluation program given in Example 1 of Section 7.9 using a 
union to get the next term in the input expression. 

The prototype of the function next, given in Section 7.9, is of the form 

int next (int *operator, int *operand); 
and it returns one of the three values: (i) NOMORE to indicate that there are no 
more terms in the expression, (ii) OPERATOR to indicate that the next term is an 
operator, and (iii) OPERAND to indicate that the next term is an operand. If the 
next term is an operator or operand, its value is also returned using one of the 
two pointers provided as arguments. 

We change the prototype of next to 

void next(struct token *newterm); 
where token is defined as 

struct token { 
int type; /* one of NOMORE, OPERATOR, or OPERAND */ 
union { 

int operator; 
char operand; 

} value; 
) ; 
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Only one of operator or operand in the union value is used, depending on 
the type of the token. 

Besides the above changes in the global.h, we redefine the functions 
next in the file io.c and evalexp that calls next in the file main.c; no 
other change is required in the rest of the program. We only provide the code 
for evalexp and next. 
/********************** main.c *********************/ 

static void evalexp(void) { 
struct token newterm; 
error = 0; 
'/* obtain terms of the expression one at a time 

and do appropriate stack operations */ 
while(next(Snewterm), newterm.type != NOMORE) { 

if (newterm.type == OPERAND) 
push(newterm.value.operand); 

else /* OPERATOR */ 
evalop(newterm.value.operator); 

if (error) return; 
} 

} 
/*********************** io.c **********************/ 

void next(struct token *newterm) { 
/* skip over whitespaces */ 
while(buf[bp] == ' ' || buf[bp] == '\t') bp++; 
if (buf[bp] == '\0') 

newterm->type = NOMORE; 
else if (buf[bp] >= '0' && buf[bp] <= '9') { 

newterm->type = OPERAND; 
/* determine the integer value of the operand */ 
for (newterm->value.operand = 0; 

buf[bp] >= '0' && buf[bp] <= '9'; bp++) 
newterm->value.operand = 

10 * (newterm->value.operand) 
+ (buf[bp] - '0'); 

} 
else { 

newterm->type = OPERATOR; 
newterm->value.operator = buf[bp++]; 

} 
} 
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This example reaffirms the value of well-structured programs in modifying 
and maintaining them. 

Exercises 8 
1. Hand-simulate the execution of the following program: 

•include <stdio.h> 

struct currency 
{ .. ' 
int value; 
char *name; 
struct currency *next; 

} coins[] = { {1, "penny", coins+1}, 
{5, "nickel", coins+2}, 
{10, "dime'", coins} }; 

int main(void) { 
struct currency *cp = coins; 
int i; 

for (i = 0; i < 3; i++) 
.printf("%d %c\n", 

coins[i].value, coins[i].name[0]); 

printf("%d 
printf("%d 
printf("%c 
printf("%c 
printf("%c 
printf("%c 
printf("%c 
printf("%d\n 

++cp->value) ; 
(++cp)->value); 
*cp->name); 
*cp->name++); 
*(cp->name)--); 
*cp++->name); 
cp->next->name[4]); 
—cp->next->value); 

cp = coins; 
do 

printf("%d %s\n", cp->value, cp->name); 
while((cp = cp->next) != coins); 

return 0; 
} 

2. Define a structure for the following employee record: 

a. name (last, first, middle) 

b. date of birth (year, month, day) 

c. marital status 

i. married => date of marriage, name of the spouse 

ii. widowed => date of marriage 
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iii. divorced => date of marriage, date of divorce 

iv. single 

d. children (name and date of birth): maximum 5 

e. annual salary 

3. Define a structure to represent time in hours (0-23), minutes (0-59), and seconds 
(0-59), and then write a function that accepts as an argument a time represented by 
this structure and updates it by 1 second. 

4. Write a function that takes as its arguments two time structures specified in the pre-
vious problem and returns a time structure that represents the elapsed time between 
the two times. 

5. Write a function that determines tomorrow's date, given today's date. 

6. Write a function that determines the number of days elapsed from the turn of the 
century for any date passed as structure, and then use it in a program to determine 
the difference between two given dates. 

7. Clock patience is a solitaire game played with a standard deck of 52 cards. The cards 
are dealt into 12 piles of 4 each in a clocklike pattern, with the remaining 4 cards 
placed in the middle. A move consists of taking the top card from a pile and placing 
it under the pile where it belongs (Jack = 11, Queen = 12, King at center), and this 
pile provides the card for the next move. The game terminates when the four Kings 
have been placed on the center pile, and is considered successful if all the other 
cards are correctly placed. Write a program to simulate clock patience, using a 
pseudo-random number generator to deal the cards. 

8. Write an interactive coordinate geometry program that enables the user to write 
simple commands to draw figures of various shapes to which the user may give 
names. For example, the user may write 

p = point 0 0 

q = point 12 

I = line p q 

9. Write a program to draw a picture of the path taken by Joe caught in an unruly mob. 
Plot Joe's new position every time he moves, assuming that every time he goes 2 feet 
in a straight line but in a random direction. To generate a random direction, multi-
ply 2% with a random value between 0 and 1. 

10. Write a program that makes a list of the chemical elements and then makes the data 
available on demand. The program first builds the list by prompting the technician 
by atomic number to enter the element's full name, symbol, and atomic weight. It 
then prompts the chemist to enter an element's symbol and prints the rest of the 
information for this element. 

11. Write a function that removes the first node in a linked list with a given value. 

12. Write a function that merges two sorted lists into one. 

13. Write a function that takes a pointer to a linked list and reverses the order of the 
nodes by simply altering the pointers. If the original list were (5,3,7,1), the function 
should transform it into (1,7,3,5). 

14. A doubly linked list is a list in which each element contains a pointer to the previous 
element as well as to the next element in the list. There is also a pointer head to the 
leftmost element in the list, and a pointer t a i l to the rightmost element. Both 
head->prev and tail->next are set to NULL. Write functions that perform the 
following operations on a doubly linked list: 



318 CHAPTER 8 / STRUCTURES AND UNIONS 

i. Create, destroy, and print the list. 

ii. Search the list to return a pointer to the first/last element with a certain specified 
value. 

iii. Insert an element before/after a specified element. 

iv. Delete a specified element. 

15. Write functions that read, add, subtract, multiply, and evaluate polynomials of the 
form 

a„x" + + ... + a2x? + ajx + a0. 
Such polynomials can be represented by a linked list in which each node has three 
fields: coefficient exponent i, and a pointer to the next node. For evaluating a 
polynomial, use Horner's method: 

a„x" + A„-ix"~! + ... + a\X + = (((Anx + a„_i)x + AN-2)x + • • • + a{)x + OQ. 

16. Implement an abstract data object queue by defining functions to create and destroy 
the queue, add an element to the queue, delete an element from the queue, count the 
length of the queue, and print the queue. A queue is an ordered list in which all 
additions are made at the end and all deletions from the front. 

Use this abstract data object to write a simulation program to investigate the 
average length of the input queue of a computer system. Jobs arrive in the queue 
at a mean rate of X and are serviced at a mean rate of |i. If events occur at a mean 
rate of r, then the time t between any two consecutive events is a random variable 

t = ln(x)/r, 
where x is uniformly distributed between 0 and 1. 

17. Algebraic expressions may be represented by binary trees. Each node of the tree 
contains an operator (+, -, *, or /) and pointers to two subexpressions. For example, 
the tree corresponding to the expression (a - b) / (c + d) is 

Write a function that reads an expression and constructs a binary tree correspond-
ing to the expression. 

18. The level-order listing of the nodes of a tree first lists the root, then all the nodes of 
depth 1, then all the nodes of depth 2, and so on. Nodes at the same depth are listed 
from left to right. Write a program to list the nodes of a tree in level order. 

19. One of eight given coins is counterfeit and has a weight different from others. Write 
a program that determines which coin it is and whether it is heavier or lighter than 
the rest by doing a minimum number of comparisons on an equal-arm balance. 

20. Write a function that creates a family tree. Each person is represented by a structure 
that contains the person's name and pointers to parents, spouse, and children. Use 
this tree in a program that determines whether two persons are cousins. 



Operations on Bits 

Cwas originally designed to be a systems programming language. Systems 
programs frequently require the capability to manipulate individual bits of 

a word. C provides four operators, called bitwise logical operators, for masking 
operations on bits, and two operators, called the bitwise shift operators, for 
shifting bits in a word. In addition, C allows you to partition a word into 
groups of bits, called bit-fields, and assign names to them. We study in this 
chapter these features of the C language. 

9.1 BITWISE LOGICAL OPERATORS 
The four bitwise logical operators are: bitwise AND (&), bitwise inclusive OR (|), 
bitwise exclusive OR (A), and bitwise complement ( ~ ). Except bitwise comple-
ment, which is unary, all others are binary operators. 

Bitwise logical operators can only be applied to integral operands. When 
evaluating expressions containing these operators, the automatic unary and 
binary conversions, discussed in Section 2.9.1, are first performed on the oper-
ands. The type of the result is that of the converted operands. , 

The result of applying these operators to signed operands is implementa-
tion-dependent, as different implementations may use different representa-
tions for signed integers. Hence, for portability, these operators should only be 
used on unsigned operands. 

All the three binary bitwise logical operators are both commutative and 
associative. They can also be used, like other binary operators, to form com-
pound assignment operators &=, | =, and A=. 

9.1.1 Bitwise AND Operator 
The bitwise AND operator & has the formation 

intvalue & intvalue 

When it is applied to two integral operands, the binary representations of the 
converted values of the operands are compared bit by bit. If bl and b2 represent 
corresponding bits of the two operands, then the result of bl & bl is as shown in 
the following truth table: 
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b1 b2 bf& b2 

1 1 1 
1 0 0 
0 1 0 
0 0 0 

For example, given that 

unsigned int el = Oxd, e2 = 0x7; 
and that an integer is represented in 16 bits in the machine being used, the 
expression el & e2 has the value 0x5 as shown below: 

Expression Binary Representation Value 

el 0000 0000 0000 1101 Oxd 
e2 0000 0000 0000 0111 0x7 

el & e2 0000 0000 0000 0101 0x5 

The logical AND operator && and the bitwise AND operator & are quite 
different. The result of applying && is always 0 or 1, but that of & depends 
upon the values of the operands. For example, whereas the value of the expres-
sion Oxd && 0x7 is 1, the value of Oxd & 0x7 is 0x5. Only in the special case 
when the values of the operands are restricted to be 0 or 1 is the result of 
applying & and & & the same. Moreover, in the case of & & , the second operand is 
not evaluated if the first operand is 0, but both operands are evaluated in the 
case of &. 

The bitwise AND operator is often used to turn some specified bits off, that 
is, to set them to 0. For example, the statement 

el &= e2; 
as shown in the preceding example, turns off all but the low-order three bits of 
e 1. Those three bits remain unchanged. 

9.1.2 Bitwise Inclusive OR Operator 
The bitwise inclusive OR operator I, frequently referred to simply as the bit-
wise OR operator, has the formation 

intvalue \ intvalue 

As in the case of the bitwise AND operator, when the bitwise OR operator is 
applied to two integral operands, the binary representations of the converted 
values of the operands are compared bit by bit. If bl and b2 represent corre-
sponding bits of the two operands, then the result of bl | b2 is as shown in the 
following truth table: 
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b1 b2 b1 | b2 

1 1 1 
1 0 1 
0 1 1 
0 0 0 

Thus, given that unsigned int el and e2 are Oxd and 0x7 respectively, the 
expression el | e2 has the value Oxf as shown below: 

Expression Binary Representation Value 

el 0000 0000 0000 1101 Oxd 
e2 0000 0000 0000 0111 0x7 

el | e2 0000 0000 0000 1111 Oxf 

The logical OR operator | | and the bitwise OR operator | are also quite 
different. The result of applying I depends upon the values of the operands, 
but that of || is always 0 or 1. Only in the special case when the values of the 
operands' are restricted to be 0 or 1 is the result of | and I | the same. Further, 
in the case of I I , the second operand is not evaluated if the first operand is 1, 
but both operands are evaluated in the case of |. 

The bitwise OR operator is frequently used to turn some specified bits on, 
that is, to set them to 1. For example, the statement 

el |= e2; 
as shown in the preceding example, ensures that the three rightmost bits of el 
are turned on. 

9.1.3 Bitwise Exclusive OR Operator 
The bitwise exclusive OR operator A, frequently referred to as the XOR opera-
tor, has the formation 

intvalue A intvalue 

In the case of the bitwise exclusive OR operator also, the binary representations 
of the converted values of the two integral operands are compared bit by bit. If 
bl and bl represent corresponding bits of the two operands, then the result of 
bl A bl is as shown in the following truth table: 

b1 b2 b1 * b2 

1 1 0 
1 0 1 
0 1 1 
0 0 0 
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Thus, given that unsigned int el and e2 are Oxd and 0x7 respectively, the 
expression el A e2 has the value Oxa as shown below: 

Expression Binary Representation Value 

el 0000 0000 0000 1101 Oxd 
e2 0000 0000 0000 0111 0x7 

el A e2 0000 0000 0000 1010 Oxa 

The exclusive OR operator has the property that any value XORed with 
itself produces 0 as the result. Thus, we have 

Expression Binary Representation Value 

el 0000 0000 0000 1101 Oxd 
el 0000 0000 0000 1101 Oxd 

el A el 0000 0000 0000 0000 0x0 

This property is often used by assembly language programmers to set a value 
to 0 or to compare two values to determine if they are equal. 

Another useful property of this operator is that if the result of XORing a 
value with another value is again XORed with the second value, the result is 
the first value. Thus, we have 

Expression Binary Representation Value 

el 0000 0000 0000 1101 Oxd 
e2 0000 0000 0000 0111 0x7 

- el A e2 0000 0000 0000 1010 Oxa 
e2 0000 0000 0000 0111 0x7 

(el A e2) " e2 0000 0000 0000 1101 Oxd 

That is, (el A e2) A e2 is equal to el. This property is frequently used in 
designing bit-manipulation ciphers in cryptography. We will consider one such 
cipher later in the chapter. 

The bitwise exclusive OR operator can also be used to interchange two val-
ues without using a temporary variable. Thus, the statement 

el A= e2, e2 A= el, el A= e2; 
swaps the values of el and e2, as shown below: 

Expression Binary Representation Value 

el 0000 0000 0000 1101 Oxd 
e2 0000 0000 0000 0111 0x7 

el e2 0000 0000 0000 1010 ' Oxa 
e2 el 0000 0000 0000 1101 Oxd 
el A= e2 0000 0000 0000 0111 0x7 
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9.1.4 Bitwise Complement Operator 
The bitwise complement operator has the formation 

~ intvalue 

and yields the l 's complement of the converted integral operand; that is, it con-
verts each 1-bit into a 0-bit and vice versa. Thus, if b represents a bit of the 
operand, then the result of ~b is as shown in the following truth table: 

b ~b 
1 0 
0 1 

Thus, assuming 16-bit integers and that unsigned int el is Oxd, the expres-
sion ~el has the value Oxf ff 2 as shown below: 

Expression Binary Representation Value 

el 0000 0000 0000 1101 Oxd 
~el 1111 1111 1111 0010 Oxfff2 

The bitwise complement operator should not be confused with the arith-
metic unary minus (-) or the logical negation (!). For example, if e is defined to 
be an-int and set equal to 0, then -e results in 0 and ! e in 1, but ~ e yields -1 
on a 2's complement machine. 

The bitwise complement operator is useful in writing portable code as it 
avoids inclusion of machine-dependent information in the program. For exam-
ple, the statement 

e &= ~0xff; 
sets the last 8 bits of e to 0, independent of word length. 

* 

9.1.5 Precedence and Associativity 
The order of precedence of the bitwise logical operators is bitwise complement, 
bitwise AND, bitwise exclusive OR, and then bitwise inclusive OR. Except for 
the bitwise complement that associates from right to left, all others associate 
from left to right. Thus, the expression 

0 1 ~ 0 1 A 0 1 & 0 1 

is interpreted as 

01 | ( ( ~ 01) A (01 & 01) ) 

The position of these operators in the precedence hierarchy is given in 
Appendix B. Note that the precedence of the binary bitwise logical operators is 
lower than the equality operator == and the inequality operator Thus, 
parentheses are necessary in expressions such as 
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(i & 01) = = 0 
or 

(i A 01) ! = 0 
Omitting these parentheses is a common error found in many programs. 

9.2 BITWISE SHIFT OPERATORS 
C provides two bitwise shift operators, bitwise left shift ( « ) and bitwise right 
shift ( » ) , for shifting bits left or right by an integral number of positions in 
integral data. Both of these operators are binary, and the left operand is the 
integral data whose bits are to be shifted, and the right operand, called the shift 
count, specifies the number of positions by which bits need shifting. The shift 
count must be nonnegative and less than the number of bits required to repre-
sent data of the type of the left operand. 

Automatic unary conversions are performed on both the operands. How-
ever, the type of the result is that of the promoted left operand; the right oper-
and does not promote the result. 

The result of applying these operators to signed operands is implementa-
tion-dependent. For portability, therefore, these operators should only be used 
on unsigned operands. 

These operators can also be used, like other binary operators, to form com-
pound assignment operators >>= and <<=. 

9.2.1 Left Shift Operator 
The left shift operator shifts bits to the left, and has the formation 

intvalue « intvalue 

As bits are shifted toward high-order positions, 0 bits enter the low-order posi-
tions. Bits shifted out through the high-order position are lost. For example, 
given 

unsigned int i = 5; 
and 16-bit integers, that is, 

i is binary 00000000 00000101, 

then 

i « 1 is binary 00000000 00001010, or decimal 10, 

and 

i « 15 is binary 10000000 00000000, or decimal 32768. 

In the second example, the 1 originally in the third bit position has dropped off. 
Another left shift by one position will drop off the 1 in the sixteenth bit posi-
tion, and the value of the expression will become zero. 
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9.2.2 Right Shift Operator 
The right shift operator shifts bits to the right, and has the formation 

intvalue » intvalue 

As bits are shifted toward low-order positions, 0 bits enter the high-order posi-
tions, if the data is unsigned. If the data is signed and the sign bit is 0, then 0 
bits also enter the high-order positions. However, if the sign bit is 1, the bits 
entering high-order positions are implementation-dependent. On some 
machines Is, and on others Os, are shifted in. The former type of operation is 
known as the arithmetic right shift, and the latter type the logical right shift. For 
example, given 

unsigned int i = 40960; 
and 16-bit integers, that is, 

i is 10100000 00000000, 

then 

i » 1 is binary 01010000 00000000, or decimal 20480, 

i » 15 is binary 00000000 00000001, or decimal 1. 

In the second example, the 1 originally in the fourteenth bit position has 
dropped off. Another right shift will drop off the 1 in the first bit position, and 
i will become zero. 

9.2.3 Multiplication and Division 
The left shift of a value by one position has the effect of multiplying the value 
by two, unless an overflow occurs due to a 1 falling off from the high-order 
position. Similarly, the right shift of a value by one position has the effect of 
dividing the value by two, provided the value is nonnegative. Here are some 
examples, assuming 16-bit integers: 

unsigned int i i as each statement executes 

and 

Binary Representation Decimal Value 

i 
i « 1 
i « 4 
i « 9 
i « 1 
i » 1 
i » 9 
i » 4 
i » 1 
i » 1 

00000000 00000011 
00000000 00000110 
00000000 01100000 
11000000 00000000 
10000000 00000000 
01000000 00000000 
00000000 00100000 
00000000 00000010 
00000000 00000001 
00000000 00000000 

49152 
32768 
16384 

3 
6 

96 

32 
2 

0 
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The operation i « 1, when the value of i is 49152, results in an overflow and 
does not have the effect of multiplication by 2. However, the operation i >> 1, 
when the value of. i is 1, has the right effect of integer division. 

9.2.4 Precedence and Associativity 
Left and right shift operators have equal precedence and they associate from 
left to right. Thus, the expression 

1 « 1 » 2 

is interpreted as 

(1 « 1) » 2. 

The relative precedence of the shift operators with respect to other opera-
tors is given in Appendix B. The precedence of the shift operators is lower than 
that of any arithmetic operator, but higher than that of any bitwise logical Oper-
ator except the unary bitwise complement operator. Thus, the expression 

1 « 2 - 1 

is interpreted as 

1 « (2 - 1) 

and the expression 

01 | ~ 01 « 1 

is interpreted as 

01 | ( ( ~ 01) « 1 ) . 

9.3 BIT-FIELDS 
Information can be packed by representing several data items within a single 
machine word using non-overlapping adjacent groups of bits, particularly 
when the values that the data items can assume are small. Such packing 
becomes necessary when storage is at a premium or some hardware-defined 
data structures have to be matched exactly in the program. For example, in the 
PC-DOS operating system, the list of equipment installed is encoded in the AX 
register in the following format: 

bit 0: 1 if diskettes present 
bitl : not used 
bits 2,3: system board RAM, 11 => 64K 
bits 4,5: video mode, 01 => 40-column color, 

10 => 80-column color, 11 => monochrome 
bits 6,7: number of disk drives 
bit 8: DMA chip, 0 => installed 
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bits 9,10,11: number of RS-232 ports 
bit 12: 1 => game adapter installed 
bit 13: 1 => serial printer (PC jr only) 
bit 14,15: number of printers 

When the information has been packed within a word, the desired data 
items can be accessed by extracting the corresponding bits using the bit-manip-
ulation operators. For example, if the unsigned integer ax contains the above 
encoding of the equipment list, then the statement 

if (((ax » 4) & ~ ( ~ 0 « 2)) == 03) 
printf("monochrome\n"); 

determines if the video mode is monochrome. 
C provides a more convenient method for defining and accessing fields 

within a word than the use of the bit-manipulation operators. This method 
uses a special syntax in the structure definition to define bit-fields and assign 
names to them. A bit-field is a set of adjacent bits within an implementation-
dependent storage unit, called a "word." The syntax for defining a bit-field is 

type field-name : bit-length; 

where bit-length is the number of bits assigned to the bit-field variable field-
name of the type type. Bit-fields can only be of type int; for portability, they 
should explicitly be specified to be signed or unsigned. Thus, the variable 
ax, containing the encoding of the equipment list, can be defined using bit-
fields as 

A bit-field with no name may be included in a structure. An unnamed bit-
field is useful for padding to conform to externally imposed data formats. 
Thus, instead of the bit-field declaration 

struct 

unsigned diskette 
unsigned unused 
unsigned sysboard_ram 
unsigned video 
unsigned disks 
unsigned dma_chip 
unsigned rs232_ports 
unsigned game_adapter 
unsigned serial_printer 
unsigned printers 

1-
1 
2 
2 
2 
1 
3 
1 
1 
2 

} ax; 

unsigned unused 
we can write 

: 1; 

unsigned : 1; 

An unnamed bit-field of zero width forces alignment at the next word bound-
ary. 
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A structure that contains bit-fields may also include non-bit-field members. 
Thus, we may have 

struct node { 
char *name; 
unsigned keyword_flag : 1; 
unsigned extern_flag : 1; 
unsigned static_flag : 1; 
char *value; 

} table[MAXSYMBOLS]; 

Non-bit-field members are aligned in an implementation-dependent manner 
appropriate to their types. 

Individual bit-fields are accessed as any other structure members. Thus, we 
can write 

if (ax.video == 03) printf("monochrome\n"); 
Bit-fields behave like small integers and may participate in arithmetic 

expressions just like other integers. We can, therefore, write: 

devices = ax.disks + ax.rs232_ports + ax.printers; 
or 

for (i = 0 ; i < MAXSYMBOLS; i++) 
table[i].keyword_flag = 

table[i].extern_flag = 
table[i].static_flag = 0; 

A bit-field cannot be dimensioned; that is, an array of bit-fields, such as 

flag : 1[5]; 
cannot be formed. Moreover, the address operator & cannot be applied to a bit-
field object, and hence we cannot define a variable of type "pointer to bit-
field." 

The major problem with bit-fields is that almost everything about them is 
implementation-dependent. Compilers may impose constraints on the maxi-
mum size of a bit-field, and most of them do not support bit-fields larger than 
the natural word size of the target computer. An implementation may allocate 
any addressable storage unit large enough to hold a bit-field. If enough space 
remains, a bit-field that immediately follows this bit-field in the structure is 
packed into adjacent bits of the same unit; otherwise, whether a bit-field that 
does not fit is put into the next unit or overlaps adjacent units is implementa-
tion-dependent. Within a unit, bit-fields are packed left to right on some com-
puters and right to left on others. The alignment of the addressable storage unit 
is also implementation-dependent. The use of bit-fields is, therefore, likely to 
be nonportable^ and should be restricted to situations in which memory is 
scarce or the externally defined data structures must be matched exactly. 
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9.4 ILLUSTRATIVE EXAMPLES 
We now give some example programs to further illustrate the concepts intro-
duced in this chapter. 

Example 1 
Write a function that rotates bits in an integer to the right by a specified number of bit 
positions. 

The desired function is as follows: 

/ * 
* determine the number of bits in an integer 
* / 

int intlen(void) { 
unsigned int intnum = ~ 0, bitcnt = 1; 

while (intnum <<= 1) bitcnt++; 
return bitcnt; 

} 

/ * 
* extract at most nbits bits to the left of and including the bit 
* at position pos and return them right-adjusted 
* / 

int getbits(int word, int pos, int nbits) { 
int intbits = intlen(); 

if (pos >= intbits) /* return the word unchanged */ 
return word; 

if (pos + nbits >= intbits) 
nbits = intbits) - pos;/* bits to the left of pos */ 

if (nbits == intbits) ./* pos = 0 and nbits > intlen */ 
return word; 

word >>= pos; /* right adjust */ 
word &= ~(~0 << nbits);/* clear off other bits */ 
return word; 

} 
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/ * 
* rotate word to the right by nbits bit positions 
* / 

int rrotate(int word, int nbits) { 
int rbits; 

if (nbits %= intlen()) { 
/* get nbits rightmost bits */ 
rbits = getbits(word, 0, nbits); 
/* shift to right by nbits positions */ 
word >>= nbits; 
/* clear the propagated sign bits */ 
word &= ~ (unsigned) 0 » nbits; 
/ * put back the saved bits * / 
word |= rbits << (intlen() - nbits); 

} 
return word; 

} 

The function intlen determines the size of an integer in number of bits. It 
initializes an unsigned integer variable intnum to all ones, and then counts 
how- many left shifts are performed until intnum becomes all zeros. We could 
have alternatively determined the number of bits in an integer by multiplying 
sizeof (int) with the symbolic constant CHAR_BIT defined in the standard 
header climits.h>. 

The function getbits extracts a maximum of nbits bits to the left of and 
including the bit at position pos, and returns them right-adjusted. The expres-
sion 

~ ( ~ 0 << nbits) 
in rrotate creates a mask that has all ones in the rightmost nbits positions 
and zeros everywhere else. 

The function rrotate makes use of the above two functions in rotating 
the integer word to the right by nbits bit positions. If nbits is the same as 
the size of an integer, word remains the same as before. If nbits exceeds the 
size of an integer, nbits is reset to the remainder of nbits divided by the size 
of an integer, since a rotation by as many positions as the number of bits in 
integer leaves the integer unchanged. The function rrotate simply extracts 
the rightmost nbit s bits of word into rbit s, shifts bits in word to the right by 
nbits bit positions, clears propagated bits, if any, due to this right shift, and 
puts back the bits saved in rbits in the leftmost nbits positions of word. 
Note that the expression 

~ (unsigned) .0 >> nbits 
creates a mask that has all zeros in the leftmost nbits positions and ones 
everywhere else. 
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Example 2 
Write a program that takes as input either a plain text or a cipher text and encodes or 
decodes it using a bit manipulation cipher. 

Bit manipulation ciphers encode the plain text by manipulating the bits 
that compose the characters of the text. A simple, although not very secure, bit 
manipulation cipher creates the cipher text by using the bitwise complement 
operator to invert every bit of the plain text. The plain text can be recovered 
from the cipher text by reapplying the bitwise complement operator to the 
cipher text. 

A better encoding method is to take the exclusive OR of the plain text with 
a key. If the text is larger than the key, the key is cycled until the whole text has 
been encoded. The plain text can be recovered from the cipher text by taking 
the exclusive OR of the cipher text with same key, since the exclusive OR has 
the property that it yields the original byte when a byte is exclusive-ORed 
twice with some other byte. 

The program to encode or decode a text by exclusive-ORing it with a key is 
as follows: 

•include <stdio.h> 
•include <string.h> 
•define KEY "snuffle-upagus" 

unsigned char key[] = KEY; 

int main(void) { 
int c, i = 0, keylen = strlen(KEY); 

while ((c = getchar()) != EOF) 
putchar(c A key[i++ % keylen]); 

return 0; 
} 

• Example 3 
• Write functions to compress an ASCII text and to recover the original text from the 

compressed text. 

Compression squeezes a given amount of information so that it requires 
less storage. We consider a bit compression technique in which eight characters 
are compressed into seven bytes, resulting in a 12.5% saving in storage. This 
technique exploits the fact that no ASCII letter or punctuation mark uses the 
eighth bit of a byte. Therefore, the eighth bit of each of the seven bytes can be 
used to store the eighth character. 

For example, the word ziggurat is represented in eight bytes as 

byte 0 0111 1010 
bytel 0110 1001 
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byte 2 0110 0111 
byte 3 0110 0111 
byte 4 0111 0101 
byte 5 0111 0010 
byte6 0110 0001 
byte 7 0111 0100 

The seven significant bits of byte 0 can be distributed into the seven unused 
positions of bytes 1 through 7. The seven remaining bytes then appear as 

' b y t e l 1110 1001 
byte 2 1110 0111 
byte 3 1110 0111 
byte 4 1111 0101 
byte 5 0111 0010 
byte6 1110 0001 
byte 7 0111 0100 

The following function reads ASCII text from the standard input and 
writes the compressed text to the standard output: 

•include <stdio.h> 
•define DUMMY ' \ x f f ' 

void compress(void) . { 
. int c, i; 
unsigned char first, rest; 

while ( (c = getchar()) != EOF) { 
first = (unsigned char) c; 

first «= 1; /* shift out the unused 8th bit */ 

for (i = 0; i < 7; i++) { 
if ((c = getchar()) != EOF) 

/* turn off the 8th bit */ 
rest = (unsigned'char) c & '\x7f'; 

else 
rest = DUMMY; 

/* piggyback one bit of first */ 
rest |= (first « i) & ' \ x 8 0 ' ; 

} 
} 

putchar(rest); 
} 
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The number of characters in the input may not be an even multiple of 8. 
Dummy bytes are inserted at the end to cover any such deficiency. 

The following function takes as input a compressed text created using the 
compress function, and decompresses it to recover the original text: 

•include <stdio.h> 
•define DUMMY '\xff' 

void decompress(void) { 
int c, i; 
unsigned char byte[8]; 

for (;;) { 
for (i = 1, byte [0] = 0; i < 8; i++) { 

if ((c = getchar()) == EOF) return; 
/* turn off the 8th bit */ 
byteti] = (unsigned char) c & '\x7f'; 
/* assemble the first character */ 
byte[0] |= ((unsigned char) c & '\x80') » i; 

} 
for (i = 0; i < 8; i++) /* output 8 characters */ 

if (byte[i] != DUMMY) putchar(byte[i]); 
} 

} 

• Example 4 
II Write a program that computes the transitive closure of a given directed graph. 

A directed graph G consists of a set of nodes and a set of arcs. An arc is an 
ordered pair of nodes (i,j); i is called the tail and j the head of the arc. A path 
from node i\ to i„ is a sequence of nodes i\, ii,.. ., i„, such that (iyiz), (12,13), • • ., 
(in-iJn) are arcs in G. In many applications, we are interested in determining 
whether there exists a path from node i to node /'. The transitive closure 6 of G is 
a directed graph such that & has an arc from node i to node j, if and only if 
there is a path from i to j in G. 

A directed graph can be represented by an adjacency matrix A such that the 
element ay = 1 if there is an arc from i to j, and 0 otherwise. Given an initial vxv 
adjacency matrix, its transitive closure can be obtained, using the Warshall algo-
rithm, as 

For k = 1 to v do 
For i = 1 to v do 

For j = 1 to v do 
atj = ay I (aik & akj). 
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The following program computes the transitive closure of a given directed 
graph using the Warshall algorithm: 

•include <stdio.h> 
tdefine N 5 /* assume 32-bit integers */ 
•define INTSIZE (1 « N) /* 32 */ 
• define MAXNODE 250 /* highest node number */ 
•define MAXROW MAXNODE + 1 /* rows in the adjacency matrix */ 
• define MAXCOL (MAXNODE » N) +1 /* columns */ 

/ * 
* returns true if the bit at position p in the integer i is 1 
* / 

int bitset(unsigned int num, int pos) { 
return num >> pos & 1; 

} 

void warshall(unsigned int matrix[MAXROW][MAXCOL], 
int nodes) 

{ 
int i, j, k; 

_for (k = 0; k <= nodes; k++) 
for (i = 0; i <= nodes; i++) 

if (bitset(matrix[i][k » N], k % INTSIZE)) 
for (j = 0; j <= nodes >> N; j++) 

matrix[i][j] |= matrix[k][j]; 
} 

int input(unsigned int matrix[MAXROW][MAXCOL]) { 
int tail, head, maxnode = -1, greater; 

while (scanf("%d %d", Stail, Shead) != EOF) { 
if (tail >= MAXROW || head >= MAXROW) continue; 
matrix[tail][head » N] |= 1 « head % INTSIZE; 
greater = tail > head ? tail : head; 
if (greater > maxnode) maxnode = greater; 

} 
return maxnode; /* the highest node number in input */ 

} 

void output(unsigned int matrix[MAXROW][MAXCOL], 
int nodes) 

{ 
int i, j; 
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for (i = 0; i <= nodes; i++) 
for (j = 0; j <= nodes; j++) 

if (bitset(matrix[i][j » N], j % INTSIZE)) 
printf("% %d\n", i, j); 

} 

int main(void) { 
unsigned int matrix[MAXROW][MAXCOL]; 
int nodes; 

nodes = input(matrix); 
warshall(matrix, nodes); 
output(matrix, nodes); 
return 0; 

} 
The adjacency matrix is represented in memory by the two-dimensional 

array matrix. We assume that the node numbers are nonnegative, including 0. 
Therefore, the number of rows in matrix is one more than the highest 
expected node number MAXNODE. Instead of allocating one full word to repre-
sent an element of the adjacency matrix, we pack information in one word for 
as many elements as the size of the word in bits, since each element can assume 
only a 0 or 1 value. Therefore, the size of each row of matrix in words is one 
more than MAXNODE divided by the size of the word in number of bits. 

The input graph is specified as a set of arcs. Each arc is specified as a pair of 
node numbers, the first being the tail and the second the head. The function 
input reads data for one arc at a time and sets the corresponding bit in 
matrix to 1. The function warshall computes the transitive closure of the 
adjacency matrix. Finally, the function output examines bits of matrix and 
outputs the corresponding arc if the bit is 1. 

Example 5 
Define a concise data structure to store the current date and time, and use it in a func-
tion that prints this information. 

The desired data structure and function, using bit-fields, are as follows: 

•include <stdio.h> 
•define BASE 1900 

char *monthname[] = { 
"Jan", "Feb", "Mar", "Apr", "May", "Jun", 
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" 

1; 
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char *dayname[] = { 
"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" 

In-

struct dt 

{ unsigned day 5 / * 1 - 31 */ 
unsigned month 4 / * 0 - 11 (0 => January) * / 
unsigned year 8 / * 1900 - 2099 */ 
unsigned weekday 3 / * 0 - 6 (0 => monday) * / 
unsigned hour 4 / * 1 - 12 */ 
unsigned minute 6 / * 0 - 59 */ 
unsigned am 1 / * 1 => a.m. 0 => p.m. * / 

} now = {1, 0, 0, 0, 12, 0, 1); 

void date(struct dt t) { 
printf("%s %s %d %d:%d %s %d\n", dayname[t.weekday], 

monthname[t.month], t.day, t.hour, t.minute, 
t.am ? "AM" : "PM", t.year+BASE); 

} ; 
Given the above initialization of the variable now, the function call 

date (now) prints 

Mon Jan 1 12:0 AM 1900 

Exercises 9 

1. Determine the mask that reproduces the second and fourth bits and sets all other 
bits to zero when 
a. ANDed with an integer variable; 
b. inclusively ORed with an integer variable. 

2. Determine the mask and operation that complement the values of the second and 
fourth bits of an integer variable, leaving all other bits unchanged. 

3. Determine the value of each of the following expressions: 
a. 3 | 2 & 1 b. 3 | 2 & ~ 1 
c. 3 ~ 2 & 1 d. 3 A 2 & ~ 1 
e. ~ 1 | 1 /. ! 1 | 1 

4. Determine the value of each of the following expressions: 
a. 1 « 3 » 2 « 2 » 3 
b. 1 « 2 » 3 « 3 » 2 
c. 6 - 5 » 4 - 3 « 2 - 1 
d. (6 - 5 » 4 ) - ( 3 « 2 - 1 ) 
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e. 1 « 2 « 3 » 1 + 5 / 4 » 3 % 2 + (int) 1.5 * 2 
/. ( 1 « 2 « ( 3 » 1 ) + 5 

/ ( 4 » 3 % 2 ) + (int) 1.5 ) * 2 
g . - 2 * - 3 / 4 % 5 « l - - 6 + 8 » l 
h. - ( 2 * ( - 3 / (double) ( 4 % ( 5 « 1 ) ) ) ) 

- ( - 6 + < 8 » 1 ) ) 
5. Write a program that determines whether the right shift on your computer is an 

arithmetic or a logical one. 

6. Write a program that determines whether the bit-fields are packed left to right or 
right to left on your computer. 

7. Write a program that prints the binary representation of an integer using shift oper-
ators. 

8. Write a program that prints a 32-bit integer as eight hexadecimal digits using bit-
fields. 

9. Write a function that, starting from position p, inverts n bits of an integer to the left 
or the right of p according to whether n is positive or negative. 

10. Write a function that, starting from position p, sets n bits of an integer to a bit pattern 
specified right-justified in another integer. The bits are to be set to the left or the 
right of p according as n is positive or negative. 

11. Write a function that searches, starting from the leftmost position of an integer, for 
an n-bit-long pattern, specified right-justified in another integer, and returns the 
starting position of the bit pattern. 

12. Redo the problem of finding all primes less than 1000 using the sieve of Eratosthenes 
discussed in Exercise 8 of Chapter 6, but now use the 32 bits of a word to represent 
32 adjacent numbers. 

13. A manufacturing process requires monitoring the temperature of 3000 points. The 
temperature of a point can be in the range -400° F to +400° F. Three temperatures 
have been packed in one 32-bit word, with 9 bits being used to represent a tempera-
ture value and 1 bit to indicate its sign. Write a function that prints the points having 
minimum and maximum temperatures. 

14. In binary coded decimal codes, four bits are used to represent a decimal digit. Thus, 
a 4-digit decimal number can be represented in a 16-bit word. Write functions to 
convert the binary coded decimal representation of a decimal number into its binary 
representation, and vice versa. 

15. Write a program that compresses a text file by duplicating a specified 8-bit mask for 
every group of eight characters and deleting the characters corresponding to a 0 bit 
in the mask. For example, if the mask and text were 

10110101 

and 

Never trust to general impressions, my boy, 
10110101101101011011010110110101101101011011 
but concentrate yourself upon details. 
010110110101101101011011010110110101101 

respectively, then the compressed text would be 

Nve rut ogeerlimreson, ybo, 
u cncnrae orslfuondeals 



File Processing 

In all the C programs considered so far, we have assumed that the input data 
was read from standard input, normally the terminal, and the output was 

displayed on standard output, also the terminal. These programs are adequate 
if the volume of data involved is not large. However, many applications, 
particularly business-related applications, require that a large amount of data 
be read, processed, and saved for later use. Programs may require 
simultaneous access to more than one kind of data and may produce more than 
one form of output. The preparation of the payroll of a large company is an 
example of such an application. Not only is the pay data of a large number of 
employees processed to print the paychecks, but many results of the current 
month's processing, such as taxes withheld so far, are saved for future payroll 
processing. The data in such cases is stored on an auxiliary storage device, 
usually a magnetic tape or disk, discussed in Chapter 1. 

Information stored on auxiliary devices is arranged in the form of files, and 
each line of data in the file is called a record. A record is a collection of related 
data items. Examples of a record are all data items related to an employee, all 
data items related to the inventory of a material in a store, or all responses of a 
person to some survey questionnaire. The corresponding collection of records 
will constitute an employee file, an inventory file, or a survey file, respectively. 

C does not provide language constructs for input/output operations. 
However, ANSI C has defined a rich standard I/O library, a set of functions 
designed to provide a standard I/O system for C programs. We shall discuss in 
this chapter the functions available in the I/O library and their use in writing 
applications involving file processing. 

10.1 OVERVIEW 
The standard library supports a simple model of input and output based on the 
concept of a stream. Input and output, whether to or from a physical device 
such as a terminal, or to or from a file resident on a storage device such as a 
disk, are mapped into streams of characters, so that the programmer does not 
have to be concerned about the diverse properties of various types of I/O 
devices. A stream can be a text stream or a binary stream. 

A text stream is a sequence of characters composed into lines, each line con-
sisting of zero or more characters and a terminating newline character. ANSI C 

338 
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requires implementations to allow for at least 254 characters in a line. The char-
acters in a text stream need not have one-to-one correspondence with the 
characters in its external representation; transparent to the user of the stream, 
characters may be added, altered, or deleted on input and output to conform to 
different conventions for representing text in the host environment (such as 
mapping ' \n' to carriage return and linefeed). A binary stream, on the other 
hand, is a sequence of unprocessed bytes. The newline character has no special 
significance in binary streams. Binary streams can be used to record internal 
data, since any C data value may be mapped into an array of characters. 

A stream can be unbuffered, fully buffered, or line buffered. Characters are 
transmitted to and from the external representation of the stream immediately 
if it is unbuffered, as a block when a buffer is filled if it is fully buffered, and as 
a block when a newline character is encountered or the buffer is filled if it is 
line buffered. 

A stream is associated with a file or device by opening it. A file may also be 
created when it is opened. A structure of type FILE, declared in <stdio .h>, is 
associated with every open stream and contains the information necessary for 
controlling the stream, such as the file position indicator, error indicator, end-of-file 
indicator and pointer to the associated buffer. When a file is opened, a pointer to 
this structure, referred to as the file pointer, is returned to be used in subsequent 
file operations. A stream may be disassociated with the corresponding file or 
device by closing it. Before an output stream is disassociated, it is flushed auto-
matically; i.e., any unwritten buffer contents are transferred to the external rep-
resentation of the stream. 

When a C program is started, three text streams are opened automatically: 
standard input for reading input, standard out for writing output, and standard 
error for writing diagnostic output. The corresponding file pointers are called 
stdin, stdout, and stderr, and are declared in <stdio.h>. Normally, 
stdin is connected to the terminal keyboard and stdout and stderr to the 
terminal screen, but they may be redirected to other files. The separation of 
error messages from normal output allows, for example, the standard output to 
be redirected to a file while the errors are displayed on the screen. 

The specific functions provided in the standard library to implement this 
I/O model have been classified into the following groups: 

i. File access. This group includes functions to open a file (f open), close 
a file (fclose), flush out the buffer associated with a file (fflush), 
and change the file associated with a stream (freopen). Also 
included in this group are functions to allow the users to explicitly 
control the file buffering strategy (setvbuf and setbuf). 

ii. Operations on files. This group includes functions to remove (remove) 
and rename (rename) a file. Functions to create a temporary binary 
file (tmpfile) anti generate a unique file name (tmpnam) are also 
included in this group. 

iii. Formatted input/output. This group includes functions to read (f scanf, 
scanf, and sscanf) and write (fprintf, printf, sprintf, 
vfprintf, vprintf, and vsprintf) formatted data. 

iv. Character input/output. This group includes functions to read a charac-
ter from an input stream (fgetc, getc, and getchar) and push back 
a character to an input stream (ungetc), and also functions for read-
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ing strings (fgets and gets). The corresponding output functions 
(fputc, putc, putchar, fputs, and puts) are also included in this 
group. 

v. Direct input/output. This group includes functions to read (f read) and 
write ( f w r i t e ) a certain number of data items of specified size. 

vi. File positioning. This group includes functions to set the file position to 
some specified value to allow access to a specific portion of the file 
(fseek), interrogate the current file position (ftell), and reset the 
file position to the beginning of the file (rewind). An object type 
fpos_t, capable of recording all the necessary information to specify 
every position within a file, is defined in <stdio.h>. Functions to 
record the current file position in a variable of type fpos_t 
(fgetpos) and to set the file position to a value of type fpos_t 
(f setpos) are also included in this group of functions. 

vii. Error handling. This group includes functions to test whether EOF 
returned by a function indicates an end-of-file or an error ( f e o f and 
ferror), clear end-of-file and error indicators (clearerr), and map 
the error number errno to an error message (perror). The macro 
EOF is defined in <stdio.h>. The macro errno is defined in 
<errno.h> and is set to an appropriate error number by many 
library functions to facilitate error diagnosis. 

Before discussing the details of these library functions, we show you two 
examples of file processing. The copy function first opens an input file inf ile 
and an output file out file . Then it reads one character at a time from the 
input file and writes it to the output file. After all the characters from the input 
file have been copied, it closes both the files. Here is the code for the function: 

•include <stdio.h> 

void copy(char *infile, char *outfile) { 
F I L E * i f p ; / * file pointer for the input file * / 
F I L E * O F P ; /* file pointer for the output file */ 
int c; /* character read */ 

/* open inf ile for reading */ 
ifp = fopen(infile, "r"); 

/* open out file for writing */ 
ofp = fopen (outfile, V ) ; 

/* copy */ 
while ( (c = fgetc (ifp) ) != EOF) /* read a character */ 

fputc (c, ofp); /* write a character */ 

/* close the files */ 
fclose(ifp); 
fclose(ofp); 

} 
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The second function, randcopy, also copies characters from an input file 
to an output file. However, instead of copying characters sequentially to the 
output file and creating a replica of the input file, randcopy reads characters 
to be written to the output file under the control of another file, idxfile. 
Every line of the idxfile contains two numbers. The first number indicates 
the start position in the input file from which the next sequence of characters 
must be read. The second number specifies the number of characters to be read. 
For example, if the input file contains 

antiestablishmentarianism 
and the idxfile contains 

17 3 
4 2 

randcopy creates an output file containing 

aries 
The following is the code for randcopy: 
•include <stdio.h> 
•define MAX 80 
void randcopy(char *infile, 

char *idxfile, char *outfile) 
{ 
FILE *ifp; /* file pointer for the input file */ 
FILE *xfp; /* file pointer for the index file */ 
FILE *ofp; /* file pointer for the output file */ 
long pos; /* start ^position in the input file for next read */ 
int nbytes;/* number of bytes to be read */ 
char buf [MAX];/* buffer to hold the characters read */ 

/* open the files */ 
ifp = fopen(infile, "r"); 
xfp = fopen(idxfile, "r"); 
ofp = fopen (outfile, "w"); 
/* create the output file */ 
while (fscanf(xfp, "%ld %d", &pos, Snbytes) != EOF) { 

/* seek to the correct position in the input file */ 
fseek (ifp, pos, SEEK_SET); 
/* read nbytes characters into buf */ 
fread(buf, sizeof (char), nbytes, ifp); 
/* write the characters read to the output file */ 
fwrite(buf, sizeof (char), nbytes, ofp); 

} 
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/* close the files */ 
fclose (ifp); fclose (xfp) ; fclose.(ofp) ; 

} 

We now describe the functions provided in the standard I/O library. In 
these functions, the arguments or return values that represent the length of a 
string are declared to be of type size_t and the unmodifiable string argu-
ments to be of type const char *. Unless mentioned otherwise, the macros 
used in this description are defined in <stdio. h>. 

10.2 FILE ACCESS 
The file access functions provide facilities for opening and closing a file, flush-
ing out the file buffer, changing the file associated with a stream, and control-
ling the file buffering strategy. 

10.2.1 fopen, f c l o s e , f f lush , freopen 
FILE *fopen (const char *fname, const char *mode) ; 
int fclose (FILE *fp) ; 
int fflush (FILE *fp) ; 
FILE *f reopen (const char *fname, 

const char *mode, FILE *fp) ; 

The function fopen opens the file named fname in the manner indicated by 
the argument mode. A successful fopen returns a pointer of type FILE *, 
which is used to identify the file in subsequent 1/O operations; otherwise, a 
NULL value is returned. At most FOPEN_MAX files can~be opened simulta-
neously. A file name can have at most FI LENAME_MAX characters. Permitted 
values for mode include: 

"r" Open an existing text file for reading, starting at the beginning 
of the file. 

" w " Create a new text file, or truncate an existing one, for writing. 
" a " Create a new text file for writing, or write at the end of an exist-

ing one. 

An additional plus in the mode string ("r+", "w+", and "a+") indicates that 
the file has been opened for update, that is, it may be used for both input and 
output. However, an input operation, unless it encounters end-of-file, may not 
be followed by an output operation, nor an output operation by an input oper-
ation, without an intervening call to f flush, fseek, rewind, or fsetpos. A 
b may also be included in mode ("rb", "wb", "ab", "rb+", "wb+", and 
"ab+") to indicate operation on a binary file. The modes "rb+", "wb+", and 
"ab+" can also be written as "r+b", "w+b", and "a+b" respectively. For 
example, the first fopen in 

FILE *fpl, *fp2; 
fpl = fopen("payroll", "w"); 
fp2 = fopen("inventory", "ab+"); 
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opens the text file named payroll for writing. If payroll already exists, its 
contents are truncated; otherwise, an empty file is created for storing payroll 
records. The second fopen opens the binary file inventory for both reading 
and writing. If inventory already exists and a write is issued after opening it, 
the new inventory record will be written after the last record in the file. A new 
file with the name inventory is created if it does not already exist. Hence-
forth, the file pointers fpl and fp2 are used to refer to these files in the pro-
gram. 

The function fclose discards any unread buffered input, flushes any 
unwritten buffered output, frees any automatically allocated buffer, and closes 
the file identified by the file pointer fp. It returns 0 when successful, and EOF 
otherwise. For example, the call 

fclose(fpl) 
closes the employee file opened earlier. Any operation on the employee file 
using the file pointer fpl will now result in an error. 

The function f flush flushes any buffered but unwritten output to the file 
identified by the file pointer fp, without closing the file. It returns 0 when suc-
cessful, and EOF otherwise. For example, the call 

fflush(stderr) 
causes any buffered error messages to be written out. When debugging a pro-
gram, a fflush is sometimes put after every write to the standard error to 
ensure that no error message is lost if the program terminates abnormally. 
Some transaction processing systems also require that all outputs of a transac-
tion be written to disk before the transaction is committed. 

The function f reopen first closes the file associated with the file pointer fp 
as if by a call to fclose. It then opens the file named fname in the manner indi-
cated by mode as if by a call to fopen, except that this file is now associated 
with fp rather than a new value of type FILE *. It returns fp when successful, 
and NULL otherwise. Permitted values for mode are the same as discussed with 
fopen. freopen is primarily used to reassociate one of the standard input/ 
output files stdin, stdout, and stderr with another file. For example, the 
call 

freopen("errfile", "a", stderr) 
causes the standard error output, to be redirected to the file errf ile. 

10.2.2 setvbuf, se tbuf 
int setvbuf (FILE *fp, char *buf, int mode, size_t sz) ; 
void setbuf (FILE *fp, char *buf) ; 

The function setvbuf is used to control buffering when the default strat-
egy is unsatisfactory. The file pointer fp identifies the stream whose buffering is 
being controlled. The character array buf, if not NULL, is used in place of the 
automatically-generated buffer, when buffering is requested. The size of the 
buffer is specified by sz, and the type of buffering by mode which can be: 
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_I0FBF The stream is fully buffered. 
_lOLBF The stream is line buffered. 
_IONBF The stream is not buffered. 

A call to setvbuf must occur only after the file has been opened, but 
before any data has been read or written. It returns 0 when successful, and a 
nonzero value otherwise. 

The function setbuf is a special form of setvbuf. The call 

setbuf (fp, buf) 

is equivalent to 

buf == NULL ? (void) setvbuf (fp, NULL, _IONBF, 0): 
(void) setvbuf (fp, buf, _IOFBF, BUFSIZ) 

10.3 OPERATIONS ON FILES 
The operations on files functions provide facilities to remove and rename files, 
create temporary binary files, and generate unique file names. 

10.3.1 remove, rename 
int remove (const char *fname) ; 
int rename (const char *oldname, const char *newname) ; 

The function remove deletes the file named fname. Any subsequent fopen 
call to read this file fails, unless it is created anew. The function rename 
changes the name of a file from oldname to newname. Both functions return 0 
when successful, and a nonzero value otherwise. 

10.3.2 tmpfi le , tmpnam 
FILE *tmpfile(void) 
char *tmpnam(char *s) 
The function tmpfile creates a temporary binary file for update using 

the fopen mode "wb+", and returns a file pointer to it. A null pointer is 
returned if the file could not be created. A temporary file can only be used dur-
ing the current program's execution and is automatically removed when closed 
or when the program terminates normally. If the program terminates abnor-
mally, the result is implementation-dependent. Temporary files are useful for 
storing the intermediate results of a computation. 

The function tmpnam creates a new file name that does not conflict with 
that of any of the existing files, stores it in an internal static character array, and 
returns a pointer to it. If the argument s is not NULL, s must be an array of not 
less than L_tmpnam characters, and tmpnam also copies the newly created file 
name into s. At most TMP_MAX successive calls to tmpnam are guaranteed to 
generate unique names in a program. Note that tmpnam does not create a file; it 
only creates a name. A new file then can be created with that name using 
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fopen. The file so created is not automatically removed when the program ter-
minates. If tmpnam does not succeed, it returns a null pointer. 

10.4 FORMATTED INPUT/OUTPUT 
The formatted input/output functions allow input and output of formatted 
data. We introduced preliminary ideas related to scanf and printf in Section 
2.8. We now discuss in detail these and other formatted input/output func-
tions. 

10.4.1 f s c a n f , scanf , s s c a n f 
int fscanf (FILE *fp, const char *format, argl, argl, . . . ) ; 
int scanf (const char *format, argl, argl, . . . ) ; 
int sscanf (char *s, const char *format, argl, argl, . . . ) ; 

The function fscanf reads characters from the stream fp, converts them 
according to the control string format, and assigns converted values to objects 
pointed to by the remaining arguments argl, argl, This function returns the 
number of objects that have received conversion results, or EOF if an input fail-
ure occurs before any conversion. Remember that each argument argi must be a 
pointer to the variable where the result of input is to be stored — if you want 
the result to be stored in i, you must specify &i as the argument. 

The function scanf is equivalent to fscanf, except that the characters are 
read from the standard input stdin. 

The function sscanf is equivalent to fscanf, except that the characters 
are read from the string s. A read beyond the end of s is treated analogously to 
reading beyond the end-of-file. 

The control string can be viewed as a picture of the expected form of input, 
with the formatted input function performing a matching operation between 
the control string and the input stream. The control string can contain: 

i. Whitespace characters. Any sequence of consecutive whitespace charac-
ters in the control string matches any sequence of consecutive 
whitespace characters in the input stream. 

ii. Conversion specifications. A conversion specification begins with the 
character %, and is followed in order by an optional assignment sup-
pression character, an optional maximum field width specification, an 
optional size modifier, and a required conversion control character. Con-
version specifications usually result in assignment of values to the 
variables pointed to by the corresponding arguments. 

iii. Ordinary characters. Any character other than a whitespace or % must 
match the next input character. 

We now discuss the various components of-a conversion specification. 
The conversion control character determines the number of input characters 

read and their interpretation. The conversion control characters d, f, e, and c, 
and their effects have already been discussed in Section 2.8.2. The rest are 
described below: 
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i An integer is expected in the input. The corresponding argu-
ment must be of type int *. The input integer may be in deci-
mal, octal, or hexadecimal notation. 

o An octal integer (with or without a leading 0) is expected in the 
input. The corresponding argument must be of type int *. 

x A hexadecimal integer (with or without leading Ox) is expected 
in the input. The corresponding argument must be of type 
int *. 

u A decimal integer is expected in the input. The corresponding 
argument must be of type unsigned int *. 

g Its effect is identical to that of f and e. 
s A character string is expected in the input. The corresponding 

argument must be a pointer to the first element of an array of 
characters large enough to hold the string and the terminating 
null character that gets added automatically. 

p A pointer value, written by the %p conversion in fprintf, is 
converted and assigned to the variable pointed to by the corre-
sponding argument, which must be of type void * *. 

n The number of characters read from the input so far by this call 
to f scanf is written into the variable pointed to by the corre-
sponding argument, which must be of type int *. No input is 
read and the assignment count returned is not incremented. 

% A single character % is expected in the input. No conversion or 
assignment is made. 

[. . . ] The longest string consisting of characters from the set between 
brackets is read into the corresponding argument, which must 
be a character array large enough to hold the string and an auto-
matically appended terminating null character. If and only if the 
circumflex A immediately follows the initial [, it serves as a 
negation flag. In other words, the longest string of characters 
not from the set between brackets is then read. 

The conversion control characters e, g, and x may be capitalized without 
changing their effects. 

The assignment suppression character * is used for skipping over the input. It 
causes input characters to be read and processed in the usual way for the corre-
sponding conversion control character, but no assignment is made and no 
pointer argument is consumed. 

The maximum field width specification, specified as a decimal integer, limits 
the maximum number of characters read as the result of a conversion specifica-
tion. 

A size modifier (h, 1, or L), when it precedes certain conversion control char-
acters, alters the interpretation of the corresponding arguments as follows: 

h (or 1) preceding d, i, n, o, or x implies that the corresponding argu-
ment is a pointer to short (or long) int, rather than a pointer 
to int. 

h (or 1) preceding u implies that the corresponding argument is a 
pointer to unsigned short (or long) int, rather than a 
pointer to unsigned int. 
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1 (or L) preceding e, f, or g implies that the corresponding argument is ' 
a pointer to double (or long double), rather than a pointer to 
float. 

We now describe the execution of the fscanf function. If a failure occurs 
at any stage during the execution of fscanf, the function returns immediately 
with a nonzero value. A failure can be input failure due to the unavailability of 
input characters, or matching failure due to inappropriate input. The control 
string is scanned from left to right and the following actions take place: 

• A whitespace in the control string is matched by reading input up to the 
first non-whitespace character which remains unread, or until no more 
characters can be read. Thus, a sequence of whitespaces in the control 
string matches the largest sequence of whitespaces (possibly of length 
zero) in the input stream. 

• An ordinary character in the control string is matched with the next 
character of the input stream. If the input character is different, the char-
acter remains unread, and fscanf fails, fscanf also fails if there are no 
more characters in the stream. 

• A conversion specification is processed in the following steps: 

i. Input whitespaces are skipped, unless the specification contains 
the conversion control character c, n, or [. 

ii. An item is read from the input stream as per the conversion control 
character in the specification (observing the maximum field width 
specification, if any), unless the specification contains the conver-
sion control character n. The first character after the input item 
remains unread, fscanf fails if the length of the input item read is 
zero, or if some error prevents input from the stream. 

iii. Except in the case of the conversion control character %, the input 
item (or the count of input characters in the case of the conversion 
control character n) is converted to a type appropriate to the con-
version control character in the specification. Unless assignment 
suppression is indicated, the result of conversion is placed in the 
object pointed to by the first argument following the control string 
that has not already received a conversion result. If this object does 
not have an appropriate type, or if the result of conversion cannot 
be represented in the space provided, the behavior is undefined. 

The function FSCANF returns EOF if an input failure occurs before any con-
version; otherwise, it returns the number of objects that have received conver-
sion results, which can be less than the number of arguments following the 
control string, or even zero, if an early conflict occurs between an input charac-
ter and the control string. 

Here are some examples: 
The call to fscanf in 

int i; float f; 
fscanf(stdin, "%i%f", &i, &f); 

with the input 

-123.456 
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assigns -123 to i and . 456 to f because the decimal point terminates the inte-
ger data item being read. On the other hand, the call to f scanf in 

int i; float f; short s; 
fscanf(stdin, "%3i%4f%5hd", &i, &f, &s); 

with the same input first assigns -12 to i because only 3 characters are read 
due to the maximum field width specification. It then assigns 3.45 to f 
because the maximum field width has been specified to be 4. Finally, it assigns 
6 to s because the space terminates the input item although the maximum field 
width is 5. Note the use of the size modifier h to assign the converted value to a 
short variable. 

The call to scanf in 

int n; double d; float f; 
n = scanf("%31f %25g%50*d foo %%", &d, &f); 

with the input 

-12345 6789foo % 
processes % 31 f by first reading three characters from the input and assigning 
-12 . 0 to d (the maximum field width specification limits the number of char-
acters read and the size modifier 1 assigns the converted value to a double 
variable). It then matches the whitespace in the control string by reading up to 
the first non-white character, which is 3 and remains unread. Next, it processes 
%25g by assigning 345.0 to f (the space terminates the input item). It then 
processes %50*d by first skipping the two whitespace characters in the input 
and then reading 6789, but no assignment is made due to the assignment sup-
pression character * (the character f in the input terminates the integer data 
item being read). Next, it matches the next space in the control string but no 
character is read because the next input character is f. Then it matches the next 
three ordinary characters foo in the control string with foo in the input and 
discards them. It now matches the next space in the control string with six 
spaces in the input and discards them. Next, it processes %% by reading % from 
the input and discarding it. Finally, it assigns 2, the number of arguments suc-
cessfully read, to n. 

The call to scanf in 

char si [10], s2[10], s3[10], c; 
scanf("%s%c%ls%s", si, &c, s2, s3); 

with the input 

a bed 
assigns a\0 to si, 1/(space) to c, b\0 to s2, and cd\0 to s3, because the spec-
ification %c does not cause whitespaces to be skipped, but %ls skips white-
spaces before the input item is read. Note that the call 

scanf("%s %c%1s%s", si, &c, s2, s3); 
with the same input would have assigned a\0 to si, b to c, c\0 to s2, and 
d\0 to s3, because the space in the control string would have matched all the 
spaces between a and b in the input. 
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The call to sscanf in 

char si[10] , s2[10] , s3[10], *s = "213431A2"; 
sscanf(s, "%[012]%[A012]% [0^12] si, s2, s3) ; 

reads from string s. It assigns 21 \ 0 to s 1 because % [ 012 ] matches the largest 
string consisting of characters 0,1, or 2. Next, it assigns 343\0tos2 because 
% [A 012 ] matches the largest string consisting of characters other than 0 , 1 , or 
2, as A immediately follows [. Finally, it assigns 1A2\0 to s3 because 
% [ 0 A12 ] matches the largest string consisting of characters 0, A, 1, or 2, as A 

does not immediately follow [. 
The execution of the program fragment 

int n; float ql, q2; char ul[16], u2[16]; 
while ((n = scanf("%f %15s = %f %15s", 

&ql, ul, &q2, u2)) != EOF) 
scanf("%*[A\n]"); 

with the input 

1 pole = 11/2 yards 
one gram = 0.035 ounces . 
1 gallon equals 3.79 litres 
lelectron = 1/1837 proton 

is equivalent to the following assignments: 

n = 4; ql = 1; strcpy(ul,"pole"); 
q2 = 11; strcpy (u2,"/2"); 

n = 0; /* o fails to match %f */ 
n = 2; ql = 1; strcpy (ul, "gallon");/* e fails to match = */ 
n = 0; /* le fails to match %f */ 
n = EOF; 

10.4.2 f p r i n t f , p r i n t f , s p r i n t f , v f p r i n t f , v p r i n t f , 
v s p r i n t f 
int fprintf (FILE *fp, const char *format, argl, argl, . . . ) ; 
int printf (const char *format, argl, argl, . . . ) ; 
int sprintf (char *s, const char *format, argl, argl, . . . ) ; 
int vfprintf (FILE *file, const char *format, va_list arg) ; 
int vprintf (const char *format, va_list arg); 
int vsprintf (char *s, const char *format, va_list arg); 

The function fprintf converts argl, argl, . . . according to the control 
string format, writes them to the stream fp, and returns the number of characters 
written. A negative value is returned in the event of an output error. 

The function printf is equivalent to fprintf, except that the output is 
written to the standard output stdout. 

The function sprintf is equivalent to fprintf, except that the output is 
written to the array s. A null character is automatically written at the end of the 
output, but the return count does not include this terminating null character. It 
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is the programmer's responsibility to ensure that s is large enough to hold the 
output. 

The last three functions, vfprintf, vprintf and vsprintf, are equiva-
lent to fprintf, printf, and sprintf respectively, except that the argu-
ments argl, argl, . . . are specified in a variable argument list arg. These func-
tions are useful for defining functions that take a variable number of 
arguments and write formatted output. The variable argument facility is dis-
cussed in Chapter 12. 

The control string is the text to be copied verbatim to the output stream, 
except that it may also contain conversion specifications that cause successive 
arguments to be converted, resulting in output characters not explicitly con-
tained in the string. 

A conversion specification begins with the character %, and is followed in 
order by zero or more flag characters, an optional minimum field width specifica-
tion, an optional precision specification, an optional size modifier, and a required 
conversion control character. We now discuss the various components of a con-
version specification. 

The conversion control character controls the conversion operation. The con-
version control characters d, i, f, e, c, and s and their effects have already 
been discussed in Section 2.8.1. The rest are described below: 

u, o, x The integer argument is converted to unsigned decimal, 
unsigned octal, or unsigned hexadecimal notation respectively. 
A number in the octal notation is printed without the leading 0, 
and in the hexadecimal notation without the leading Ox. 

g The float or double argument is converted into style f or e, 
depending on the value converted; style e is used only if the 
resulting exponent is less than -4 or greater than or equal to the 
precision (the number of significant digits to be printed), which 
by default is 6. Trailing zeros are removed from the fractional 
part; a decimal point appears only if it is followed by a digit. 

p The argument, a pointer to void, is converted to an implemen-
tation-dependent sequence of printable characters. 

n The number of characters written to the output stream so far by 
this call to fprintf is written into the argument, which must 
be of type int *. 

% A single character % is written to the output stream. No argu-
ment is consumed. 

The conversion control characters e, g, and x may be capitalized. The E 
conversion produces numbers with E instead of e introducing the exponent, 
the G conversion produces numbers in style E, and the X conversion produces 
hexadecimal numbers using the letters ABCDEF instead of abcdef. 

The flag characters modify the meaning of the conversion specification as 
follows: 

The result of conversion is left-justified within the field width, 
rather than right-justified. 

+ The result of a signed conversion always begins with a sign; 
normally, a sign is printed only if the value is negative. 
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\f> (space) If the first character of a signed conversion is not a sign, a space 
is prefixed to the result. 

0 For numeric conversions, leading zeros, rather than spaces, are 
used for padding to the field width. 

# The result is converted to an "alternate" output form. For o con-
version, the precision is increased to force the first digit of the 
result to be a 0. For x conversion, a nonzero result is prefixed 
with Ox. For e, f, and g conversions, the output always has a 
decimal point character even when no digit follows the decimal; 
for g, trailing zeros are not removed from the result. 

The minimum field width, specified as a decimal integer, causes the con-
verted argument to be written to the output stream in a field of the specified 
size, and wider if necessary. If the converted value has fewer characters than 
the minimum field width, the field is padded on the left (or right, if the - flag is 
present) to make up the field width. The padding character is a space, unless 
modified by the 0 flag. 

The precision is specified as a period ( . ) followed by an optional decimal 
integer, which is treated as 0 if omitted. The precision determines, for conver-
sion control characters, 

d,i,o,u,x the minimum number of digits to be written (leading zeros are 
added, if necessary). With 0 precision, a zero value results in no 
characters in output. 

e,f the number of digits to be written after the decimal point (the 
value is rounded). With 0 precision, the decimal point is not 
written to output. 

g the maximum number of significant digits to be written (lead-
ing zeros do not count). If precision has been specified to be 0, it 
is taken as 1. 

s the maximum number of characters to be written from a string. 

A minimum field width or precision may be specified by an asterisk (*), 
instead of an integer, in which case their values are computed by converting 
arguments. The arguments must be of type int and are consumed. 

A size modifier (h, 1, or L), when it precedes certain conversion control char-
acters, alters the interpretation of the corresponding argument as follows: 

h (or 1) preceding d, i, o, or x implies that the conversion applies to a 
short (or long) int argument. 

h (or 1) preceding u implies that the conversion applies to an un-
signed short (or long) int argument. 

h (or 1) preceding n implies that the conversion applies to a pointer to a 
short (or long) int argument. 

L preceding e, f, or g implies that the conversion applies to a 
long double argument. 

Here are some examples: 
The statement 

printf("%g %G %G %g\n", 
999999.0, 1000000.0, .0001, .00001); 
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prints 

999999 1E+06 0.0001 le-05 
because the g (or G) conversion uses the style e (or E) only if the resulting expo-
nent is greater than or equal to precision (6 by default) or less than -4. 

The statement 

printf("%g %g %g %g %g\n", 
2/2.0, 2/3.0, 2/4.0, 4/3.0, 0); 

prints 

1 0.666667 0.5 1.33333 0 
because the g conversion removes trailing blanks from the fractional part, 
removes the decimal point if not followed by a digit, and prints, by default, at 
most six digits (leading zeros do not count) of the rounded value. 

The statement 

printf("{%d}. {%.2d} {%.0d} {%.d}\nM, 0, 0, 0, 0); 
prints 

{0} {00} { } { } 

because the precision specifies for d conversions the minimum number of dig-
its to be printed, but no digits are printed when the precision has been specified 
to be-0 or omitted and the value to be printed is zero. 

The statement 

printf("{%d} {%3d} {%-3d} {%03d} {%3.2d} {%3.0d}\n", 
0 , 0 , 0 , 0 , 0 , 0 ) ; 

prints 

{0} { 0} {0 } {000} { 00} { } 

because the minimum field width specifies the minimum size in which the 
value must be printed. The - flag causes the value to be left-justified within the 
field and the 0 flag makes zero the padding character. 

The statements 

char *s = "snare"; 
printf("{%4s} {%-4s} {%.4s} {%-.4s}\n", 

s, sf s, s) ; 
printf.(" { %6s } {%-6s} {%.6s} {%-.6s}\n", 

S / S / S / S ) / 

printf ("{%6.4s} {%-6.4s} {%4.6s} {%-4.6s}\n", 
s , s , s , s) ; 

print 

{snare} {snare} {snar} {snar} 
{ snare} {snare } {snare} {snare} 
{ snar} {snar } {snare} {snare} 
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because the precision specifies for s conversions the maximum number of 
characters to be printed from the string, the minimum field width specifies the 
minimum size in which the string must be printed, and the - flag causes the 
string to be left-justified. 

The statements 

printf("{%4.Of} %.lf %.2f %.5f\n", 
1/3.0, 1/3.0, 1/3.0, 1/3.0, 1/3.0); 

printf ("{%4.0e} %.le %.2e %.5e\n", 
1/3.0, 1/3.0, 1/3.0, 1/3.0, 1/3.0); 

printf("{%4.0g} %.lg %.2g %.5g\n", 
1/3.0, 1/3.0, 1/3.0, 1/3.0, 1/3.0); 

print 

{ 0} 0.3 0.33 0.33333 
{3e-01} 3.3e-01 3.33e-01 3.33333e-01 
{ 0.3} 0.3 0.33 0.33333 

because the precision specifies the number of digits to be printed after the deci-
mal point for f and e conversions, but the maximum number of significant 
digits to be printed (not counting the leading zeros) for g conversions. With 0 
precision, the decimal point is not printed for f and e conversions, but the pre-
cision is taken as 1 for g conversions. 

The statements 

float f; 
for (f = 1; f >= -1; f — ) 

printf ("% E %+e %E\n", f, f, f); 
print 

1.000000E+00 +1.000000e+00 1.000000E+00 
0.000000E+00 +0.000000e+00 0.000000E+00 

-1 .000000E+00 -1 .000000e+00 -1 .000000E+00 

because the space flag causes a space and the + flag a + to be prefixed before a 
positive value. 

The statements 

long lg; 
for (lg = 0; lg <= 10; lg += 10) 

printf("0%lo %#lo 0X%1X %#lX\n", lg, lg, lg, lg) ; 
print 

, 00 0 0X0 0 
012 012 0XA 0XA 

because the # flag forces the first digit to be 0 for o conversions and a nonzero 
result to be prefixed with Ox for X conversions. The size modifier 1 has been 
used to specify that the corresponding arguments are long integers. This 
example also illustrates that the effect of the # flag is not the same as prefixing 
the conversion specification with ordinary characters 0 or OX inside the control 
string. 
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The statement 

printf("%f %.0f %#.0f %g %#g\n", 
1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 ) ; 

prints 

1 .000000 1 1. 1 1 .00000 

because the # flag forces the decimal point to be printed for f and g conver-
sions even when no digit follows the decimal, and forces trailing zeros to be 
retained for g conversions. 

The statement 

printf("%06.If %0*.*f\n", -1.55, 6, 0, -1.55); 
prints 

- 0 0 1 . 6 - 0 0 0 0 2 

because the 0 flag alters the padding character to zero, the asterisks for the 
minimum field width and precision specifications cause their values to be com-
puted by converting arguments, making the second specification %06. Of, and 
0 precision for the f conversion causes the rounded value of the next argument 
to be printed without a decimal point. 

Finally, the statements 

int nchars; 
printf("%%n has been added by ANSI C\n%n", Snchars); 

print 

%n has been added by ANSI C 
and sets nchars to 28, because the % conversion causes % to be prir 1 and th^ 
n conversion causes the number of characters printed so far to be assigned 10 
the next argument. Note that the argument corresponding to the %n specifica-
tion must be a pointer to an integer. 

10.5 CHARACTER INPUT/OUTPUT 
The character input/output functions provide facilities for reading and writing 
characters and strings of characters. 

10.5.1 f g e t c , g e t c , ge tchar , ungetc 
int fgetc (FILE *fp) ; 
int getc (FILE *fp) ; 
int getchar(void); 
int ungetc (int c, FILE *fp) ; 

The function fgetc reads as unsigned char a character from the stream 
fp and returns it as a value of type int. Successive calls to fgetc return succes-
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sive characters from the specified stream, until an error occurs or the end-of-file 
is reached, in which case f getc returns EOF. 

The function getc behaves like fgetc, except that it is usually imple-
mented as a macro for efficiency. When implemented as a macro, its argument 
may be evaluated more than once, and hence should not have side effects. 

The function getchar is identical to getc with argument stdin. 
The function ungetc pushes the character specified by c (converted to an 

uns igned char) back to the stream fp. The same character will be returned by 
a subsequent read from that stream. A pushed-back character is not actually 
written to the stream but is only placed in the buffer associated with the 
stream. A file positioning operation (f seek, fsetpos, or rewind) discards 
the pushed-back character. Only one character of pushback is guaranteed; 
more than one call to ungetc on the same stream without an intervening read 
or file positioning operation on that stream may cause ungetc to fail. EOF may 
not be pushed back. When successful, ungetc returns the character pushed 
back, and EOF otherwise, ungetc is useful for implementing input scanning 
operations like scanf. A program can peek ahead at the next input character 
by reading it, and push it back if not found suitable. 

Note that the value returned by these functions is that of type int, and not 
char. The reason for it has to do with detecting the end of input. When the end 
of input is reached, these functions return EOF, the conventional value for 
which is -1. Since C does not require that a char be able to hold a signed 
quantity, these functions are made to return an int. For the same reason, if the 
value-returned by any of these functions is to be assigned to some variable, 
then this variable should be declared to be of type i n t . 

10.5.2 f g e t s , g e t s 
char *fgets (char *s, int n, FILE *fp) ; 
char *gets(char *s) ; 

The function fgets reads characters from the stream fp into the character 
array s until a newline character is read (which is retained), or end-of-file is 
reached, or n-1 characters have been read. It then appends a terminating null 
character after the last character read, and returns s. If end-of-file occurs before 
reading any character or an error occurs during input, fgets returns NULL. 

The function gets reads characters from the standard input stdin into 
the character array s until a newline character is read or end-of-file is reached. It 
is the programmer's responsibility to ensure that s is large enough to accom-
modate the largest line in input. Unlike fgets, gets discards the newline 
character, but/like fgets, appends a terminating null character after the last 
character and returns s. If an error occurs during input, or if no characters are 
read, a NULL is returned. 

You should use gets with utmost discretion. Since array bounds are not 
checked in C, if there is a line in input larger than s, get s will go beyond s and 
corrupt your program. 
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10.5.3 fputc , putc , putchar 
int fputc (int c, FILE *fp) ; 
int putc (int c, FILE *fp) ; 
int putchar (int c); 
The function fputc writes the character specified by c (converted to an 

unsigned, char) to the stream fp, and also returns this character as a value of 
type int. Successive calls to fputc write successive given characters to the 
specified stream, unless an error occurs, in which case fputc returns EOF. 

The function putc behaves like fputc, except that it is usually imple-
mented as a macro for efficiency. When implemented as a macro, its argument 
may be evaluated more than once, and hence the argument should not have 
side effects. 

The function putchar is identical to putc with argument stdout. 

10.5.4 fputs , puts 
int fputs (const char *s, FILE *fp) ; 
int, puts (const char *s) ; 
The function fputs writes to the stream fp all but the terminating null 

character of string s. It returns EOF if an error occurs during output; otherwise, 
it returns a nonnegative value. 

The function puts is identical to fputs, except that it writes to the stan-
dard output stdout and appends a newline character immediately after the 
characters written from s irrespective of whether or not s already contains the 
newline character. 

10.6 DIRECT INPUT/OUTPUT 
Direct input/output functions provide facilities to read and write a certain 
number of data items of specified size. 

10.6.1 fread, f w r i t e 
size_t fread (void *s, size__t sz, size_t ft, FILE *fp) ; 
size_t fwrite(const void *s, size_t sz, 

size_t ft, FILE *fp) ; 

The function fread reads into array s up to n data-items of size sz from the 
binary stream fp, and returns the number of items read. The return value may 
be less than n if a read error or end-of-file is encountered. The file position indi-
cator is advanced by the number of characters successfully read. For example, 
assuming 4-byte integers, the statement 

rchar = fread(buf, sizeof (int), 20, input); 
reads 80 characters from input into the array buf and assigns 80 to rchar, 
unless an error or end-of-file occurs. 
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The function f w r i t e writes n items, each of size sz, from the array s into 
the stream fp, and returns the number of items written, which may be less than 
n if an output error occurs. The file position indicator is advanced by the num-
ber of characters successfully written. For example, the statement 

wchar = fwrite(buf, sizeof(char) , 80, output); 
writes 80 characters from the array buf to output, advances the file position 
indicator for output by 80 bytes, and assigns 80 to wchar, unless an error or 
end-of-file occurs. 

10.7 FILE POSITIONING 
A file may be accessed sequentially or randomly. In a sequential access, all the 
preceding data is accessed before accessing a specific portion of a file. Random 
access permits direct access to a specific portion of a file. The file positioning 
functions provide facilities for realizing random access. 

10.7.1 fseek, f t e l l , rewind 
int fseek (FILE *fp, long offset, int whence) ; 
long ftell (FILE *fp) ; 
void rewind (FILE *fp) ; 

The function fseek sets the file position indicator associated with the 
stream fp to a value that is offset bytes from the beginning, the current position, 
or the end of the corresponding file, according as whence is SEEK_SET, 
SEEK_CUR or SEEK_END respectively. The function returns 0 when successful, 
and a nonzero value otherwise. Here are some examples of calls to fseek and 
their effect on the file position indicator: 

fseek (fp, 0L, SEEK_SET) /* sets to the beginning of the file */ 
fseek (fp, 0L, SEEK_END) /* sets to the end of the file */ 
fseek (fp, n, SEEK_SET) /* sets to the nth byte in the file */ 
fseek (fp, n, SEEK_CUR) /* sets ahead by n bytes */ 
fseek (fp, -n, SEEK_CUR) /* sets back by n bytes */ 
fseek (fp, -n, SEEK_END) /* sets to the nth byte 

before the end of the file */ 

The function ftell returns the current value of the file position indicator 
associated with the stream fp. On failure, f t e l l returns -1L. 

The function rewind resets the current value of the file position indicator 
associated with the stream fp to the beginning of the file. The call 

rewind(fp); 
has the same effect as 

(void) fseek(fp, 0L, SEEK_SET); 
The use of rewind allows a program to read through a file more than once 
without having to close and open the file. 
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10.7.2 fgetpos , f se tpos 
int fgetpos (FILE *fp, fpos__t *pos) ; 
int fsetpos (FILE *fp, fpos_t *pos) ; 

The function fgetpos stores the current value of the file position indicator 
associated with the stream fp in the object pointed to by pos. 

The function fsetpos sets the file position indicator associated with the 
stream fp to the value stored in the object pointed to by pos. 

Both functions return 0 when successful, and nonzero values otherwise. 

10.8 ERROR HANDLING 
The error handling functions provide facilities to test whether EOF returned by 
a function indicates an end-of-file or an error, to clear the end-of-file and error 
indicators, and to map the error number errno to an error message. 

10.8.1 feof , f e r r o r , c l e a r e r r , p e r r o r 
int feof (FILE *fp) ; 
int ferror (FILE *fp) ; 
void clearerr (FILE *fp) ; 
void perror (const char *s) ; 
The function f e o f returns a nonzero value if the end-of-file indicator is set 

for the stream fp, and 0 otherwise. A call to feof does not reset the end-of-file 
indicator. 

The function ferror returns a nonzero value if the error indicator is set 
for the stream fp, and 0 otherwise. Once an error has occurred for a file, 
repeated calls to ferror continue to return nonzero values unless the error 
indication is reset by calling clearerr or closing the file. 

The function clearerr clears the end-of-file and error indicators for the 
stream fp. 

The function perror writes to the standard error output stderr the 
string s followed by a colon and a space and then an implementation-defined 
error message corresponding to the integer in errno, terminated by a newline 
character. 

10.9 ILLUSTRATIVE EXAMPLES 
We now give some example programs to illustrate the file processing facilities 
inC. 

Example 1 
Mega Micros pays commission c to its salespersons as a multiple f of sales s in excess of 
quota q, that is, 
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c=f(s-q). 

If quota is not met, no commission is paid. Write a program to print the sales commis-
sion report. 

The report is to be printed in the following form: 

Page 99 
< 29 > 

MEGA MICROS 
Sales Commission Report 

< 21 > 

NAME QUOTA ATTAINED COMMISSION 
<-- 10 -->< 18 >< 17 > 

xxxxxxxxxxxxxxx 999.99 9999.99 
xxxxxxxxxxxxxxx 999.99 9999.99 

The report headers are printed on every page, and each page contains informa-
tion for 25 salespersons. The input data is available in the following form: 

Columns Contents 

1-15 Name 
16-19 Multiplier 
20-26 Quota 
27-33 Actual Sales 

This example exhibits an alternate way of specifying input and output for-
mats. Although not as convenient as using the layout sheets illustrated in Fig-
ures 1.3 and 1.4, these forms are helpful if the layout sheets are not available. 

The desired program is as follows: 

•include <stdio.h> 
•define MAXLINES 25 
•define SPACE " " 

int process(char *progname, FILE *inp, FILE *out); 
void pagehdr(FILE *out, int pageno); 

int main(int argc, char *argv[]) { 
int status; 
FILE *inp = stdin; /* default input */ 
FILE *out = stdout; /* default output */ 
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if (argc != 3 && argc != 1) { 
fprintf(stderr, 

"Usage: %s [<input> <output>]\n", argv[0]); 
return 1; 

} 
else if (argc == 3) { 

if ((inp = fopen(argv[1], "r")).== NULL) { . 
fprintf(stderr,"%s: couldn't open %s\n", 

argv[0],argv[1]); 
return 1; 

} 
if ((out = fopen(argv[2], "w")) == NULL) { 

fprintf(stderr,"%s: couldn't open %s\n", 
argv[0],argv[2]); 

fclose(inp); 
return 1; 

} 
} 

-status = process(argv[0], inp, out); 

if (argc == 3) { fclose(inp); fclose(out); } 

return status; 

int process(char *progname, FILE *inp, FILE *out) { 
int pageno = 0, linecnt = 0; 
float multiplier, quota, sales; 
char name[16]; 

while (fscanf (inp,"%15s%4f%7f%7f", name, 
Smultiplier, Squota, Ssales) != EOF) 

{ 
if (linecnt++ % MAXLINES == 0) 

pagehdr(out, ++pageno); 

fprintf(out,"%10s%-15s%7s%6.2f%9s%7.2f\n", 
SPACE, name, SPACE, 
(sales / quota) * 100, SPACE, 
sales > quota ? 
multiplier * (sales - quota) : 0); 

} 
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if (ferror(inp)) { 
fprintf(stderr, "%s: error in reading input\n", 

progname); 
return 1; 

} 
else 

return 0; 
} 

void pagehdr(FILE *out, int pageno) { 
fprintf(out,"\f%29sPage %2d\n\n\n", SPACE, pageno); 
fprintf(out,"%27sMEGA MICROS\n", SPACE); 
fprintf(out,"%21sSales Commission Report\n\n\n", 

SPACE); 
fprintf(out,"%!OsNAME%14sQUOTA ATTAINED" 

"%3sCOMMISSION\n\n", 
SPACE, SPACE, SPACE); 

} 

The program accepts the names of input and output files as command line 
arguments and opens them in read and write mode respectively. The value 
returned by fopen is checked for possible errors and the program execution is 
terminated if an error is found. If both input and output file names are not 
specified, they are assumed to be standard input and output respectively. 

The function process prints one line of output for each data line. It uses 
two counters: pageno keeps track of the current page number and linecnt 
counts the number of data lines printed. When the maximum permissible data 
lines MAXLINES have been printed on a page, the page counter is incremented 
and the report headers are printed on a new page by the function pagehdr. 

At the end of the while loop, it is checked whether the loop was exited 
due to end of input or because of some input error. The error messages have 
been written to stderr to keep them separate from output, and the name of 
the program is included in the message to identify the source of error when the 
program is used with other programs. 

We will not check the values returned by input/output functions in future 
programs in order to keep them concise and emphasize the major points being 
illustrated, but robust production-quality programs must always include 
extensive error checking. 

i". Example 2 

is S3 Write a program that compares two text files and prints the lines where they first differ. 

The desired program is as follows: 
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•include <stdio.h> 
•include <string.h> 
•define MAXLINE 256 
•define MAXNAME 15 

void compare(char *fnl, FILE *fpl, 
char *fn2, FILE *fp2, FILE *out); 

int main(int argc, char *argv[]) { 
FILE *fpl, *fp2; 

if (argc < 3) { 
fprintf(stderr, 

"Usage: %s <filel> <file2>\n", argv[0]); 
return 1; } -

fpl = fopen (argv [1] , "r"); /* open filel */ 
fp2 = fopen (argv [2 ], "r"); /* open file2 */ 

compare(argv[1], fpl, argv[2], fp2, stdout); 

fclose (fpl); fclose(fp2); 
return 0; 

} 

void compare(char *fnl, FILE *fpl, 
char *fn2, FILE *fp2, FILE *out) 

{ 
char linel[MAXLINE], line2[MAXLINE]; 
char *plinel = linel, *pline2 = line2; 
int lineno; 

for (lineno = 1 ; ; lineno++) { 
plinel = fgets(linel, MAXLINE, fpl); 
pline2= fgets(line2, MAXLINE, fp2); 

if (Iplinel && !pline2) { 
fprintf(out,"%s and %s are identical\n", 

fnl, fn2); 
return; 

} 



SECTION 10.9 / ILLUSTRATIVE EXAMPLES 363 

else if (plinel && !pline2) { 
fprintf (out,."Files differ at line %d\n", 

lineno); 
fprintf(out,"%*s: %s", 

MAXNAME, fnl, linel); 
fprintf (out,"%s exhausted\n", fn2); 
return; 

} 
else if (Iplinel && pline2) { 

fprintf(out,"Files differ at line %d\n", 
lineno); 

fprintf(out,"%s exhausted\n", fnl); 
fprintf(out,"%*s: %s", 

MAXNAME, fn2, line2); 
return; 

> 
else if (strcnip (linel, line2) '! = 0) { . 

fprintf (out,"Files differ at line %d\n", 
lineno); 

fprintf (out,"%*s: %s", 
MAXNAME, fnl, linel); 

fprintf(out,"%*s: %s", 
MAXNAME, fn2, line2); 

return; 
} 

} 
} 

The program reads one line each from two files until a differing line is 
found or one of the files is exhausted, in which case the line read from the other 
file is the first differing line. If both the files are exhausted simultaneously and 
no differing line has been found, the two files are identical. 

The use of * in the minimum field width specification in the fprintf 
statements causes the minimum field width to be determined by the argument 
MAXNAME and avoids embedding integer constants in the control string. We 
could not have written the conversion specification as 

%MAXNAMEs 
since the preprocessor does not reach inside strings. 

We have used the function fgets for reading lines. Therefore, if there are 
lines in the files that are longer than MAXLINE, the line count will not be cor-
rect, although the program will correctly detect the first differing lines. An 
alternative solution is to read files one character at a time, keeping track of line 
boundaries. Rewrite the compare function using this approach. 
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Example 3 
Write a program to append a file to another file. 

The desired program is as follows: 

•include <stdio.h> 
void append(char *destination, char *addendum); 
int main(int argc, char *argv[]) { 

char *tfile; 
if (argc != 3) { 

fprintf(stderr, 
"Usage: %s <file-l> <file-2>\n", argv[0]); 

return 1; 
} 

/* obtain a unique name for a temporary file */ 
tfile = tmpnam(NULL) ; 

/* create and copy the first file to the temporary file */ 
append(tfile, argv[l]); 
/* append the second file to the temporary file */ 
append(tfile, argv[2]); 
/* remove the first file */ 
remove(argv[1]); 
/* rename the temporary file as the first file */ 
rename(tfile, argv[l]); 
return 0; 

} 

void append(char *fnl, char *fn2) { 
FILE *fpl, *fp2; 
int c; 
/* open the first file in the append mode */ 
fpl =.fopen(fnl, "a"); 
/ * open the second file in the read mode * / 
fp2 = fopen(fn2, "r"); 

/* append */ 

while ((c = getc(fp2)) != EOF) putc(c, fpl); 
fclose(fpl); fclose(fp2); } 
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We create a temporary file, copy the first file into it, and then append the 
second file to the temporary file. The first file is now removed and the tempo-
rary file is renamed as the first file. Note that tmpnam does not create the tem-
porary file but only generates a unique file name; the file is created when 
fopen is called the first time with this name in the append mode. 

The advantage of this approach over directly appending the second file to 
the first is that the processing may be aborted without clobbering the first file if 
an error occurs during the append. Add error checks in the preceding program 
to provide this feature. 

Example 4 
Write a program that extracts the specified lines from a text file. 

To efficiently extract the requested lines, which may be specified in any 
order, we first build an index for the file. This index is created in a temporary 
file by making one pass over the input file and contains the starting position of 
every line. Now, given a line number, its starting position can be determined by 
a look-up in the index file, and the requested line can be directly accessed with-
out accessing any of the preceding lines. The desired program is as follows: 

•include <stdio.h> 
•define MAXLINE 256 

void mkidx(FILE *inpf, FILE *idxf); 
void mkout(FILE *inpf, FILE *outf, FILE *idxf); 

int main(int argc, char *argv[]) { 
FILE *inpf, *outf, *idxf; 

if (argc != 3) { 
fprintf(stderr, 

"Usage: %s <infile> coutfile>\n", argv[0]); 
return 1; 

} 

inpf = fopen (argv [1] , "r"); /* input file */ 
outf = fopen (argv[2], "w"); /* output file */ 
idxf = tmpfile () ; /* index file */ 

mkidx (inpf, idxf); /* make indices */ 
mkout (inpf, outf, idxf); /* create output file */ 

fclose(inpf); fclose(outf); 
return 0; 

}; 
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void mkidx(FILE *inpf, FILE *idxf) { 
long lines = 0, pos = 0; 
int c; 
/* leave slot for the total number of lines */ 
fseek(idxf, (long)sizeof(long), SEEK_SET); 
/* write index of the first line */ 
fwrite((char *)&pos, sizeof(long) , 1, idxf); 
for (++pos; (c = getc(inpf)) != EOF; ++pos) 

if (c == '\n') { 
lines++; 
/* write index of the next line */ 
fwrite((char *)&pos,sizeof(long) , 1, idxf); 

} 

/* fill in total lines in the slot left empty at the beginning 
of the file */ 

rewind(idxf); 
fwrite((char *)&lines, sizeof(long), 1, idxf); 

} 

void mkout(FILE *inpf, FILE *outf, FILE *idxf) - { 
long totlines, lineno, spos, epos; 
char buf[MAXLINE]; 
rewind(idxf); 
/* determine the total number of lines */ 
fread((char *)&totlines, sizeof(long), 1, idxf); 
while (scanf("%ld", Slineno) != EOF) { 

if (lineno <= 0 || lineno > totlines) 
continue; 

/* seek to the index for this line */ 
fseek(idxf, lineno*sizeof. (long), SEEK_SET); 
/* determine the start of this line */ 
fread((char *)&spos, sizeof(long), 1, idxf); 
/* determine the start of the next line */ 
fread((char *)&epos, sizeof(long), 1, idxf); 
/* seek to the start of the line in the input file */ 
fseek(inpf, spos, SEEK_SET); 
/* read the line */ 
fread((char *)buf, 1, epos-spos, inpf); 
/* write it out */ 
fwrite((char *)buf, 1, epos-spos, outf); 

} 
} 
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The index file can be viewed as an array of long integers. We store in the 
first entry the total number of lines in the input file to ensure that the requested 
line is not out of bounds. The function mkidx initially leaves this entry blank 
by moving forward the file position indicator by the size of long. After the 
index entries have been created for all the lines, mkidx rewinds the index file 
and writes the total of the number of lines in this entry. 

The function mkout uses the index file created by the function mkidx to 
extract the desired lines. Given a line number, mkout seeks to the entry in the 
index file where the starting position of the line is stored and reads the starting 
position. This read automatically advances the file position indicator in the 
index file to the entry where the starting position of the next line is stored. A 
read of this position gives the number of characters in the requested line, 
mkout now seeks to the starting position of the requested line in the input file, 
reads it into an internal buffer (how would you modify the program to handle 
lines that may be longer than MAXLINE?), and writes it to the output file. 

Instead of making a separate pass over the input file to create index entries, 
the index file can be created on the fly. If a line does not already have an index 
entry when it is requested for the first time, we can create index entries corre-
sponding to the part of the input file preceding this line. How would you incor-
porate this feature in the preceding program? 

We used a temporary file for storing indices to illustrate the handling of 
temporary files. In many applications, particularly database systems, indices 
are created in permanent files and maintained along with the data files. 

• Example 5 
• Write functions to save a linked list in a file and reconstruct it. 

The nodes of the linked list have the following structure: 

struct node { 
char *info; 
struct node *next; 

} ; 

info points to a character array that contains data for the node as a null-termi-
nated string. The following function accepts the head of the linked list and the 
file pointer to the output file opened in the write mode as arguments, traverses 
nodes of the list, and writes data strings including the terminating null charac-
ter to the output file: 

void savelist(struct node *lp, FILE *fp) 

for ( ; lp; lp = lp ->next) 
fwrite(lp->info, strlen(lp->info)+1, 1, fp); 
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The following function takes as its argument the file pointer to the file 
opened in the read mode in which the data for the linked list has been saved, 
reconstructs the list, and returns the head of the list as its value: 
struct node *mklist(FILE *fp) ( {. • . : 

struct node *head = NULL, *lp, *np; 
fpos_t pos; 
int len; 
for (fgetpos(fp, &pos); getc(fp) != EOF; 

fgetpos(fp, spos)) 
{ 

/* determine the length of the data string */ 
for (len = 1; getc(fp); len++) 

/ 
/* reset file position indicator to beginning of string */ 
fsetpos(fp, &pos); 

/* create new node */ 
np = (struct node *)malloc(sizeof(struct node)); 
np->info = (char *)malloc(len); 
fread(np->info, sizeof(char), len, fp) ; 
np->next = NULL; 

./* link it */ 
if (!head) 

head = lp = np; 
else { 

lp->next = np; 
lp = np; 

} 
} 

return head; 
} 
For each node, the function first records in pos the position in the file at 

which the data string for the node begins. It then determines the length of the 
string by reading one character at a time from the file till the terminating null 
character has been found. The file position indicator is advanced in this pro-
cess, and hence it is reset to the beginning of the data string using the value 
saved in pos. Memory space is then allocated for the node and the array to 
store the data string, and the data string is read from the file into this array. 
Finally, the node is attached to the linked list built so far. 

Note that mklist makes two passes over every data string — once to 
determine its length and then to read it. How would you avoid this inefficiency 
without placing arbitrary restrictions on the length of the string? Also add suit-
able error checks in mklist. Finally, how would you write mklist using 
ftell and f seek, instead of fgetpos and fsetpos? 
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Exercises 10 
1. Given the declarations 

int n; long 11; float fl, f2; double dl, d2; 
char cl, c2, sl[20], s2[20], s3[20], s4[20]; 

and the data line 

-12e3-4.567 12A3 %%a 
what values are assigned by each of the following statements: 
a. n = scanf("%1E %201f%g %[1^2] %ld% %[% b] %*[A\n]", 

&dl, &d2, &fl, si, &11, s2); 
b. n = scanf("%21g %*[A3] %20f %[A ]%ls " 

"%s%c %c %%%s %*[A\n]", 
&dl, &fl, si, s2, s3, &cl, &c2, s4); 

C. n = scanf("%f %e 12A3 %% %% %c %*[A\n]", 
&f1, & f2, &cl); 

2. Given 
double x = 5.5; 
char *sl = "%%risky%%", *s2 = "%*disaster*%"; 

what is printed by each of the following statements: 
a. printf(si); printf("%s", si); 
b. printf (s2) ; printf ("%s", s2) ; 
C. printf("%u %o %x\n", -1 , -1 , - 1 ) ; 
d. printf("%-5%%.4d/%.2d/%.2d%5%\n", 2000, 1,1); 
e. printf("I%-*s %-.*s %-*.*s|\n", 

5, si, 5, si, 5, 5, si); 
/. printf (" | %d % d %+d %6d %.3d %06d " 

"%#d %#6d %#6.3d %#-6d|\n", 
-1, -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , - 1 ) ; 

g. printf("|%o %6o %.3o %06o %#o %#6o %#6.3o %#-6o|\n", 
7, 7, 7, 7, 7, 7, 7, 7); 

h. printf("|%X %6x %.3x %06x %#x %#6x %#6.3x %#-6X|\n", 
11, 11, 11, 11, 11, 11, 11, 11) ; 

('. printf (" | % f % + f %. 3f %.0f %#.0f|\n", x, x, x, x, x) ; 
j. printf("|% e %+e %.3e %.0e %#.0e|\n", x, x, x, x, x); 
k. printf("I % g %+g %.0g %#g %#.3g %#.0g|\n", 

X, X̂  X̂  X̂  x ̂  x) f 
3. Write a program that draws a square and its diagonals using asterisks. 
4. Write a program that prints your name in large letters composed of asterisks. 
5. Write a program that reads a file containing a C program and writes it to another file 

stripping out all comments. 
6. Write a program that prints itself. 
7. Write a program to generate personalized junk mail. The program works with a text 

file containing the letter in which the location of the recipient's name is indicated by 
the string *name*. The program obtains the name from the user and then makes a 



370 CHAPTER 10 / FILE PROCESSING 

copy of the letter into another file with the user-specified name inserted where indi-
cated. 

8. Write a program to produce a report that shows the status of user accounts in the 
following format: 

ZAP REPORT 
dd/mm/yy 

USER NAME USER-ID LIMIT USED 

AMAR 
AKBAR 
ANTHONY 

1 0 0 0 1 
10002 
10003 

2000 
3000 
2500 

1200.57 
2850.89 *** 
2501.02 ### 

where the three asterisks ( * * * ) indicate that the user has already used" 90% or 
more of the resources allocated, and the three sharps (###) indicate that the user 
has exceeded the quota and will be zapped within a week. The first data line has 
the date in the form yymmdd, and the rest have the data recorded in the following 
format: 

Columns Contents 

1 -8 Name 
9-10 Blank 

11-15 ID 
16-19 Resource Limit 
20-23 Blank 
24-30 Resources Used 

9. Write a simple text formatter to format raw text into pages of specified size, say 55 
lines of 60 characters each. The text in each line should be adjusted both on left and 
right margins by including the maximum possible words in a line and adding extra 
blanks between the words. Two slashes (/ /) at the start of a sentence in the raw text 
mark the beginning of a new paragraph. The formatter should also print the title of 
the text and a page number at the top of each page. 

10. Two files contain records sorted on the same key. Write a program to merge these 
files to produce a file also sorted on the same key. 

11. An employee data file is kept sorted on employee name and contains, besides other 
information, the name of the department in which the employee works. Write a pro-
gram that prints the names of the employees in each department by creating a tem-
porary file for each department containing names of the employees in that 
department, and then printing the files. 

12. The previous problem would be more frequently tackled by first sorting the 
employee file on department name, and then printing the sorted file. Sorting pro-
grams that we considered in Chapter 6 are appropriate when data is sufficiently 
small to fit in the main memory, and are often referred to as internal sort programs. 
To sort a large amount of data, external sort programs are used. A simple but often 
used procedure for external sorting divides the file into small subfiles, and each sub-
file is sorted separately using an internal sort method. The sorted subfiles are then 
merged into one sorted file by repeatedly merging them in a balanced manner. If 
there are four subfiles Fl , F2, F3, and F4, first'F1 is merged with F2, and F3 with F4, 
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and then their output is merged. Write an external sort function, and use it for solv-
ing the previous problem. 

13. Student grades in the C course are determined by the scores in five programming 
assignments, a midterm, and a final examination. Write a program that creates, cor-
rects, and adds to a file of student scores. The file should have one record for each 
student. Each record should be of fixed length and should have fields for student ID, 
student name, and scores in programs and examinations. Initially, records will have 
values only in student ID and name fields, and the remaining fields will be blank. 
Scores will be added to the appropriate fields when the scores of all students 
become available after a program or an exam has been graded. Sometimes, correc-
tions may have to be made after the original score has been recorded. 

14. In a batch-oriented inventory control system, transactions for the day are collected 
in a transaction file, and the master inventory file is then updated using this transac-
tion file at the end of the day. There are four types of transactions: addition of a new 
item, deletion of an item, withdrawal (possibly more than one) for an item, and 
deposit (possibly more than one) for an item. The updated master is created on a 
new file, saving the old master for inventory analysis. This form of update is 
referred to as "update by copying" as opposed to "in-place updating" considered in 
the previous problem. Write the update program. 

15. In an on-line banking system, active customer accounts are maintained in a file 
using the account number as the key. To speed up accesses, an index file is also 
maintained that stores for each account number in ascending order the location of 
the corresponding record in the accounts file. Write a program for the following 
banking transactions: opening of a new account, balance enquiry, deposit to an 
account, withdrawal from an account, and closing of an account. Your program 
should first do a binary search in the index file to fetch the record for a given 
account from the accounts file. 



11 The Preprocessor 

The C preprocessor can conceptually be thought of as a program that 
processes the source text of a C program before the compiler. It can be an 

independent program or its functionality may be embedded in the compiler. It 
has three major functions: macro replacement, conditional inclusion, and file 
inclusion. Macro replacement is the replacement of one string by another, 
conditional inclusion is the selective inclusion and exclusion of portions of 
source text on the basis of a computed condition, and file inclusion is the 
insertion of the text of a file into the current file. 

Actions ojf. the preprocessor are controlled by special directives placed in 
the source file. A preprocessor directive begins with the character # on a fresh 
line, and is terminated by the newline character unless continued on the next 
line by placing a backslash at the end of the line. Whitespaces may precede or 
follow the directive-introducing character #. 

11.1 MACRO REPLACEMENT 
We introduced in Section 2.10 the #def ine directive for defining simple macros 
that can be used to specify symbolic constants and isolate implementation-
dependent restrictions. The general form for a simple macro definition is 

•define macro-name sequence-of-tokens 

and it associates with the macro-name whatever sequence-of-tokens appears from 
the first blank after the macro-name to the end of the line. These tokens consti-
tute the body of the macro. Previously defined macros can be used in the defini-
tion of a macro. The preprocessor replaces every occurrence of a simple macro 
in the program text by a copy of the body of the macro, except that the macro 
names are not recognized within comments or string constants. Some examples 
of simple macro definitions are 

/ * mass of an electron at rest in grams * / 
•define ELECTRON 9.107e-28 
/ * mass of a proton at rest in grams * / 
•define PROTON 1837 * ELECTRON 
/* number of bits in an integer */ 
•define BITSININT 32 
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The #def ine directive can also be used for defining parameterized macros. 
The general form for defining a parameterized macro is 

# define macro-name ( paraml, paraml,...) sequence-of-tokens 

The macro-name is followed by a comma-separated list of formal parameters 
enclosed within a pair of parentheses. The sequence of tokens following the 
formal parameters to the end of line define the macro body. If a macro body 
needs to be continued onto the next line, the line to be continued is ended with 
a backslash (\) character. Note that the left parenthesis must immediately fol-
low the macro-name without any intervening whitespace; otherwise, the defini-
tion is considered to define a simple macro that takes no arguments and has the 
sequence-of-tokens beginning with a left parenthesis. However, blank spaces fol-
lowing the commas that separate formal parameters are permitted. 

Parameterized macros are primarily used to define functions that expand 
into in-line code. Some examples of parameterized macro definitions are 

#define ABS(N) ((N) >= 0 ? (N) : -(N)) 
#define READ(I) scanf("%d", &I) 
#define CONVERT(I) \ 

printf("decimal %d = octal %o, hex %x\n", I, I, I) 
A macro can be defined to have zero parameters as in 

#define getchar() getc(stdin) 
which is useful for simulating functions that take no arguments. 

The preprocessor performs two levels of replacement on parameterized 
macros: first the formal parameters in the body of the macro are replaced by the 
actual arguments, and then the resulting macro body is substituted for the 
macro call. Thus, the preprocessor will replace the following statements 

x = ABS(x); 
READ(n); 
CONVERT(n); 
c = getchar(); 

by 

x = ((x) >= 0 ? (x) : -(x)); 
scanf("%d", &n); 
printf ("decimal %d = octal %o, hex %x\n", n, n, n) ; 
c = getc(stdin); 
It is permissible to include newline characters in the whitespaces around 

the macro name and the argument list in a macro call as in 

#define TWINS(A,B) printf("%s %s\n", A, B) 

TWINS ("Tweedledee", 
"Tweedledum" 
) ; 

which is replaced by 

printf("%s %s\n", "Tweedledee", "Tweedledum"); 
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Arguments in a macro call can be any token sequence/including commas, pro-
vided that the sequence is bracketed within a pair of parentheses as in 

•define DEBUG(FORMAT,ARGS) printf(FORMAT, ARGS) 
DEBUG ("%s = %f\n", ("x", 0)); 

which is replaced by 

printf("%s = %f\n", "x", 0) ; 
The following is a function that uses some of the preceding macro defini-

tions to read a decimal number and print its octal and hexadecimal equiva-
lents: 

void d2ox(void) { 
int n; 
READ(n); 
if (n < 0) DEBUG ("negative input n = %d", n).; 
CONVERT(ABS (n)); 

I 

Here is the function transform used in the palindrome detection pro-
gram in Section 7.4.2, rewritten using several parameterized macros: 

• define islower(c) ((c) >= 'a' && (c) <= ' z' ? 1 : 0) 
•define isupper(c) ((c) >= 'A' && (c) <= 'Z' ? 1 : 0) 
• define isdigit(c) ((c) >= '0' && (c) <= ' 9' ? 1 : 0) 
• define toupper (c) ((c) - 'a' + 'A') 
void transform(char *rawstr, char *stdstr) { 

for ( ; *rawstr; rawstr++) 
if (islower(*rawstr)) 

*stdstr++ = toupper (*rawstr); 
else if (isupper (*rawstr) || isdigit(*rawstr)) 

*stdstr++ = *rawstr; 
} 

Good use of parameterized macros improves the readability of the pro-
gram. Although defined and used in a manner similar to functions, they have 
the advantage that a macro call is expanded in-line and hence avoids the func-
tion-call overhead. Another advantage of using a macro definition is that the 
same macro can be used with arguments of different types. Thus, the macro 
ABS can be used to determine the absolute value of any numeric type, whereas 
if the function ABS were defined as 

int ABS(int N) { return N >= 0 ? N : -N; } 
it could only be used for integer arguments. 

Parameterized macros are quite valuable, and experienced programmers 
invariably end up creating their own set of macros that they use repeatedly. 
However, as we will see shortly, the use of parameterized macros is fraught 
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with pitfalls. But let us first study some additional facilities for defining macros 
and a few more details of the macro replacement process. 

11.1.1 The # Operator 
If a macro parameter appears inside a string in the body of a macro, the param-
eter is not replaced by the corresponding argument at the time of macro expan-
sion. Thus, if you define a macro as 

#define PRINT(V,F) printf("V = %F", V) 
and call it as 

PRINT(i, d); 
the call will expand into 

printf("V = %F", i) ; 
ANSI C introduced a new preprocessing operator #, called the stringizing 

operator, which in conjunction with string concatenation provides a facility to 
overcome this difficulty. If a parameter follows the character # in the definition 
of a parameterized macro, both # and the parameter are replaced during macro 
expansion by the corresponding actual argument enclosed within double 
quotes. For example, given the macro definition 

#define PRINT(V,F) printf(#V " = " #F, V) 
the macro call 

PRINT(i, %d) ; 
expands into 

printf ("i" " = " "%d", i); 
which after string concatenations becomes 

printf ("i = %d", i); 
A \ character is automatically inserted before each " or \ character that 

appears inside, or surrounding, a character constant or string literal in the 
argument. For example, given the macro definition 

#define PRINT(s) printf("%s\n", #s) 
the macro call 

PRINT(use \ ("backslash") not /); 
expands into 

printf ("%s\n", "use \\ (VbackslashV) not /") ; 

11.1.2 The ## Operator 
ANSI C introduced another preprocessing operator ##, called the token pasting 
operator, to build a new token by macro replacement. The # # operator is recog-
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nized within both forms of macro definitions, and concatenates the two prepro-
cessing tokens surrounding it into one composite token during a macro expan-
sion. For example, given the macro definition 

•define processor(n) intel ## n 
the macro call 

processor(386) 
expands into 

intel386 

11.1.3 Rescanning of Macro Expressions 
The preprocessor replaces every occurrence of a simple macro in the program 
text by a copy of the body of the macro. The body of a macro may itself contain 
other macros. After a macro call has been expanded, the result of the macro 
expansion is rescanned and the names of macros are recognized within the 
expansion for further replacement. The rescanning resumes at the beginning of 
the expansion and is performed from left to right. Thus, the macro call 

mass = PROTON; 
is expanded into 

mass = 1837 * ELECTRON; 
which is rescanned and expanded into 

mass = 1837 * 9.107e-28; 
At the time a # define directive is processed, the macro replacement is not 

performed in any part, not even in the body of the macro. It is only after the 
body has been expanded for some particular macro call that the macro names 
are recognized within the body and replacements made. For example, given 
the macro definitions 

•define SIZE BLOCKS « 32 
•define BLOCKS 250 

the declaration 

int diskmap[SIZE]; 
expands as follows: 

int diskmap[BLOCKS « 32]; 
int diskmap[250 « 32]; 
To process a parameterized macro call, all of its arguments are first identified. 

The identifiers naming the parameters in the macro body are then replaced by 
the token sequences supplied as the arguments. Unless the parameter in the 
body is preceded by one of • or • •, or followed by • •, the argument tokens are 
examined for macro calls, and expanded as necessary, just before insertion. 
Thus, given the macro definition 
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•define RATIO(X,Y) ((X)/(Y)) 
the macro call 

X = RATIO(PROTON,ELECTRON); 
expands into 

-x = ((1837 * 9.107e-28)/ (9.107e-28)); 
After all the parameters in the macro body have been substituted, the 

resulting replacement text is repeatedly rescanned from left to right for more 
macro names to expand until no new macro names are found. Thus, given the 
macro definitions 

#define PLUS(X,Y) ADD(X,Y) 
#define ADD(X,Y) ((X) + (Y)) 

the macro call 

x = PLUS(PROTON, ELECTRON); 
expands into 

x = ADD(1837 * 9.107e-28, 9.107e-28); 
which when rescanned results in 

x = ((1837 * 9 .107e-28) + (9 .107e-28)); 
If the name of the macro being expanded is found within the replacement 

text, it is not expanded. Further, because the macro expansion is nested, it is 
possible for several macros to be in the process of being expanded. However, 
none of these is a candidate for further expansion in the inner levels of this pro-
cess. This prevents infinite recursion during preprocessing and allows redefini-
tion of existing functions as macros as in 

•define sqrt(x) ( (x) > 0 ? sqrt(x) : 0 ) 
We now give an example that illustrates some subtle aspects of the macro 

replacement process. Given the definitions 

• define paste(x,y) join(x,y) 
•define join(x,y) x •• y 
•define dolittle "Who" 
•define do "Dr. " do 

the macro call 

join(do,little) 
results in the following replacements: 

do •• little/* ## prevents the expansion of the argument do */ 
dolittle /* token pasting during the rescan of 

the replacement text */ 
"Who" /* the result of another rescan */ 

However, the macro call 
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paste(do,little) 
results in the following replacements: 

/ * do is expanded before it replaces the parameter x * / 
join("Dr. " do, little) 
"Dr. " do ## little 
"Dr. " dolittle 
"Dr. " "Who" 
"Dr. Who" 

Note that do after being expanded into "Dr. " do is not expanded any fur-
ther. 

11.1.4 Scope of Macro Definitions 
A macro definition, independent of the block structure, lasts until the end of 
the program unit. A directive of the form 

#undef identifier 

causes the identifier to be no longer defined as a macro name. This directive is 
ignored if the identifier is not currently defined as a macro name. 

Note that, as stated in Chapter 10, some library functions (for example, 
getchar and putchar) may actually be macros. The #undef directive is usu-
ally used to ensure access to a real function as in 

#undef putchar 
putchar(c++); 

11.1.5 Macro Redefinitions 
A macro may be redefined, provided that it has been previously undefined. For 
example, the following program fragment 

•define MODULUS (1 « 32) 
•define srand(seed) number = seed % MODULUS 
#undef MODULUS 
•define MODULUS <1 « 16) 
srand(1); 

results in 

number = 1 % (1 « 16); 
However, it is an error to redefine a macro that has not been undefined, unless 
it is a benign redefinition in which the number and spelling of parameters, if 
any, and the sequence of tokens specifying the macro body are identical. All 
whitespace separations are taken to be equivalent in determining if a redefini-
tion is benign. Some common macro definitions, such as NULL and EOF, are 
contained in mere than one header file. The benign redefinition rule allows 
such header files to be included in the same program, but avoids bugs resulting 
from inadvertently using the same macro name in different header files to refer 
to different entities. 
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11.1.6 Pitfalls 
We now discuss some common errors that an unwary programmer is liable to 
make when using parameterized macros. 

Precedence Errors in Macro Expansions 

Macros operate by textual substitution, which can lead to errors. Consider, for 
example, the macro definition 

•define CUBE(X) X * X * X 
to compute the cube of the argument. However, the statement 

j = CUBE (i+1); 
expands into 

j = i+1 * i+1 * i+1; 
and assigns 3i+l to j. Placing parentheses around each parameter in the 
macro body, as in 

•define CUBE(X) (X) * (X) * (X) 
is also not adequate, since the statement 

j = k/CUBE(i+1); 
expands into 

j = k/(i+1) * (i+1) * (i+1); 
which is interpreted as 

j = (k/ (i+1)) * (i+1) * (i+1); 
To prevent such errors, each parameter appearing in the macro body and 

the macro body, if it is syntactically an expression, should be parenthesized. 
Thus, a correct definition of CUBE would be 

•define CUBE(X) ((X) * (X) * (X)) 

Side Effects in Macro Arguments 
A macro argument may contain a side effect. If the macro body contains more 
than one instance of the corresponding parameter, then the side effect may 
occur more than once. Consider, for example, the macro definition 

•define MIN(A,B) ((A) < (B) ? (A) : (B)) 
and the statement 

z[k++] = MIN(x[i++],y[j++]) ; 
The intent is to assign the minimum of the ith element of the array x and the 
jth element of the array y to the fcth element of the array z, and then increment 
i, j, and k. However, after the macro call expansion, the assignment statement 
becomes 
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z[k++] = ((x[i++]) < (y[j++]) ? (x[i++]) : (y [ j++])); 
and either i or j will be incremented twice. 

Interaction with Control Structure 

When a macro is used inside a control structure, it may interact with the control 
structure. Consider, for example, the macro definition 

•define TRACE(v) if (verbose) printf(#v " = %f\n", v) 
and the program fragment 

if (x == 0) TRACE(x); 
else printf("ratio = %f\n", y/x); 

The intent is to compute and print the ratio of y to x only if x is nonzero, and to 
trace x if it is zero, which in turn prints the value of x only in the verbose mode. 
However, the expansion of TRACE yields 

if (x == 0) if (verbose) printf("x = %f\n", x); 
else printf("ratio = %f\n", y/x); 

which results in a null action when x is nonzero, and computes y/x when x is 
zero and the verbose mode is off. '' 

The intended effect can be realized by defining TRACE as 

•define TRACE(v) verbose ? printf(•v " = %f\n", v) : 
The expansion of TRACE now yields 

if (x == 0) verbose ? printf("x = %f\n", x) : ; 
else printf("ratio = %f\n", y/x); 

Name Conflicts 

When the body of a macro includes a compound statement, its local variables 
may conflict with the variable names passed as arguments. For example, given 
the macro definition 

•define EXCHANGE(type,i,j) {type t = i; i = j; j = t;} 
the call 

' EXCHANGE(float,s,t) 
expands into 

{float t = s; s = t; t = t;} 
which does not result in the expected exchange. Some naming convention 
must be followed for the local variables defined in a macro body to avoid such 
conflicts. 
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11.2 CONDITIONAL INCLUSION 
Conditional inclusion allows selective inclusion of lines of source text on the 
basis of a computed condition. Conditional inclusion is performed using the 
preprocessor directives: 

#if #ifdef tifndef #elif #else #endif 
A directive of the form 

# i f constant-expression 

checks whether the constant-expression evaluates to nonzero (true) or 0 (false). A 
directive of the form 

#ifdef identifier 

is equivalent in meaning to 

#if 1 
when identifier has been defined, and to 

#if 0 
when identifier has not been defined, or has been undefined with a #undef 
directive. The #if ndef directive has just the opposite sense, and a directive of 
the form 

#ifndef identifier 

is equivalent in meaning to 

#if 0 
when identifier has been defined, and to 

#if 1 
when identifier has not been defined, or has been undefined with a #undef 
directive. An identifier can be defined by writing 

#define identifier 

The constant expression that controls conditional inclusion must be an 
integral expression, not containing a sizeof operator, a cast, or an enumera-
tion constant. It may, however, contain unaiy expressions of the form 

defined identifier 

or 

defined (identifier) 

that evaluate to 1 if the identifier is currently defined as a macro name, and 0 if 
it is not. The directive 

#ifdef identifier is equivalent to #if defined (identifier) 
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and the directive 
ttifndef identifier is equivalent to #if [defined (identifier) . 

However, the defined form is more flexible because it can be used in expres-
sions as in 

#if defined(SystemV) && DEBUG. 
The #else directive indicates alternatives when the previous #if, 

#ifdef, or #ifndef test fails. 
The #endif directive ends the conditional text. There must be a matching 

#endif for every #if, #ifdef, or #ifndef directive. 
The #elif directive allows a nested conditional of the form 
#if exprl 

group-of-lines-1 
#else 

# i f exprl 
group-of-lines-1 

#else 
group-of-lines-3 

#endif 
#endif 

to be written in a more convenient form by combining #else and #if direc-
tives 

"#if exprl 
group-of-lines-1 

#elif exprl 
group-of-lines-1 

#else 
group-of-lines-3 

#endif 
and avoids multiple #endif directives. 

Each directive's condition is evaluated in order. If the condition evaluates 
to false (zero), the associated group of lines is skipped. Only the first group of 
lines whose control condition evaluates to true (nonzero) is included. If none of 
the conditions evaluate to true, the group of lines associated with #else is 
included; lacking a #else, all the lines until #endif are skipped. 

Conditional inclusion is frequently used in developing programs that run 
under different environments. For example, INTSIZE may be defined as 

#if HOST == IBMPC 
#define INTSIZE 16 

#elif HOST == HONEYWELL6000 
#define INTSIZE 36 

#else 
•define INTSIZE 32 

#endif 
The preprocessor can then select an appropriate value for INTSI ZE, depending 
upon the defined value of HOST. 
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Conditional inclusion is also used to control debugging. You may write in 
your program 
#ifdef DEBUG 

if (! (i % FREQUENCY)) printf ("iteration: %d\n",' i) ; 
#endif 
and then turn debugging on and off simply by defining and undefining DEBUG. 
Rather than using # i f de f, you could have also used an i f statement 
if (debug) 

if (! (i % FREQUENCY)) printf ("iteration: %d\n", i); 
But this alternative can be quite inefficient, particularly when the debugging 
statement is inside a tight loop, since the truth value of debug will be checked 
at run time in every loop iteration. If the program contains many such state-
ments, the size of the executable program may also increase considerably. With 
the conditional inclusion, the preprocessor eliminates the debugging state-
ments when the debugging mode is off, and there is no storage or run-time 
penalty. 

Instead of embedding #ifdef DEBUG directives all over the code when 
you require many debugging statements in a program, you may define a 
PRINT macro as 

#ifndef DEBUG 
Idefine PRINT(arg) 

#else 
#define PRINT(arg) printf arg 

#endif 
and then write 

PRINT(("iteration: %d\n", i)); 
PRINT(("x = %f, y = %f\n", x, y)); 

which expand into 
printf ("iteration: %d\n", i); 
printf ("x = %f, y = %f\n", x, y); 

or null statements depending on whether DEBUG has been defined or not. Note 
the use of two pairs of parentheses when calling PRINT. 

You may also control levels of debugging with more output at each level as 
in 

#if defined(DEBUG) 
#if DEBUG >= 5 

printf("iteration: %d\n", i) ; 
#if DEBUG >= 10 

printf("x = %f, y = %f\n", x, y); 
#endif 

#else 
if (!(i % FREQUENCY)) 

printf("iteration: %d\n", i); 
#endif 

#endif 
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Another important use of conditional inclusion is in commenting out a group 
of source lines containing comments: 

#if 0 
printf ("iteration: %d\n", i) ; /* comment out */ 
printf ("x = %f, y = %f\n", x, y) ; /* after debugging */ 

tendif 
You cannot comment out these lines by enclosing them within a pair of / * and 
* /, since comments are not allowed to be nested. 

Many compilers allow you to define or undefine a macro on the command 
line used to compile the program. For example, on an IBM PC equipped with 
the Microsoft C compiler, the command 

cl /DDEBUG=10 /DVERBOSE myprog.c 
defines the macro DEBUG to have a value 10 and causes the macro VERBOSE to 
be defined, whereas the command 

cl /UDEBUG /UVERBOSE myprog.c 
undefines them. The equivalent commands on the UNIX operating system are: 

cc -DDEBUG=10 -DVERBOSE myprog.c 
cc -UDEBUG -DVERBOSE myprog.c 

This facility avoids the need for editing the source file every time a change has 
to be.made to a macro value. 

11.3 FILE INCLUSION 
We discussed in Section 5.8 that a large program is developed by grouping log-
ically related functions into separate files. Symbolic constants and data types 
common to more than one file and the external declarations for the shared vari-
ables are then collected in one or more files, called header files, and included in 
files that need them using the #include directive. This approach ensures that 
all the source files will be supplied with the same definitions and variable dec-
larations. You may also collect useful macro definitions that may be required in 
different programs in one or more files, and then include them in your pro-
grams as needed. 

The #include directive has the following two forms: 

#include <filename> 
#include "filename" 

In either form, the #include directive instructs the preprocessor to replace the 
line containing the #include directive by the contents of the file named 
filename. The two forms differ in the order in which the search is made for the 
desired file. 

A directive of the first form searches a sequence of implementation-defined 
places according to implementation-dependent search rules. For example, on 
UNIX systems, the named file is searched for in the directory /usr/include. 

With a directive of the second form, the search takes place in two steps. 
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On UNIX systems, the rule is to search for the file in the same directory in 
which the file containing the #include directive was found. If this search is 
not supported, or if the search fails, the directive is reprocessed as if it read 

• include <filename> 

with the identical filename from the original directive. 
The general practice is to use the form "filename" to include the user files 

and the form <filename> to include the standard library files. 
Besides the above two forms, a new form 

• include token-sequence 

is allowed by ANSI C if the token-sequence is a macro name that evaluates to one 
of these forms, and it is then treated as previously described. Here is an exam-
ple: 

#ifdef STDC 
•define 10 <stdio.h> 

• else 
•define 10 "myio.h" 

•endif 
•include 10 
Nesting of •include directives is permitted — an included file may itself 

contain •include directives, up to an implementation-defined nesting limit. 

11.4 ADDITIONAL FACILITIES 

11.4.1 Line Directive 
A preprocessor directive of the form 

• line linenumber filename 

makes the compiler believe that the line number of the next source line is 
linenumber, which must be a decimal integer constant, and the name of the 
source file is filename, which must be a string literal. The file name can be omit-
ted, in which case the remembered name does not change. 

A directive of the form 

• line token-sequence 

is also permitted if the token-sequence is a macro name that evaluates to either a 
line number followed by a file name or simply a line number. 

The line control facility is useful to provide better error diagnostics when 
writing preprocessors that generate C programs. 

11.4.2 Error Directive 
A directive of the form 

•error token-sequence 
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causes the implementation to produce a diagnostic message containing the 
specified token-sequence. The following example demonstrates the use of the 
terror directive: 

#if !defined(ADD) && !defined(MUL) 
terror "operator not specified" 

tendif 
If it is found during the compilation of the program that both ADD and MUL 
have not been defined, a compile-time error occurs and the error message is 
printed. 

11.4.3 Pragma Directive 
A directive of the form 

tpragma token-sequence 

causes the implementation to behave in an implementation-dependent man-
ner. An unrecognized pragma is ignored. 

11.4.4 Null Directive 
A directive of the form 

t 
is a "do-nothing" directive. The preprocessor takes no action except to elimi-
nate the line. 

11.4.5 Predefined Macro Names 
An ANSI C preprocessor defines five special macro names. These names begin 
and end with two underscore characters and expand to produce the following 
information: 

LINE a decimal constant giving the line number of the current 
source line. 

FILE a string literal giving the name of the current source file. 
DATE a string literal of the form "Mmm dd yyyy " giving the date of 

compilation. 
TIME a string literal of the form "hh:mm: ss" giving the time of 

compilation. 
STDC_ the constant 1, indicating an implementation conforming to 

the ANSI standard. 

11.5 ILLUSTRATIVE EXAMPLES 
We now give some example programs to further illustrate the preprocessor fea-
tures. 
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Example 1 

The number of combinations c of m things taken n at a time is given by 

m! n ! (m - n)! 

For large values, the factorial can be approximated by Stirling's formula: 

kl = e-kkkj2nk 

Write a program that reads m and n and prints c. 

The desired program is as follows. 

•include <math.h> 
•include <stdio.h> 
•define PI 3.14159265 

•define get(nl,n2) scanf("%d %d", &nl, &n2) 
•define print(str,val) printf("%s = %g\n", str, val) 

•define factorial(k) (exp(- (k)) * \ 
pow((k), (k)) * \ 
sqrt(2 * PI * (k))) 

iqt main(void) { 
int m, n; 
double c; 

get(m, n); 

c = factorial (m) / 

(factorial (n) * factorial(m - n)); 

print("combinations", c); 

return 0; } 

The number of combinations determined by the program may have a non-
zero fractional part as we are using an approximate formula for calculating the 
factorials. We could have rounded this number and printed the result as a 
whole number, but we have chosen to print the number of combinations 
as a floating-point number since the range of values that may be represented as 
a floating-point number is larger. For example, for m = 100 and n = 80, the pro-
gram prints 

combinations = 5.38333e+20 
Carefully examine the definition of the parameterized macro factorial 

in this program. All the parentheses used in the definition are necessary. 
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Example 2 
Write a program to generate suites of addition and multiplication problems. 

The desired program is as follows: 

#include <stdio.h> 
#define MAXPROBS 10 /* number of problems */ 
#define MAXTERMS 5 /* m a x i m u m terms in a p r o b l e m * / 
#define LARGEST 1 0 / * largest v a l u e o f a t e r m * / 
#define SMALLEST 0 / * smallest va lue of a t e r m * / 
tdefine MAXOPS 2 /* ' + ' and ' * ' */ 
#define SEED 781 /* for the r a n d o m n u m b e r generator * / 

#if defined ADD 
#undef MUL 
#undef MIX 
char operator = '+'; 

#elif defined MUL 
#undef ADD 
#undef MIX 
char operator = ' *' ; 

#else 
#define MIX 
tundef ADD 

-tundef MUL 
char operator; 

#endif 
char opcode[MAXOPS] = {'+', '*'}; 
int rand (void); /* r a n d o m n u m b e r genera tor * / 
void srand (int); /* initializes the r a n d o m n u m b e r genera tor * / 
void probgen(int terms); /* problem generator */ 

int main(void) { 

int i, terms; 

srand(SEED); 

for (i=0; i < MAXPROBS; i++) { 
fifdef MIX 

operator = opcode[rand() % MAXOPS]; 
tendif 
terms = (rand() % (MAXTERMS-1) ) + 2; 
probgen(terms); 

} 
return 0; 

} 
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void probgen(int terms) { 
int i, spread = LARGEST - SMALLEST + 1; 

for (i=0; i < terms; i++) { 
printf("%2d", SMALLEST + rand() % spread); 
printf (" %c ", i < terms-1 ? operator : '='); 

} 
printf ("\n"); 

} 

See Section 5.8.3 for the code of the srand and rand functions. The problems 
in a suite can be addition problems, multiplication problems, or a mix of them. 
The user specifies the types of problems to include in a suite by defining one of 
ADD, MUL, or MIX. Different problem suites can be generated by changing SEED 
and other constants. 

• Example 3 
• Write a macro to generate C functions for determining the absolute value of a numeric 

data item of a desired type. 

We define a parameterized macro ABS that takes two arguments: a func-
tion name and a type. Such macros are sometimes referred to as generic func-
tions, since they yield ordinary C functions when instantiated with function 
names and appropriate data types. Here is the definition of ABS: 

•define ABS(FNAME, TYPE) \ 
\ 
TYPE FNAME(TYPE x) \ { \ 

return x >= 0 ? x : -x; \ 

The macro call 

ABS(iabs,int) 
generates the function 

int iabs(int x) { return x >= 0 ? x : -x; } 
whereas the macro call 

ABS(dabs,double) 
generates the function 

double dabs(double x) { return x >= 0 ? x : -x; } 



3 9 0 CHAPTER 11 / THE PREPROCESSOR 

Exercises 11 
1. Given the macro definitions 

tdefine i 0 
#define a(j) a((j) + (i)) 
#define b(i) i 
#define c a 
#undef i 
fdefine i 1 
tdefine d d(i) 
#define e(j) j(i) 

determine the result of each of the following macro calls: 

a. a (2) b. a (a (2) ) 
c. a (a (d) ) d. b(b(c) (2) ) 
e. c (i-d) /. e (b) 
g. e (c) h. e (d) 
i. e(e) 

2. Given the macro definitions 
#define str(s) quote(s) 
#define print (n) printf("i" # n " = %d", .i ## n) 
#define quote(s) # s 
#define name(n) bsd ## n 

determine the result of each of the following macro calls: 

a. print (1) ; 
b. printf("%s", quote(cmp("x", "x '\3') ) ) ; 

c. #include str (name(4.3)); 
d. #include quote(name(4.3)) ; 

3. Define a macro that expands into a for statement to iterate over the loop body for a 
minimum to a maximum value of the loop variable. 

4. Define a macro that determines whether a given character is a special character. 

5. Define a macro that converts a character to uppercase if it is a lowercase letter and 
leaves it unchanged otherwise. 

6. Define a macro that determines the minimum of three values. 

7. Define a macro that takes a value, a starting bit position, and the number of bits, and 
determines the value of those bits. 

8. Define a macro that generates a program fragment to subtract from every element of 
an array a constant value. 

9. Define a macro that can be used to generate C functions to exchange values of 
desired types. 

10. Define a macro that can be used to generate C functions to make a binary search in 
arrays of desired types. 



Additional Features 

We now discuss some additional features of the C language. In particular, 
we discuss the type definition facility that allows synonyms to be defined 

for existing data types, the type qualification facility that permits greater 
control over program optimization, the enumeration type that provides the 
facility to specify the possible values of a variable by meaningful symbolic 
names, the facility to define functions that take a variable number of 
arguments, the storage class specifier register that can speed up programs 
by specifying to the compiler the heavily used variables to be kept in machine 
registers, trigraph sequences that permit C implementation in character sets 
that do not have sufficient non-alphabetic characters, and the goto statement 
that can be used to branch around one or more statements. 

12.1 TYPE DEFINITIONS 
The typedef facility allows you to define synonyms for existing data types by 
writing a declaration of the form: 

typedef typename declarator; 

This declaration causes the identifier that appears in the declarator to become a 
synonym for the type typename. For example, the declarations 

typedef float REAL; 
typedef unsigned short int BOOL, BOOLEAN; 

make the identifier REAL a synonym for the type float, and the identifiers 
BOOL and BOOLEAN synonyms for the type unsigned short int. 

The general rule for defining a synonym for a type is to write out a declara-
tion as if declaring a variable of that type, substitute the synonym in place of 
the variable name, and precede the declaration with the keyword typedef. 
Thus, 

typedef long *LPTR; 
typedef char STRING[MAX]; 
typedef int *FUNC (short, short); 

define LPTR to be a synonym for the type "pointer to long", STRING to be a 
synonym for the type "character array of MAX elements", and FUNC to be a syn-

391 
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onym for the type "function taking two short arguments and returning a 
pointer to i n t " . 

Once an identifier has been defined to be a synonym for a type, it may 
appear anywhere a type specifier is allowed. For example, we can now write 

BOOLEAN debug, flags[SIZE]; 
LPTR lp; 
STRING s; 
FUNC f; 

instead of writing 

unsigned short int debug, flags[SIZE]; 
long *lp; 
char s[MAX]; 
int *f (short, short); 

However, the typedef names are not allowed to be mixed with other type 
specifiers. For example, the following is not permitted: 

typedef short int smallint; /* smallint becomes a 
synonym for short int */ 

unsigned smallint status; . /* illegal.*/ 

A typedef declaration does not create a new type; it only defines a syn-
onym for an existing type. For example, after the declaration 

typedef struct record 
{BOOL valid; REAL value;} ENTRY, ELEMENT; 

ENTRY, ELEMENT, and struct record can be used interchangeably to refer to 
the same type. 

Superficially, a typedef declaration resembles the preprocessor #def ine 
directive. For example, the statements 

•define BYTE char * 
typedef char * BYTE; 

seem to have the same effect. However, the statement 

BYTE cpl, cp2; 
when BYTE is a typede f name, declares cpl and cp2 to be of type "pointer to 
char", whereas it expands into 

char * cpl, cp2; 
when BYTE is a macro name, and declares cpl to be of type "pointer to char" 
and cp2 to be of type char. The typede fs are interpreted by the compiler and 
provide greater flexibility in assigning names to complex aggregate types. For 
example, if MATRIX is defined to be a synonym for the type "two-dimensional 
array containing MAXROW x MAXCOL integer elements" by the typedef decla-
ration 

typedef int MATRIX[MAXROW,MAXCOL]; 
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it cannot be equivalently defined with a #define preprocessor directive. 
The type definition facility is frequently used to enhance portability by 

using typedef names for the machine-dependent data types. For example, 
having defined 

#ifdef IBMPC 
typedef long SIZE; 

#else 
typedef int SIZE; 

#endif 
the statements such as 

SIZE offset[MAXFILES]; 
that use SIZE, instead of long or int, remain unchanged when the program 
moves between an IBM PC and a VAX computer. 

This facility also helps in documentation. For example, having defined 

typedef struct node { 
REAL value; 
struct node *next, *prev; 

} LISTNODE, *LISTPTR; 
the use of LISTNODE and LISTPTR invariable declarations 

LISTNODE head; 
LISTPTR root; 

is obviously more informative than 

struct node head; 
struct node *root; 
Another important use of typedefs is in simplifying complex type decla-

rations. For example, having defined 

typedef char *CP; 
typedef CP (*FP)(CP, CP); 

we can declare an integer-valued function that takes as argument a pointer to a 
function that takes two character pointers as arguments and returns a character 
pointer as 

int f(FP); 
Similarly, we can declare an array of 10 pointers to functions that take two 
character pointers as arguments and return a character pointer as 

FP a[10]; 

Write these declarations without using typedefs to appreciate the utility of 
this facility in such situations. 
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12.2 TYPE QUALIFIERS 
ANSI C introduced two type qualifiers, const and volatile, to indicate spe-
cial properties of the objects being declared. Type qualifiers provide greater 
control over optimization by specifying the assumptions a compiler must make 
when accessing an object through an lvalue. A type qualifier may be used with 
any type specifier, or may be used alone, in which case the type specifier int is 
assumed. A type specification may be qualified by both const and volatile 
qualifiers. 

12.2.1 const Type Qualifier 
ANSI C introduced const objects to allow them to be allocated in the read-
only storage and to permit compilers to do extra consistency checking. The 
const qualifier specifies that the object being declared may be initialized, but 
it cannot be assigned a value thereafter, nor can its value be modified by the 
operators ++ or —. Thus, we have 

const double PI = 3.14159265; 
double E = 2.7182818; 
E = PI; /* legal */ 
PI = E; /* illegal */ 
PI++, PI--; /* illegal */ 
The declaration of an array, structure, or union object with the const qual-

ifier specifies that none of the constituent members can change. Thus, we have 
const char coldfusion[] = "palladium"; 
coldfusion [4] = 'e'; /* illegal */ 
const struct 

{int atomic_no; float atomic_wt;} Pd = {46, 106.4}; 
Pd.atomic_no = 78; /* illegal */ 
Both pointers to constant data and constant pointers may be declared. 

Thus, we have 
const int * ptr_to_const; /* pointer to constant data */ 
int * const const_ptr; /* constant pointer */ 

A pointer to a constant data object is a modifiable pointer, but the object it 
points to may not be modified. A constant pointer, on the other hand, may not 
be modified, but the object it points to may be modified. An ordinary pointer 
may be assigned to a pointer to constant data, but a pointer to constant data 
may be assigned to an ordinary pointer only by using an explicit cast. When 
the address operator & is applied to a const object, the result is a pointer to 
constant data. Here are some examples illustrating these rules: 

int ordinary_int, "*ordinary_ptr; 
*ptr_to_const = ordinary_int; /* illegal */ 
*const_ptr = ordinary_int; /* legal */ 
const_ptr = ordinary_ptr; /* illegal */ 
ptr_to_const = ordinary_ptr; /* legal */ 
ordinary_ptr = ptr_to_const; /* illegal */ 
ordinary_ptr = (int *) ptr_to_const; /* legal */ 
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Although a pointer to constant data can be assigned to an ordinary pointer, 
an attempt to modify a const object through an ordinary pointer may cause a 
run-time error because it may have been allocated in the read-only storage. 
Thus, 
const int const_int = 0; 
ordinary_ptr = 

(int *) ptr_to_const = &const_int; /* legal, but */ 
*ordinary_ptr = l0;/*this assignment may cause run-time error */ 

Function parameters may also be declared const, which specifies that the 
referenced objects are not changed through that lvalue in the body of the func-
tion. For example, the function declaration 

char *strcpy(char to[], const char from[]); 
specifies that the function strcpy does not modify the array supplied as the 
second argument. 

12.2.2 v o l a t i l e Type Qualifier 
Many optimizing compilers, under certain circumstances, cache the last value 
accessed from a location and use the cached value the next time that location is 
read. Using the cached value, rather than accessing memory, makes the code 
smaller and faster, particularly when the value has been cached in a hardware 
register. 

The type qualifier vol at i le, when applied to the declaration of an object, 
instructs the compiler that the object should not participate in caching optimi-
zations as its value may be altered in ways which cannot be inferred from a 
study of the program. This feature is particularly useful when writing pro-
grams that deal with memory-mapped I/O or variables shared among multi-
ple processes. 

Consider, for example, the following statements 
while ( (device->status & READY) == 0) /* wait */ ; 
device->output = data; 

that may be part of a program to control a hardware device and result in a wait 
for the READY bit to be set in the status register of the device before writing 
data to the output register of the device. However, an optimizing compiler 
may notice that the value of status is not changed inside the loop, and 
arrange to reference memory only once and copy its value into a hardware reg-
ister to speed up the loop, thus causing the loop never to terminate. By declar-
ing status to be a volatile object as 

struct { 
volatile unsigned int status; 
unsigned int output; 

} *device; 
we can force every reference to status to be a genuine reference. 

Rules for volatile are similar to those for const. Making an array, struc-
ture, or union volatile makes every constituent member volatile. Point-
ers to both volatile objects and volatile pointers may be declared. A 
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pointer to a vol at i le object may be optimized, but the object it points to may 
not be optimized. On the other hand, a volatile pointer may not be opti-
mized, but the object it points to may be optimized. Applying the address oper-
ator & to a volatile object results in a pointer to a volatile object. An ordi-
nary pointer may be assigned to a pointer to a volatile object, but an explicit 
cast must be used to assign a pointer to a volatile object to an ordinary 
pointer. Function parameters may also be declared volatile. Here are some 
examples: 
volatile int volatile_int; 
int * ordinary_ptr; 
volatile int * ptr_to_volatile; /*pointer to volatile object*/ 
int * volatile volatile_ptr; /*volatile pointer*/ 
ptr_to_volatile = &volatile_int; /*legal*/ 
ptr_to_volatile = ordinary_ptr; /*legal*/ 
ordinary_ptr = ptr_to_volatile; /*illegal*/ 
ordinary_ptr = (int *) ptr_to_volatile; /*legal*/ 

Note that const and volatile are independent concepts, and vola-
tile is in no way the opposite of const and vice versa. In fact, both const 
and volatile may appear in the same declaration. For example, a counter 
clock, which is updated by a clock interrupt routine, can be declared as 

extern const volatile unsigned long clock; 
clock has been declared to be a volatile object because of the asynchro-
nous updates to it, and also a const object because it should not be changed 
by anything other than the clock interrupt routine. An object should be 
declared const volatile if it is a memory-mapped input port or a variable 
which can be altered by another process but not by this one. 

The type qualifiers const and volatile do not actually define a new 
type, but serve as modifiers of the variables being declared. For example, the 
declarations 

volatile struct dev {unsigned short status, data;} dl; 
struct dev d2; 

declare dl to be a volatile object, but not d2. The typedef facility can be 
used to associate the const or volatile property with an aggregate type. 
Thus, the declarations 

typedef volatile struct 
{unsigned short status, data;} volatiledev; 

volatiledev dl, d2; 
declare both dl and d2 to be volatile objects. 

12.3 ENUMERATIONS 
Enumeration types provide the facility to specify the possible values of a variable 
by meaningful symbolic names. The general format for defining an enumera-
tion type is 

enum tag {eco, ec\,..., ecn}; 
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where tag is an identifier that names the enumeration type, and eco, ec\,. .., ecn 

are identifiers, called enumeration constants. For example, the declaration 

enum wine {champagne, chablis, beaujolais, claret}; 
defines an enumeration type wine whose values are champagne, chablis, 
beaujolais, and claret. 

An enumeration type is implemented by associating the integer value i 
with the enumeration constant ec,. Thus, the value 0 is associated with cham-
pagne, 1 with chablis, 2 with beaujolais, and 3 with claret. An integer 
value may explicitly be associated with an enumeration constant by following 
it with = and a constant expression of integral type. Subsequent enumeration 
constants without explicit associations are assigned integer values one greater 
than the value associated with the previous enumeration constant. For exam-
ple, the declaration 

enum wine {champagne = 3, chablis, 
beaujolais = 1, claret}; 

results in the value 3 being associated with champagne, 4 with chablis, 1 
with beau jolais, and 2 with claret. 

Any signed integer value may be associated with an enumeration constant. 
Even the same integer value may be associated with two different enumeration 
constants. For example, the declaration 

enum wine {champagne, chablis = 10, 
beaujolais = -1, claret}; 

causes the value 0 to be associated with both champagne and claret, 10 
with chablis, and -1 with beaujolais. 

An enumeration constant must be unique with respect to other enumera-
tion constants and variables within the same name scope. Thus, in the presence 
of the declaration of wine, the declaration 

enum hue {terracotta, mauve, claret, carnation}; 
is illegal because the identifier claret has already been defined to be an enu-
meration constant of wine. Similarly, the variable declaration 

float *claret; 
following the declaration of wine, is also illegal. 

Variables may be declared to be of an enumeration type in the same decla-
ration containing the enumeration type definition, or in subsequent declara-
tions of the form 

enum tag variablelist; 

Thus, bordeaux and burgundy may be declared to be of type enum wine and 
pointer to enum wine respectively by writing 

enum wine { 
champagne, chablis, beaujolais, claret 

} bordeaux, *burgundy; 
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or 

enum wine { 
champagne, chablis, beaujolais, claret 

} bordeaux; 

enum wine *burgundy; 
or 

enum wine {champagne, chablis, beaujolais, claret}; 
enum wine bordeaux, *burgundy; 

The tag may be omitted from the declaration of an enumeration type if all the 
variables of this type have been declared at the same time. Thus, you may write 

enum 
{ 
champagne, chablis, beaujolais, claret 

} bordeaux, *burgundy; 
but due to the omission of the enumeration tag, you may not subsequently 
declare another variable alsace whose type is the same as that of bordeaux 
or burgundy. 

Instead of using enumeration tags, the typedef facility may be used to 
define enumeration types. Thus, you may write 

typedef enum {champagne,chablis,beaujolais,claret} wine; 
wine bordeaux, *burgundy; 

A variable of a particular enumeration type can be assigned enumeration 
constants specified in the definition of the enumeration type. For example, you 
may write 

bordeaux = claret; 
*burgundy = chablis; 

You may also compare values as in 

if (*burgundy == beaujolais) degust(); 
All enumeration types are treated as integer types, and the type of enumer-

ation constants is treated as int. However, you should differentiate between 
enumeration and integer types as a matter of good programming practice and 
use casts if they have to be mixed, as shown in the following example: 

typedef enum { 
doc,happy,sneezy,dopey,grumpy, bashful, sleepy 

} dwarf; 

dwarf next(dwarf this) { 
return (dwarf) (((int) this + 1) % 7); 

} 
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C does not provide facilities for reading or writing values of enumeration 
types. They may only be read or written as integer values. 

12.4 VARIABLE ARGUMENTS 
We often need functions that can take a variable number of arguments. The 
library functions printf and scanf are examples of such functions. The 
parameter list of such functions contains one or more fixed parameters and is 
terminated with an ellipsis (, . . .) to represent the variable part. Here is an 
example of the declaration of such a function: 

double min(double oldmin, int nterms, ... ); 
This function may be called, for example, as 

a = min (0.001, 3, x, y, z) ; 
a = min (a, 6, r, s, t, u, v, w) ; 
The standard header file <stdarg. h> provides the facility to step through 

a list of function arguments, whose number and types are unknown to the 
called function at the time of compilation, by defining a type va_list and 
three macros va_start, va_arg, and va_end that operate on objects of type 
va_list. 

Before accessing a variable argument list, the macro va_start must be 
called. It is defined as 

void va_start (va_list ap, lastparam) ; 
The macro va_start initializes the variable ap for subsequent use by the mac-
ros va_arg and va_end. The second argument to va_start is the identifier 
naming the rightmost fixed parameter in the function definition. Thus, the 
function min will contain 

va_list ap; 

va_start(ap, nterms); 
Having initialized ap, the variable arguments can be accessed by using the 

va_arg macro. It is defined as 
type va_arg (va_list ap, type); 

The first invocation of the va_arg macro after that of the va_start macro 
returns the value of the first variable argument. Subsequently, it returns the 
value of the remaining arguments in succession. The type of the value returned 
by va_arg is determined by the second argument, which must be a type name 
that can be converted to such an object simply by appending a * to it. If the 
argument actually supplied is not of specified type, the behavior is undefined. 
Different types may be specified in successive calls to va_arg. Thus, the vari-
able arguments can be extracted in the body of min by successively calling 
va_arg as 

double val; . 

val = va_arg(ap, double).; 
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v„ 

When the variable arguments have been processed, the va_end macro 
should be called before the function is exited. It facilitates a normal return from 
the function. It is defined as 

void va_end(va_list ap) ; 

The argument list can be retraversed by calling va start again after calling 
va_end. 

Here is the complete code for the min function: 

•include <stdarg.h> 
double min(double oldmin, int nterms, ... ) { 

va_list ap; 
double val; 
int i; 

va_start(ap, nterms); 
for(i = 0 ; i < nterms; i++) 

if ((val = va_arg(ap, double)) < oldmin) 
oldmin = val; 

va_end(ap); 
return oldmin,-

} 

We stated in Section 10.4 that the library functions vfprintf, vprintf, 
and vsprint f are useful for defining functions that take a variable number of 
arguments and write formatted output. These functions are declared as 

int vfprintf (FILE *file, const char *format, va_list arg) ; 
int vprintf (const char *format, va_list arg); 
int vsprintf (char *s, const char *format, va_list arg); 

We now write a function err that takes as arguments (i) the name of the 
function in which the error was detected, (ii) the format of the error message, 
which is a control string similar to fprintf, and (iii) a variable number of 
arguments that are converted and written as part of the message as per the con-
version specifications contained in the control string. Here is the code for the 
function: 

•include <stdio.h> 
•include <stdarg.h> 
void err(char *name, char *fmt, ... ) { 

va_list ap; 
va_start(ap, fmt); 
fprintf(stderr, "%s: ", name); 
vfprintf(stderr, fmt, ap) ; 
fprintf(stderr, "\n"); 
va_end(ap); 

} 
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This function when invoked as 

err("mklist", "too big a node number: %d", node); 
prints 

mklist: too big a node number: 32768 

12.5 r e g i s t e r STORAGE SPECIFIER 
We mentioned in Chapter 1 that the registers are special storage locations with 
fast access time. Accessing a value stored in a register is much faster than if the 
value were stored in memory. Where to store a data value is usually not of con-
cern to a higher-level language programmer. Yet, at times, such a decision can 
have significant impact on the execution time of a program. For example, when 
a loop is to be executed several times, its execution can be speeded up consider-
ably by keeping the loop counter and the variables used in the loop in machine 
registers. 

C provides a storage class specifier register to let the programmer 
advise the compiler that the specified object is likely to be used heavily and 
should be kept in a machine register, if possible. A register declaration is of 
the form 

register datatype identifier; 

Here are some examples: 

register short int index; 
void print(register int *node); 
The register specifier can only be used for automatic variable or param-

eter declarations. Depending upon the underlying machine, only a few vari-
ables in a function can be kept in registers, and they can only be of certain 
types. However, excess or disallowed register declarations do not cause an 
error as the compiler treats them simply as auto declarations. Many compilers 
assign variables to registers on a first-come first-serve basis. Objects of type 
int can usually be kept in registers, but not array, structure, or union objects. It 
is an error to apply the address operator & to a variable declared with the reg-
ister specifier. 

12.6 ALTERNATIVE REPRESENTATIONS OF CHARACTERS 
C derives its character set from the seven-bit ASCII Code Set. However, this set 
is not a subset of all the commonly used character sets. An internationally 
agreed-upon standard is ISO 646-1983 which defines an invariant subset of the 
ASCII Code Set. The following characters in the C character set are absent from 
the ISO 646-1983 Invariant Code Set: 

[ ] { } \ I # 

ANSI C introduced trigraph sequences as an alternate spelling of these charac-
ters. A trigraph sequence is two consecutive question mark characters followed 
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by a distinguishing character. All occurrences of the following trigraph 
sequences are replaced with the corresponding characters: 

Trigraph Replacement Trigraph Replacement Trigraph Replacement 
sequence character sequence character sequence character 

?? ( [ ? ? ) ] ??< { 
??> } ??/ \ ?? ! 1 
? ? ' A ? ? - ~ ? ? = # 

No other trigraph sequences are defined. The replacement occurs before any 
other processing. For example, the string 

"how???/n" 
after the replacement of the trigraph sequence ? ? / becomes 

"how?\n" 
A new character escape sequence \ ? was introduced to allow two adjacent 
question marks in strings, character constants, comments, or header names. 
Thus, the string constant 

"What ???!" 
should be written as 

"What ?\? ?!" 
to prevent it from being interpreted as 

"what?|" 
A dual of the preceding problem arises on some implementations that have 

an extended set of characters which cannot be represented in the char type. 
ANSI C has defined an integral type wchar t in the standard header 
<stddef .h> for such wide characters. A wide character constant is written 
with a preceding L, such as L' #'. 

12.7 goto STATEMENT 
We finally discuss the goto statement that can be used to branch around one 
or more statements. It is of the form 

goto label; 

where label is the identifier of the statement to which the branching is to be 
made and appears in the same function in the form 

label: statement 

A label has the syntax of an identifier. 
The execution of a goto statement transfers the program control to the 

statement indicated by the label, and this statement is executed next. For exam-
ple, here is a program fragment for counting the number of characters in input: 
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for (count=0; ; ) { 
c = getchar (); 
if (c == EOF) goto hop; 
count++ 

} 
hop: printf("%d\n", count); 

The for loop reads one character at a time and increments count. When the 
end-of-file is reached, the goto statement transfers the program control to the 
statement labeled hop, the loop is terminated, and the value of count is 
printed. 

You can even set up loops using goto statements, as illustrated in the fol-
lowing program fragment for adding integers from 1 to n except those divisible 
by 5: 

i = 1; 
sum = 0 ; 

back: 
if (i > n) goto done; 
if (i % 5 == 0) goto hop; 
sum += i; 
hop: i++; 

goto back; 
done: ; 

Compare the above program fragment with the following structured counter-
part for the same problem: 

for (i = 1, sum = 0 ; i <= n; i++) 
if (i % 5 != 0) 

sum += i; 
Obviously, the goto version is more complex than its structured counterpart. 

The goto statement is a carryover from the pre-structured-programming 
era. The indiscriminate use of goto statements results in programs that are dif-
ficult to understand, debug, and maintain. Furthermore, when goto state-
ments are used, most compilers generate less efficient code compared to the 
structured constructs. Therefore we strongly advise you against using goto 
statements in your programs — you should be able to write all your programs 
without having to ever use a goto statement. 

12.8 ILLUSTRATIVE EXAMPLES 
We now give some example programs to further illustrate the concepts intro-
duced in this chapter. 

>• Example 1 

• Develop a set package by creating a SET data type and functions for the various set 
operations. 
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We consider only sets of positive integers. Sets are represented as bit 
arrays, one bit for each set element. The desired package is as follows: 

•include <stdio.h> 
•define LARGEST 4097 /* largest element of the set */ 
•define WORDSIZE 32 /* assume 32 bit integer */ 
•define SIZEINWORDS (LARGEST/WORDSIZE+1)/* bit array size */ 
•define MAXONLINE 10 /* maximum elements on a print line*/ 
•define inrange(e) (e >= 0 && e <= LARGEST) 
•define wordpos(e) (e / WORDSIZE) 
•define bitpos(e) (e % WORDSIZE) 
• define bitval(s,e) ( (s [wordpos (e) ] »bitpos (e)) & 01) 

typedef unsigned int SET[SIZEINWORDS]; 
typedef int ELEMENT; 
typedef enum [FAILED, SUCCEEDED} STATUS; 
typedef enum {FALSE, TRUE} BOOL; 

void set_init (SET s) /* initialize s */ { 
register int i; 

for (i = 0; i < SIZEINWORDS; i++) s[i] = 0; 
} 

STATUS set_add(SET s, ELEMENT e) /* add e to s */ { 
if (!inrange(e)) return .FAILED; 
s [wordpos (e) ] |= 01 .<< bitpos (e) ; 
return SUCCEEDED; 

} 

BOOL set_mem(SET s, ELEMENT e) /* is e in s? */ 
{ 
return inrange(e) && bitval(s,e) ? TRUE : FALSE; 

} 

void set_union(SET s, SET t, SET r) /* r = s U t */ { 
register.int i; 

for (i = 0; i < SIZEINWORDS; i++) 
r[i] = s[i] | t[i]; 

void set_print (SET s) /* print members of s */ { 
register int i, j = 0; 
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printf("{"); 
for (i = 0; i <= LARGEST; i++) 

if (set_mem(s,i) == TRUE) { 
printf("%s%d", j % MAXONLINE ? ", " : 

j != 0 ? . \ n " : "", i); 
j++; 

} 
printf("}"); 

} 

We leave it as an exercise for you to write functions for determining if a set 
is empty, deleting an element from a set, and taking the intersection and differ-
ence of two sets. 

Example 2 
Write a function for printing a list of lists. 

Consider a linked list whose elements contain either an integer value or a 
pointer to a list. The following figure shows such a list: 

root: 

NULL NULL 

13 NOLL 

NULL 

41 NULL 

121 122 NULL 

The desired function is as follows: 

•include <stdio.h> 

typedef enum {atom, list} NODETYPE; 
typedef struct listnode *NODEPTR; 

struct listnode { 
NODETYPE type; 
union { int value; NODEPTR first; } data; 
NODEPTR next; 

} ; 
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void printlist(NODEPTR root) { 
register NODEPTR p; 
printf("( "); 
for (p = root; p != NULL; p = p->next) 

switch (p->type) { 
case list: 

printlist(p->data.first); 
break; 

case atom: 
printf("%d ", p->data.value); 
break; 

default: 
printf("\nfunny node\??!\n"); 
return; 

} 
printf(") "); 

1 

This function will print the list shown in the figure as 

( ( ( ) ( 121 122 ) 13 ) 2 3 ( 41 ) ) 
A list is represented by enclosing its elements within a pair of parentheses. An 
empty list is represented as ( ). 

We leave it as an exercise for you to write a function that creates such a list. 

Example 3 
Write a function that copies a specified amount of data from the input port to the out-
put port of a device. 

We assume that the device has three registers: an input port, an output 
port, and a status register. The input port and the status register can be read by 
a program, but not written; the output port can be written, but not read. Bit 0 of 
the status register is set to 1 when data arrives at the input port, and is set to 0 
when that data is read from the input port. Bit 1 of the status register is set to 1 
when the device is ready to accept data from the program. When data is placed 
at the output port, this bit is set to 0 and the data is written out. 

The desired function is as follows: 

typedef unsigned int DTY.PE, STYPE; 
•define IPORT ((const volatile DTYPE * const)OxffffOOOO) 
•define OPORT ((volatile DTYPE * const)0xffff0004) 
•define STATUS ((const volatile STYPE * const)Oxffff0008) 
•define IREADY 0x1 
•define OREADY 0x2 
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void copy(register int n) { 
register int i; 
DTYPE temp; 
for (i = 0; i < n; i++) 

{ 
while (! (*STATUS & IREADY) ) /* wait */ ; 
temp = *IPORT; 
while (! (*STATUS & OREADY) ) /* wait */ ; 
*0P(3RT = temp; 

} 
} 

Modify the above function so that it waits for the input or output bit to be 
set to ready as long as the corresponding error bits (bits 2 and 3 respectively of 
the status register) have not been set. The function should reset the status regis-
ter and abort the data transfer in that case. 

- > Example 4 
' < Write a function that concatenates multiple strings and returns the address of the con-

catenated string. 

The desired function is as follows: 

•include <stdio.h> 
•include <stdarg.h> 
•include <string.h> 
•include <stdlib.h> 

char *strmcat(int narg, ... ) { 
va_list argp; 
register int i, size; 
register char *str; 

/* determine the size of the concatenated string */ 
va_start(argp, narg); 
for (size = i = 0; i < narg; i++) 

size += strlen(va_arg(argp, char *)); 
va_end(argp); 

/* allocate memory for creating the concatenated string */ 
str = (char *) calloc(size+1, sizeof (char)); 
if (!str) { 

fprintf(stderr, "not enough memory\n"); 
return NULL; 

} 
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/* create the concatenated string */ 
va_start(argp, narg); 
for (i = 0 ; i < narg; i++) 

strcat(str, va_arg(argp, char *)); 
va_end(argp); 

return str; 
} 

This function when invoked as 

strmcat(5, "chloro", "fluoro", 
"carbons ", "destroy ", "ozone"); 

returns the string 

"chlorofluorocarbons destroy ozone" 

Exercises 12 
1. Write a function to score five-card poker hands into nothing, one pair, two pairs, 

three of a kind, straight (in order), flush (all of the same suit), full house (one pair 
and three of a kind), four of a kind, or straight flush (both straight and flush). 

2. Rewrite the linked-list and tree manipulation functions given in Section 8.4 using 
the t ype de f facility. 

3. Write a function that uses the set package developed in Section 12.8 to partition its 
input into values that appear once and those that appear multiple times. 

4. Write a function that prints all the sets of size m having elements with integer values 
between 0 and n. 

5. A company classifies its employees into three categories: regular, hourly, and con-
tract. The personnel record for every employee contains name, sex, date of birth, 
and years of service. However, the salary information depends on the classification 
of the employee. Monthly salary is recorded for the regular employees, hourly rate 
and hours per week for the hourly employees, and the annual value of contract for 
the contract employees. Write a function that prints the names of the ten highest-
paid employees who have worked less than five years for the company. 

6. Write fprintf in terms of vfprintf. 
7. Write a function that takes a variable number of arguments of different types and 

prints their values. The first argument is an array of elements of an enumeration 
type that indicates the number and types of the following arguments. 



Standard Library 

11 C compilers have a standard library, which is a collection of commonly 
used C functions for use by other C programs. A major source of 

nonportability in the earlier versions of C was that the "standard" library was 
not standard and the functions present in one implementation differed from 
those in another. ANSI C has standardized the functions that are expected to be 
found in the standard library. The prototypes for these functions are specified 
in a standard set of header files. These header files also include a number of 
macro and type definitions used by the library functions. The following is a list 
of the standard header files and a brief description of the nature of the 
information in them: 

<assert.. h> function to add diagnostics to programs 
<ctype.h> character testing and character case mapping functions 
<errno.h> error handling functions 
<float.h> constants related to floating-point types 
climits.h> sizes of integral types 
clocale.h> effect of locale on data types and functions 
cmath.h> mathematical functions 
csetjmp.h> functions for nonlocal goto type of program control 
csignal.h> signal processing functions 
cstdarg.h> functions for processing variable argument lists 
cstddef.h> common symbolic constants and types 
cstdio.h> input/output functions 
cstdlib.h> miscellaneous utility functions 
Cstring.h> string processing functions 
ctime.h> time manipulation and time conversion functions 

We have already discussed in the text macros, types, and functions declared in 
the headers <errno.h>, <stdarg.h>, and <stdio.h>. We have also dis-
cussed the frequently used macros, types, and functions declared in the head-
ers <stddef .h>, <stdlib .h>, and <string .h>. The headers climits .h> 
and <float .h> define various parameters and limits of the execution envi-
ronment; climits .h> specifies sizes of integral types, whereas <float .h> 
specifies values of the parameters of the model that describes an 
implementation's representation of floating-point types. The header 
<locale. h> specifies mechanisms to deal with issues arising out of C becom-
ing an international language, such as alphabet, collation, formatting of num-
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bers and currency amounts, date, and time, in a locale-specific manner. We dis-
cuss in this appendix the facilities specified in <assert.h>, <ctype.h>, 
<math.h>, <set jmp.h>, <signal.h>, and <time.h>, and the rest of the 
facilities specified in <stdlib .h> and <string .h>. 

A.l DIAGNOSTICS 
The header <assert.h> provides a facility to add diagnostics to programs. 

void assert (int expression); 

If the expression evaluates to 0 when the macro assert is executed, it prints on 
stderr a diagnostic message in an implementation-defined format, and then 
calls abort to terminate execution. The diagnostic message includes the text of 
the argument to assert, the source filename, and the source line number; the 
latter being respectively the values of the predefined preprocessing macros 

FILE and LINE • 
If the macro NDEBUG is defined at the point in the source file where 

<assert.h> is included, a s s e r t is ignored. 

A.2 CHARACTER HANDLING 
The header <ctype. h> declares character testing and character case mapping 
functions. Each of these functions takes an integer argument whose value must 
be representable as an unsigned char or must equal the value of the macro 
EOF. 

A.2.1 Character Testing Functions 
Character testing functions return true (nonzero) if the argument satisfies the 
specified condition, and false (zero) otherwise. 

int islower(int c) ; 
returns true if c is a lowercase letter. 

int isupper(int c) ; 
returns true if c is an uppercase letter. 

int isalpha(int c); 
returns true if islower (c) or isupper (c) is true, that is, if c is a lowercase or 
uppercase letter. 

int isdigit(int c) ; 
returns true if c is a decimal digit. 

int isalnum(int c) ; 
returns true if isalpha (c) or isdigit (c) is true, that is, if c is a lowercase or 
uppercase letter or a decimal digit. 

int iscntrl(int C) ; 
returns true if c is a control character, that is, if c is one of the characters 0 to 
Ox IF, or 0x7 F, in the seven-bit ASCII Code Set. 



Standard Library 

11 C compilers have a standard library, which is a collection of commonly 
used C functions for use by other C programs. A major source of 

nonportability in the earlier versions of C was that the "standard" library was 
not standard and the functions present in one implementation differed from 
those in another. ANSI C has standardized the functions that are expected to be 
found in the standard library. The prototypes for these functions are specified 
in a standard set of header files. These header files also include a number of 
macro and type definitions used by the library functions. The following is a list 
of the standard header files and a brief description of the nature of the 
information in them: 

cassert.. h> function to add diagnostics to programs 
cctype.h> character testing and character case mapping functions 
cerrno.h> error handling functions 
cfloat.h> constants related to floating-point types 
climits.h> sizes of integral types 
clocale.h> effect of locale on data types and functions 
cmath.h> mathematical functions 
csetjmp.h> functions for nonlocal goto type of program control 
csignal.h> signal processing functions 
cstdarg.h> functions for processing variable argument lists 
cstddef.h> common symbolic constants and types 
cstdio.h> input/output functions 
cstdlib.h> miscellaneous utility functions 
Cstring.h> string processing functions 
ctime.h> time manipulation and time conversion functions 

We have already discussed in the text macros, types, and functions declared in 
the headers <errno.h>, <stdarg.h>, and <stdio.h>. We have also dis-
cussed the frequently used macros, types, and functions declared in the head-
ers <stddef .h>, <stdlib .h>, and <string .h>. The headers climits .h> 
and cfloat .h> define various parameters and limits of the execution envi-
ronment; climits .h> specifies sizes of integral types, whereas cfloat .h> 
specifies values of the parameters of the model that describes an 
implementation's representation of floating-point types. The header 
clocale. h> specifies mechanisms to deal with issues arising out of C becom-
ing an international language, such as alphabet, collation, formatting of num-

409 



410 APPENDIX A / STANDARD LIBRARY 

bers and currency amounts, date, and time, in a locale-specific manner. We dis-
cuss in this appendix the facilities specified in <assert.h>, <ctype.h>, 
<math.h>, <set jmp.h>, <signal.h>, and <time.h>, and the rest of the 
facilities specified in <stdlib .h> and <string .h>. 

A.l DIAGNOSTICS 
The header <assert.h> provides a facility to add diagnostics to programs. 

void assert (int expression); 

If the expression evaluates to 0 when the macro assert is executed, it prints on 
stderr a diagnostic message in an implementation-defined format, and then 
calls abort to terminate execution. The diagnostic message includes the text of 
the argument to assert, the source filename, and the source line number; the 
latter being respectively the values of the predefined preprocessing macros 

FILE and LINE • 
If the macro NDEBUG is defined at the point in the source file where 

<assert.h> is included, a s s e r t is ignored. 

A.2 CHARACTER HANDLING 
The header <ctype. h> declares character testing and character case mapping 
functions. Each of these functions takes an integer argument whose value must 
be representable as an unsigned char or must equal the value of the macro 
EOF. 

A.2.1 Character Testing Functions 
Character testing functions return true (nonzero) if the argument satisfies the 
specified condition, and false (zero) otherwise. 

int islower(int c) ; 
returns true if c is a lowercase letter. 

int isupper(int c) ; 
returns true if c is an uppercase letter. 

int isalpha(int c); 
returns true if islower (c) or isupper (c) is true, that is, if c is a lowercase or 
uppercase letter. 

int isdigit(int c) ; 
returns true if c is a decimal digit. 

int isalnum(int c) ; 
returns true if isalpha (c) or isdigit (c) is true, that is, if c is a lowercase or 
uppercase letter or a decimal digit. 

int iscntrl(int C) ; 
returns true if c is a control character, that is, if c is one of the characters 0 to 
Ox IF, or 0x7 F, in the seven-bit ASCII Code Set. 
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int isprint(int C) ; 
returns true if c is a printing character including space, that is, if c is one of the 
characters 0x2 0 to 0x7E in the seven-bit ASCII Code Set. 

int isgraph(int c) ; 
returns true if c is a printing character other than space, that is, if c is one of the 
characters 0x21 to Ox7E in the seven-bit ASCII Code Set. 

int ispunct(int C) ; 
returns true if c is a printing character other than space or letter or digit. 

int isspace(int C); 
returns true if c is a standard whitespace character, that is, space, formfeed, 
newline, carriage return, horizontal tab, or vertical tab. 

int isxdigit(int C) ; 
returns true if c is a hexadecimal digit character. 

A.2.2 Character Case Mapping Functions 
Character case mapping functions convert the case of a letter. 

int tolower(int c) ; 
returns the corresponding lowercase letter if c is an uppercase letter, and c oth-
erwise. 

int toupper(int c) ; 
returns the corresponding uppercase letter if c is a lowercase letter, and c other-
wise. 

A.3 MATHEMATICS 
The header cmath. h> declares a rich set of mathematical functions. It also 
defines a macro HUGE_VAL. For all functions, a domain error occurs if an input 
argument is outside the domain over which the mathematical function is 
defined. On a domain error, errno is set to EDOM. Similarly, a range error occurs 
if the result of the function cannot be represented as a double value. If the 
result overflows, the function returns HUGE_VAL and errno is set to ERANGE. 
If the result underflows, the function returns 0 and errno may be set to 
ERANGE. 

A.3.1 Trigonometric Functions 
Angles for trigonometric functions are specified in radians. 

double acos(double x); 
returns the arc cosine of x in the range [0, it] radians. 

double asin(double x); 
rphirns the arc sine of x in the ranee 1-71/2, +Jt/21 radians. 
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int isprint(int C) ; 
returns true if c is a printing character including space, that is, if c is one of the 
characters 0x2 0 to 0x7E in the seven-bit ASCII Code Set. 

int isgraph(int c) ; 
returns true if c is a printing character other than space, that is, if c is one of the 
characters 0x21 to Ox7E in the seven-bit ASCII Code Set. 

int ispunct(int C) ; 
returns true if c is a printing character other than space or letter or digit. 

int isspace(int C); 
returns true if c is a standard whitespace character, that is, space, formfeed, 
newline, carriage return, horizontal tab, or vertical tab. 

int isxdigit(int C) ; 
returns true if c is a hexadecimal digit character. 

A.2.2 Character Case Mapping Functions 
Character case mapping functions convert the case of a letter. 

int tolower(int c) ; 
returns the corresponding lowercase letter if c is an uppercase letter, and c oth-
erwise. 

int toupper(int c) ; 
returns the corresponding uppercase letter if c is a lowercase letter, and c other-
wise. 

A.3 MATHEMATICS 
The header cmath. h> declares a rich set of mathematical functions. It also 
defines a macro HUGE_VAL. For all functions, a domain error occurs if an input 
argument is outside the domain over which the mathematical function is 
defined. On a domain error, errno is set to EDOM. Similarly, a range error occurs 
if the result of the function cannot be represented as a double value. If the 
result overflows, the function returns HUGE_VAL and errno is set to ERANGE. 
If the result underflows, the function returns 0 and errno may be set to 
ERANGE. 

A.3.1 Trigonometric Functions 
Angles for trigonometric functions are specified in radians. 

double acos(double x); 
returns the arc cosine of x in the range [0, it] radians. 

double asin(double x); 
returns the a r r sine of x in the ranee \-it/2. -Ht/21 radians. 
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double atan(double x) ; 
returns the arc tangent of x in the range l-n/2, +n/2] radians. 

double atan2(double x, double y) ; 
returns the arc tangent of x/y in the range [~n, +n] radians. 

double cos(double x) ; 
returns the cosine of x. 

double sin(double x) ; 
returns the sine of x. 

double tan(double x) ; 
returns the tangent of x. 

A.3.2 Hyperbolic Functions 
double cosh(double x) ; 
returns the hyperbolic cosine of x. 

double sinh(double x) ; 
returns the hyperbolic sine of x. 

double tanh(double X) ; 
returns the hyperbolic tangent of x. 

A.3.3 Exponential and Logarithmic Functions 
double exp(double x) ; 
returns the exponential ex. 

double frexp(double x, int *p) ; . 
expresses x as mantissa x 2exponent, such that mantissa is in the interval [1/2, 1), 
and returns mantissa as the function value and exponent in *p. 

double ldexp(double x, int n) ; 
returns x x 2". 

double log(double x) ; 
returns the natural logarithm ln(x). 

double loglO(double x) ; 
returns the base 10 logarithm logio(x). 

double modf(double x, double *p) ; 
splits x into an integer portion returned in *p and a fractional portion returned 
as the function value. 
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A.3.4 Power Functions 
double pow(double x, double y) ; 
returns xy. 

double sqrt(double x) ; 
returns xh. 

A.3.5 Nearest Integer, Absolute Value, and Remainder 
Functions 
double ceil(double x); 
returns the smallest integer not less than x. 

double fabs(double x) ; 
returns the absolute value of x. 

double floor(double x) ; 
returns the largest integer not greater than x. 

double fmod(double x, double y) ; 
returns the floating point remainder of x/y with the same sign as x. 

A.4 NON-LOCAL JUMPS 
The header <set jmp.h> defines a type jmp_buf, a macro set jmp, and a 
function long jmp that may be used to bypass the normal function call and 
return mechanism to handle abnormal or exceptional conditions. 

int setjmp(jmp_buf env) ; 
void long jmp (jmp_buf env, int status) ; 

The macro set jmp saves its caller's environment in the jump buffer env, 
an object of type jmp_buf, and returns 0. The function long jmp takes as its 
arguments a jump buffer env in which an environment has been saved by 
set jmp and an integer value status, restores the environment, and then the 
program execution continues as if the corresponding call to set jmp had just 
returned with the value status. 

ANSI C specifies that status cannot be 0; if it is, set jmp returns 1. If the 
environment was not saved earlier in env by a call to set jmp or if the function 
containing the invocation of set jmp has terminated execution before the call 
to long jmp, the result is undefined. 

The following program illustrates the use of set jmp and long jmp. 
•include <stdio.h> 
•include <setjmp.h> 

void set_status(int) ; 
jmp_buf env; 
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int main(void) { 
int status; 

if ((status = setjmp(env)) != 0) /* setjmp returns 0 
the first time */ 

{ 
printf("return from longjmp with status = %d\n", 

status); 
return 0; 

} 
set_status(1); 
return 0; 

} 

void set_status(int status) { 
longjmp (env, status); /* jump to main */ 

} 

The call to set jmp in main saves the current environment in buf and returns 
0. In set_status, longjmp is called with status set to 0. It restores the 
environment as saved in env, causes a jump back to main, and the execution 
continues as if set jmp returned with value 1. The message is printed now. 

A.5 SIGNAL HANDLING 
The header <signal.h> declares macros, functions, and a type for handling 
various signals. 

A signal is a condition that can be reported during program execution. Sig-
nals may be generated by the error-detection mechanism of the underlying 
hardware or operating system, by actions external to the program, or by the 
program itself. Some examples of signals are (i) an erroneous arithmetic opera-
tion, such as dividing by 0, (ii) an access outside legal memory limits, such as 
an attempt to store a value in an object pointed to by a bad pointer, (iii) an 
interrupt from an external source, such as typing "delete" at the terminal, and 
(iv) the decision by a program to abort itself on detecting bad input. 

The following are the macros defined in <signal .h>, and they specify 
the standard set of signals noted against each: 

SIGABRT abnormal termination, such as initiated by the abort function 
SIGF P E erroneous arithmetic operation, such as dividing by zero 
SIGILL invalid function image, such as illegal instruction 
SIGI NT interactive attention signal, such as interrupt from the terminal 
SIG S E GV invalid memory access 
SIGTERM termination request 

An implementation may define additional signals. 
The following are the functions declared in <signal. h>: 
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int raise (int sig) ; 
sends the specified signal sig to the executing program. It returns zero when 
successful, and a nonzero value otherwise. 

void (*signal(int sig, void (*func) (int) ) ) (int) ; 
selects, depending upon the value of futtc, one of the three ways in which the 
receipt of the signal sig is handled: if the value of func is SIG_IGN, the signal is 
ignored; if it is SIG DFL, the implementation-defined default behavior is used; 
otherwise, the function pointed to by func, called the signal handler, is used to 
process the signal. A successful call to signal returns the previous value of 
func for the specified signal; otherwise, SIG_ERR is returned. 

When a signal sig occurs for which a handler func has been specified, the 
signal is first restored to its implementation-defined default behavior by exe-
cuting the equivalent of signal (sig, SIG DFL), and then the signal handler is 
called by executing the equivalent of (* func) (sig). If the signal handler 
returns, execution resumes from where it was when the signal occurred. 

The type defined in <signal .h> is sig_atomic_t. Objects of this type 
are integral objects that can be accessed as atomic entities, even in the presence 
of asynchronous interrupts, and should be declared volatile static. 

The following program illustrates the use of the signal handling facility: 

•include <stdio.h> 
•include <signal.h> 
•define MAX 5 

int cnt = 0, totcnt = 0, interrupts = 0; 
void print(void); 

int main(void) { 
/ * catch the interactive attention signal * / 
(void) signal(SIGINT, print); 

for ( ; getcharO; cnt++) 
r 

printf("\ntotal characters read = %d\n", totcnt); 

return 0; } 

void print(void) { 
if (interrupts++ < MAX) 

/* reset to catch the interactive attention signal */ 
(void) signal(SIGINT, print); 

printf("\ncharacters read = %d\n", cnt); 
totcnt += cnt; 
cnt = 0; 

} 
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A.6 GENERAL UTILITIES 
The header <stdlib.h> declares functions for string conversion, pseudo-
random sequence generation, memory management, communication with the 
environment, searching and sorting, and integer arithmetic. We have already 
discussed the memory management functions malloc, calloc, realloc, 
and free in Section 7.8; the remaining functions are described here. 

A.6.1 String Conversion 
double atof(const char *s) ; 
converts the string s to its double representation and returns the converted 
value. 

int atoi (const char *s) ; 
converts the string s to its int representation and returns the converted value. 

long int atol (const char *s) ; 
converts the string s to its long int representation and returns the converted 
value. 

double strtod (const char *s, char **endp) ; 
converts the largest possible initial portion of the string s to its double represen-
tation, ignoring the leading whitespaces, and stores at *endp the address of the 
first character past the converted portion of the string unless endp is NULL. If no 
conversion is possible, zero is returned, endp (if not NULL) is set to the value of 
s, and errno is set to ERANGE. If the converted value would cause overflow, 
plus or minus HUGE_VAL, depending upon the sign of the converted value, is 
returned; if the converted value would cause underflow, zero is returned; in 
either case, errno is set to ERANGE. 

long int strtol (const char *s, char **endp, int base); 
converts the largest possible initial portion of the string s to long int, ignor-
ing the leading whitespaces, and stores at *endp the address of the first charac-
ter past the converted portion of the string, unless endp is NULL. If the value of 
the base is zero, the number is a decimal, octal, or hexadecimal constant; the 
leading o implies octal and the leading ox or OX hexadecimal. If the value of 
base is between 2 and 36, the number consists of a sequence of letters and digits 
representing an integer in the specified base, optionally preceded by a plus or 
minus sign. Letters from a through z, or A through z, are ascribed the values 
10 through 3 5 respectively, only letters with ascribed values less than that of 
the base being permitted. If the value of base is 16, the sequence of letters and 
digits may optionally be preceded by the characters ox or OX. If the conversion 
is not possible, zero is returned. If the converted value would cause overflow, 
LONG_MAX or LONG_MIN is returned depending upon the sign of the converted 
value, and errno is set to ERANGE. 
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unsigned long int strtoul(const char *s, 
char **endp, int base) ; 

behaves like strtol, except that the converted value in this case is unsigned 
long int, and that if the converted value would cause overflow ULONG_MAX 
is returned. 

A.6.2 Pseudo-random Sequence Generation 
int rand(void); 

generates a pseudo-random integer in the range 0 to RAND_MAX. 

void srand (unsigned int seed); 
uses the argument seed as the seed for the sequence of pseudo-random num-
bers to be returned by subsequent calls to rand. If rand is called before any 
calls to srand, the default seed value of 1 is used for generating pseudo-
random numbers. 

A.6.3 Communication with the Environment 
void abort(void); 
causes the abnormal termination of the program, and returns an implementa-
tion-defined form of the status "unsuccessful termination" to the host environ-
ment by means of the function call raise (SIGABRT). 

int atexit (void (*func) (void) ) ; 
registers the function func to be called at the normal termination of the 
program. It returns zero if the registration succeeds, and a nonzero value other-
wise. 

void exit (int status); 
causes the normal termination of the program. First, all functions registered 
with the atexit function are called as many times as they are registered, in the 
reverse order of their registration. Next, all output streams are flushed, all open 
streams are closed, and all files created by the tmpfile function are removed. 
Finally, control returns to the host environment. An implementation-defined 
form of the status "successful termination" is returned if the value of status is 0 
or EXIT_SUCCESS, and an implementation-defined form of the status "unsuc-
cessful termination" is returned if the value of status is EXIT_FAILURE. The 
status returned is implementation-defined otherwise. 

char *getenv(const char *name) ; 
searches an environment list, provided by the host environment, for a string 
that matches name, and returns a pointer to the string associated with the 
matched list member. If the indicated name is not found, a null pointer is 
returned. 
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int system(const char *s) ; 
passes the string s to the host environment for execution by a command proces-
sor in an implementation-defined way, and returns an implementation-defined 
value. 

A.6.4 Searching and Sorting 
void *bsearch (const void *key, 

const void *base, size_t n, size_t size, 
int (* compare) (const void *, const void *)); 

searches in an array of n elements for the element that matches the object 
pointed to by key. The first element of this array is pointed to by base, and the 
elements are of size size. The pointer compare points to a function that is called 
with two arguments that point respectively to the key object and an array ele-
ment and returns an integer less than, equal to, or greater than zero according 
as the key object is less than, equal to, or greater than the array element. The 
array elements are assumed to be sorted in ascending order, according to com-
pare. The bsearch function returns a pointer to the matched array element, or 
NULL if no matching element is found. If two array elements compare as equal, 
the element that is matched is unspecified. 

void qsort (const void *base, size_t n, size_t size, 
int (* compare) (const void *, const void *) ) ; 

sorts in ascending order, according to compare, an array of n elements whose 
first element is pointed to by base and the elements are of size size. The pointer 
compare is as specified in the description of bsearch. If two array elements 
compare as equal, their order in the sorted array is not specified. 

A.6.5 Integer Arithmetic 
int abs(int n); 
computes and returns the absolute value of its int argument n. 

long int labs(long int n); 
computes and returns the absolute value of its long int argument n. 

div_t div (int num, int denom) ; 
computes the quotient and remainder of the division of the numerator num by 
the denominator denom, and returns a structure of type div t containing quo-
tient quot and remainder rem as int members. 

ldiv_t ldiv(long int num, long int denom); 
computes the quotient and remainder of the divisiorfof the numerator num by 
the denominator denom, and returns a structure of type ldiv t containing 
quotient quot and remainder rem as long int members. 

A.7 STRING PROCESSING 
The header <string.h> declares string processing functions. Some of these 
functions have been discussed in Section 7.4.1; the rest are described below. 
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size_t strspn(const char *sl, const char *s2) ; 
locates in the string si the first occurrence of a character that is not included in 
the string s2, and returns the length of the maximum initial segment of si that 
consists entirely of characters from s2. 

size_t strcpn(const char *s 1, const char * s2 ) ; 
locates in the string si the first occurrence of a character that is included in the 
string s2, and returns the length of the maximum initial segment of si that con-
sists entirely of characters not from s2. 

char *strpbrk(const char *sl, const char *s2) ; 
locates in the string si the first occurrence of a character that is included in the 
string s2, and returns a pointer to this character. A null pointer is returned if no 
character from s2 is found in s2. 

char *strstr (const char *sl, const char *s2) ; 
locates in the string si the first occurrence of the sequence of characters 
(excluding the terminating null character) in the string s2, and returns a pointer 
to the beginning of the first occurrence. A null pointer is returned if s2 is not 
found in si. 

char *strtok (const char *sl, const char *s2) ; 
splits, by a sequence of calls, the string si into a sequence of tokens, each of 
which is delimited by a character from s2, and returns a pointer to the first 
character of a token, and a null pointer when no further token is found. The 
first call in the call sequence has a non-NULL si as its argument, and locates the 
first token in si consisting entirely of characters not in s2, and terminates the 
token when located by overwriting the next character in si with the null char-
acter. Each subsequent call has NULL as the argument and searches from just 
past the end of the previous token. The string s2 may be different from call to 
call. For example, 

char *tok, str[ ] = "&&x&&y*|*z"; 
tok = strtok (str, "&" ); /* tok points to the token "x" */ 
tok = strtok (NULL, "*" ); /* tok points to the token "&y" */ 
tok = strtok (NULL, "*|" ); /* tok points to the token "z" */ 
tok = strtok (NULL, "I" ); /* tok is a null pointer */ 

char *strerror (int errnum) ; 
maps the error number in errnum to an implementation-defined error message 
string, and returns a pointer to this string. 

void *memcpy (void * s l , const void *s2, size_t n) ; 
copies n characters from the object pointed to by s2 to the object pointed to by 
si, and returns si. The result is unpredictable if the objects overlap. 

void *memmove(void *sl, const void *s2, size_t n) ; 
copies n characters from the object pointed to by s2 to the object pointed to by 
si, and returns si. However, unlike memcpy, it works even if the objects over-
lap. 
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int memcmp (const void *sl, const void *s2, size_t n) ; 
compares the first n characters of the object pointed to by si with those of the 
object pointed to by JS2, and returns a negative value if si is lexicographically 
less than s2, zero if si is equal to s2, and a positive value if si is lexicographi-
cally greater than s2. 

void *memchr (const void *s, int c, size__t n) ; 
locates the first occurrence of c (converted to an unsigned char) amongst the 
first n characters of the object pointed to by s, and returns a pointer to the 
located character if the search succeeds and NULL otherwise. 

void *memset (const void *s, int c, size_t n) ; 
copies c (converted to an unsigned char) into each of the first n characters of 
the object pointed to by s, and returns s. 

A.8 DATE AND TIME 
The header <t ime. h> declares time manipulation and time conversion func-
tions. Some of these functions deal with calendar time that represents the current 
date and time, some with local time, which is the calendar time for some specific 
time zone, and some with daylight-saving time, which temporarily changes the 
algorithm for determining the local time. The components of calendar time, 
called the broken-down time, can be represented in st ruct tm defined as 

struct tm { 
int tm sec; / * seconds after the minute (0-59) */ 
int tm min; / * minutes after the hour (0-59) */ 
int tm hour; / * hours since midnight (0-23) */ 
int tm mday; / * day of the month (1-31) */ 
int tm_ mon; / * months since January (0-11) */ 
int tm year ; / * years since 1900 */ 
int tm wday ; / * days since Sunday (0-6) */ 
int tm _yday ; / * days since January 1 (0-365) */ 
int tm _isdst; / * daylight-saving time flag: 

>0 => daylight-saving time in effect 
0 => not in effect 

<0 => information unavailable */ 
} 

The following functions use the types clock_t and time_t, which are arith-
metic types capable of representing time. 

A.8.1 Time Manipulation 
clock__t clock (void) ; 
returns the processor time used by the program since the beginning of its exe-
cution, or -1 (cast to clock t) if the time used is unavailable. The expression 
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clock () /CLK_TCK gives this time in seconds, where CLK_TCK is a macro 
defined in <t ime. h>. 

time_t time(time_t *tp) ; 
returns the current calendar time, and -1 (cast to time_t) if it is unavailable. 
The return value is also assigned to *tp, if tp is not NULL. 

double difftime (time_t timel, time_t timeO) ; 
returns the difference in seconds, timel - timeO, between two calendar times, 
timel and timeO. 

time_t mktime (struct tm *tp) ; 
converts the broken-down local time specified in *tp into a calendar time with 
the same encoding as that of the values returned by the time function. The 
original values of tp-> tm_wday and fp->tm_yday are ignored by mktime. On 
successful completion, mktime returns the converted value, and adjusts *tp, 
setting appropriately the components tm_wday and tm_yday; otherwise, -1 
(cast to t ime_t) is returned. 

A.8.2 Time Conversion 
These functions, except for str ftime, return values in a broken-down time 
structure or a character array. The values returned in either of these objects may 
be overwritten by an execution of any of the other functions. 

char *asctime(const struct tm *tp) ; 

converts the broken-down time in *tp into a string of the form 

Thu June 25 09:05:45 1986\n\0 
and returns a pointer to the string. 

struct tm *localtime(const time_t *tp) ; 
converts the calendar time *tp into broken-down local time, and returns a 
pointer to this structure. 

char *ctime(const time_t *tp) ; 
converts the calendar time *tp into local time in the form of a string. It is equiv-
alent to asctime (localtime (tp) ) . 

struct tm *gmtime(const time_t *tp) ; 
converts the calendar time *tp into Coordinated Universal Time (UTC), repre-
sented in a broken-down time structure, and returns a pointer to this structure. 
If UTC is not available, a null pointer is returned. 

size_t strftime (char *s, size_t maxsize, 
const char *format, const struct tm *tp) ; 

formats date and time information in *tp into a string according to format, and 
places the result in the character array pointed to by s. The format string may 
contain ordinary characters, which (including the terminating null character) 
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are copied as is into s. It may also contain zero or more conversion specifica-
tions, which are replaced in s by appropriate characters described below: 

%a abbreviated weekday name 
%A full weekday name 
%b abbreviated month name 
%B full month name 
%C appropriate date and time representation 
%d day of the month (01-31) 
%H hour in 24-hour clock (00-23) 
%I hour in 12-hour clock (01-12) 
%j day of the year (001-366) 
%m month (01-12) 
%M minute (00-59) 
•sp equivalent of either AM or PM 
%s second (00-59) 
%u week number of the year with Sunday as the first day of the 

week (00-53) 
the first day of the 

%w weekday with Sunday as 0 (0-6) 
%W week number of the year with Monday as 

week (00-53) 
the first day of the 

%x appropriate date representation 
%X appropriate time representation 
%y year without century (00-99) 
%Y year with century 
%z time zone name, if any 
o o *o "o o. "o 

If the total number of resulting characters including the terminating null char-
acter is not more than maxsize, strftime returns the number of characters 
placed into s excluding the terminating null character; otherwise, zero is 
returned and the contents of s are indeterminate. 
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A.3.4 Power Functions 
double pow(double x, double y) ; 
returns xy. 

double sqrt(double x) ; 
returns xh. 

A.3.5 Nearest Integer, Absolute Value, and Remainder 
Functions 
double ceil(double x); 
returns the smallest integer not less than x. 

double fabs(double x) ; 
returns the absolute value of x. 

double floor(double x) ; 
returns the largest integer not greater than x. 

double fmod(double x, double y) ; 
returns the floating point remainder of x/y with the same sign as x. 

A.4 NON-LOCAL JUMPS 
The header <set jmp.h> defines a type jmp_buf, a macro set jmp, and a 
function long jmp that may be used to bypass the normal function call and 
return mechanism to handle abnormal or exceptional conditions. 

int setjmp(jmp_buf env); 
void long jmp (jmp_buf env, int status) ; 

The macro set jmp saves its caller's environment in the jump buffer env, 
an object of type jmp_buf, and returns 0. The function long jmp takes as its 
arguments a jump buffer env in which an environment has been saved by 
set jmp and an integer value status, restores the environment, and then the 
program execution continues as if the corresponding call to set jmp had just 
returned with the value status. 

ANSI C specifies that status cannot be 0; if it is, set jmp returns 1. If the 
environment was not saved earlier in env by a call to set jmp or if the function 
containing the invocation of set jmp has terminated execution before the call 
to long jmp, the result is undefined. 

The following program illustrates the use of set jmp and long jmp. 
•include <stdio.h> 
•include <setjmp.h> 

void set_status(int) ; 
jmp_buf env; 
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int main(void) { 
int status; 

if ((status = set jmp (env)) != 0) /* set jmp returns 0 
the first time */ 

{ 
printf("return from longjmp with status = %d\n", 

status); 
return 0; 

} 
set_status(1); 
return 0; 

} 

void set_status(int status) { 
longjmp (env, status); /* jump to main */ 

} 

The call to set jmp in main saves the current environment in buf and returns 
0. In set_status, longjmp is called with status set to 0. It restores the 
environment as saved in env, causes a jump back to main, and the execution 
continues as if set jmp returned with value 1. The message is printed now. 

A.5 SIGNAL HANDLING 
The header <signal.h> declares macros, functions, and a type for handling 
various signals. 

A signal is a condition that can be reported during program execution. Sig-
nals may be generated by the error-detection mechanism of the underlying 
hardware or operating system, by actions external to the program, or by the 
program itself. Some examples of signals are (i) an erroneous arithmetic opera-
tion, such as dividing by 0, (ii) an access outside legal memory limits, such as 
an attempt to store a value in an object pointed to by a bad pointer, (iii) an 
interrupt from an external source, such as typing "delete" at the terminal, and 
(iv) the decision by a program to abort itself on detecting bad input. 

The following are the macros defined in <signal .h>, and they specify 
the standard set of signals noted against each: 

SIGABRT abnormal termination, such as initiated by the abort function 
SIGF P E erroneous arithmetic operation, such as dividing by zero 
SIGILL invalid function image, such as illegal instruction 
SIGI NT interactive attention signal, such as interrupt from the terminal 
SIG S E GV invalid memory access 
SIGTERM termination request 

An implementation may define additional signals. 
The following are the functions declared in <signal. h>: 
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int raise (int sig); 
sends the specified signal sig to the executing program. It returns zero when 
successful, and a nonzero value otherwise. 

void (*signal(int sig, void (*func) (int) ) ) (int) ; 
selects, depending upon the value of func, one of the three ways in which the 
receipt of the signal sig is handled: if the value of func is SIG_IGN, the signal is 
ignored; if it is SIG DFL, the implementation-defined default behavior is used; 
otherwise, the function pointed to by func, called the signal handler, is used to 
process the signal. A successful call to signal returns the previous value of 
func for the specified signal; otherwise, SIG_ERR is returned. 

When a signal sig occurs for which a handler func has been specified, the 
signal is first restored to its implementation-defined default behavior by exe-
cuting the equivalent of signal (sig, SIG DFL), and then the signal handler is 
called by executing the equivalent of (* func) (sig). If the signal handler 
returns, execution resumes from where it was when the signal occurred. 

The type defined in <signal .h> is sig_atomic_t. Objects of this type 
are integral objects that can be accessed as atomic entities, even in the presence 
of asynchronous interrupts, and should be declared volatile static. 

The following program illustrates the use of the signal handling facility: 

•include <stdio.h> 
•include <signal.h> 
•define MAX 5 

int cnt = 0, totcnt = 0, interrupts = 0; 
void print(void); 

int main(void) { 
/ * catch the interactive attention signal * / 
(void) signal(SIGINT, print); 

for ( ; getcharO; cnt++) 
r 

printf("\ntotal characters read = %d\n", totcnt); 

return 0; } 

void print(void) { 
if (interrupts++ < MAX) 

/* reset to catch the interactive attention signal */ 
(void) signal(SIGINT, print); 

printf("\ncharacters read = %d\n", cnt); 
totcnt += cnt; 
cnt = 0; 

} 
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A.6 GENERAL UTILITIES 
The header <stdlib.h> declares functions for string conversion, pseudo-
random sequence generation, memory management, communication with the 
environment, searching and sorting, and integer arithmetic. We have already 
discussed the memory management functions malloc, calloc, realloc, 
and free in Section 7.8; the remaining functions are described here. 

A.6.1 String Conversion 
double atof(const char *s) ; 
converts the string s to its double representation and returns the converted 
value. 

int atoi (const char *s) ; 
converts the string s to its int representation and returns the converted value. 

long int atol (const char *s) ; 
converts the string s to its long int representation and returns the converted 
value. 

double strtod (const char *s, char **endp) ; 
converts the largest possible initial portion of the string s to its double represen-
tation, ignoring the leading whitespaces, and stores at *endp the address of the 
first character past the converted portion of the string unless endp is NULL. If no 
conversion is possible, zero is returned, endp (if not NULL) is set to the value of 
s, and errno is set to ERANGE. If the converted value would cause overflow, 
plus or minus HUGE_VAL, depending upon the sign of the converted value, is 
returned; if the converted value would cause underflow, zero is returned; in 
either case, errno is set to ERANGE. 

long int strtol (const char *s, char **endp, int base); 
converts the largest possible initial portion of the string s to long int, ignor-
ing the leading whitespaces, and stores at *endp the address of the first charac-
ter past the converted portion of the string, unless endp is NULL. If the value of 
the base is zero, the number is a decimal, octal, or hexadecimal constant; the 
leading o implies octal and the leading ox or OX hexadecimal. If the value of 
base is between 2 and 36, the number consists of a sequence of letters and digits 
representing an integer in the specified base, optionally preceded by a plus or 
minus sign. Letters from a through z, or A through z, are ascribed the values 
10 through 3 5 respectively, only letters with ascribed values less than that of 
the base being permitted. If the value of base is 16, the sequence of letters and 
digits may optionally be preceded by the characters ox or OX. If the conversion 
is not possible, zero is returned. If the converted value would cause overflow, 
LONG_MAX or LONG_MIN is returned depending upon the sign of the converted 
value, and errno is set to ERANGE. 
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unsigned long int strtoul(const char *s, 
char **endp, int base) ; 

behaves like strtol, except that the converted value in this case is unsigned 
long int, and that if the converted value would cause overflow ULONG_MAX 
is returned. 

A.6.2 Pseudo-random Sequence Generation 
int rand(void); 

generates a pseudo-random integer in the range 0 to RAND_MAX. 

void srand (unsigned int seed); 
uses the argument seed as the seed for the sequence of pseudo-random num-
bers to be returned by subsequent calls to rand. If rand is called before any 
calls to srand, the default seed value of 1 is used for generating pseudo-
random numbers. 

A.6.3 Communication with the Environment 
void abort(void); 
causes the abnormal termination of the program, and returns an implementa-
tion-defined form of the status "unsuccessful termination" to the host environ-
ment by means of the function call raise (SIGABRT). 

int atexit (void (*func) (void) ) ; 
registers the function func to be called at the normal termination of the 
program. It returns zero if the registration succeeds, and a nonzero value other-
wise. 

void exit (int status); 
causes the normal termination of the program. First, all functions registered 
with the atexit function are called as many times as they are registered, in the 
reverse order of their registration. Next, all output streams are flushed, all open 
streams are closed, and all files created by the tmpfile function are removed. 
Finally, control returns to the host environment. An implementation-defined 
form of the status "successful termination" is returned if the value of status is 0 
or EXIT_SUCCESS, and an implementation-defined form of the status "unsuc-
cessful termination" is returned if the value of status is EXIT_FAILURE. The 
status returned is implementation-defined otherwise. 

char *getenv(const char *name) ; 
searches an environment list, provided by the host environment, for a string 
that matches name, and returns a pointer to the string associated with the 
matched list member. If the indicated name is not found, a null pointer is 
returned. 
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int system(const char *s) ; 
passes the string s to the host environment for execution by a command proces-
sor in an implementation-defined way, and returns an implementation-defined 
value. 

A.6.4 Searching and Sorting 
void *bsearch (const void *key, 

const void *base, size_t n, size_t size, 
int (* compare) (const void *, const void *)); 

searches in an array of n elements for the element that matches the object 
pointed to by key. The first element of this array is pointed to by base, and the 
elements are of size size. The pointer compare points to a function that is called 
with two arguments that point respectively to the key object and an array ele-
ment and returns an integer less than, equal to, or greater than zero according 
as the key object is less than, equal to, or greater than the array element. The 
array elements are assumed to be sorted in ascending order, according to com-
pare. The bsearch function returns a pointer to the matched array element, or 
NULL if no matching element is found. If two array elements compare as equal, 
the element that is matched is unspecified. 

void qsort (const void *base, size_t n, size_t size, 
int (* compare) (const void *, const void *) ) ; 

sorts in ascending order, according to compare, an array of n elements whose 
first element is pointed to by base and the elements are of size size. The pointer 
compare is as specified in the description of bsearch. If two array elements 
compare as equal, their order in the sorted array is not specified. 

A.6.5 Integer Arithmetic 
int abs(int n); 
computes and returns the absolute value of its int argument n. 

long int labs(long int n); 
computes and returns the absolute value of its long int argument n. 

div_t div (int num, int denom) ; 
computes the quotient and remainder of the division of the numerator num by 
the denominator denom, and returns a structure of type div t containing quo-
tient quot and remainder rem as int members. 

ldiv_t ldiv(long int num, long int denom); 
computes the quotient and remainder of the divisiorfof the numerator num by 
the denominator denom, and returns a structure of type ldiv t containing 
quotient quot and remainder rem as long int members. 

A.7 STRING PROCESSING 
The header <string.h> declares string processing functions. Some of these 
functions have been discussed in Section 7.4.1; the rest are described below. 
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size_t strspn(const char *s2, const char *s2) ; 
locates in the string si the first occurrence of a character that is not included in 
the string s2, and returns the length of the maximum initial segment of si that 
consists entirely of characters from s2. 

size_t strcpn(const char *s 1, const char * s2 ) ; 
locates in the string si the first occurrence of a character that is included in the 
string s2, and returns the length of the maximum initial segment of si that con-
sists entirely of characters not from s2. 

char *strpbrk(const char *sl, const char *s2) ; 
locates in the string si the first occurrence of a character that is included in the 
string s2, and returns a pointer to this character. A null pointer is returned if no 
character from s2 is found in s2. 

char *strstr (const char *sl, const char *s2) ; 
locates in the string si the first occurrence of the sequence of characters 
(excluding the terminating null character) in the string s2, and returns a pointer 
to the beginning of the first occurrence. A null pointer is returned if s2 is not 
found in si. 

char *strtok (const char *sl, const char *s2) ; 
splits, by a sequence of calls, the string si into a sequence of tokens, each of 
which is delimited by a character from s2, and returns a pointer to the first 
character of a token, and a null pointer when no further token is found. The 
first call in the call sequence has a non-NULL si as its argument, and locates the 
first token in si consisting entirely of characters not in s2, and terminates the 
token when located by overwriting the next character in si with the null char-
acter. Each subsequent call has NULL as the argument and searches from just 
past the end of the previous token. The string s2 may be different from call to 
call. For example, 

char *tok, str[ ] = "&&x&&y*|*z"; 
tok = strtok (str, "&" ); /* tok points to the token "x" */ 
tok = strtok (NULL, "*" ); /* tok points to the token "&y" */ 
tok = strtok (NULL, "*|" ); /* tok points to the token "z" */ 
tok = strtok (NULL, "I" ); /* tok is a null pointer */ 

char *strerror (int errnum); 
maps the error number in errnum to an implementation-defined error message 
string, and returns a pointer to this string. 

void *memcpy (void * s l , const void *s2, size_t n) ; 
copies n characters from the object pointed to by s2 to the object pointed to by 
si, and returns si. The result is unpredictable if the objects overlap. 

void *memmove(void *s2, const void *s2, size_t n) ; 
copies n characters from the object pointed to by s2 to the object pointed to by 
si, and returns si. However, unlike memcpy, it works even if the objects over-
lap. 
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int memcmp (const void *sl, const void *s2, size_t n) ; 
compares the first n characters of the object pointed to by si with those of the 
object pointed to by JS2, and returns a negative value if si is lexicographically 
less than s2, zero if si is equal to s2, and a positive value if si is lexicographi-
cally greater than s2. 

void *memchr (const void *s, int c, size__t n) ; 
locates the first occurrence of c (converted to an unsigned char) amongst the 
first rt characters of the object pointed to by s, and returns a pointer to the 
located character if the search succeeds and NULL otherwise. 

void *memset (const void *s, int c, size_t n) ; 
copies c (converted to an unsigned char) into each of the first n characters of 
the object pointed to by s, and returns s. 

A.8 DATE AND TIME 
The header <t ime. h> declares time manipulation and time conversion func-
tions. Some of these functions deal with calendar time that represents the current 
date and time, some with local time, which is the calendar time for some specific 
time zone, and some with daylight-saving time, which temporarily changes the 
algorithm for determining the local time. The components of calendar time, 
called the broken-down time, can be represented in st ruct tm defined as 

struct tm { 
int tm sec; / * seconds after the minute (0-59) */ 
int tm min; / * minutes after the hour (0-59) */ 
int tm hour; / * hours since midnight (0-23) */ 
int tm mday; / * day of the month (1-31) */ 
int tm_ mon; / * months since January (0-11) */ 
int tm year ; / * years since 1900 */ 
int tm wday ; / * days since Sunday (0-6) */ 
int tm _yday ; / * days since January 1 (0-365) */ 
int tm _isdst; / * daylight-saving time flag: 

>0 => daylight-saving time in effect 
0 => not in effect 

<0 => information unavailable */ 
} 

The following functions use the types clock_t and time_t, which are arith-
metic types capable of representing time. 

A.8.1 Time Manipulation 
clock__t clock (void) ; 
returns the processor time used by the program since the beginning of its exe-
cution, or -1 (cast to clock t) if the time used is unavailable. The expression 
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clock () /CLK_TCK gives this time in seconds, where CLK_TCK is a macro 
defined in <t ime. h>. 

time_t time(time_t *tp) ; 
returns the current calendar time, and -1 (cast to time_t) if it is unavailable. 
The return value is also assigned to *tp, if tp is not NULL. 

double dif ftime (time_t timel, time_t timeO); 
returns the difference in seconds, timel - timeO, between two calendar times, 
timel and timeO. 

time_t mktime (struct tm *tp) ; 
converts the broken-down local time specified in *tp into a calendar time with 
the same encoding as that of the values returned by the time function. The 
original values of tp-> tm_wday and fp->tm_yday are ignored by mktime. On 
successful completion, mktime returns the converted value, and adjusts *tp, 
setting appropriately the components tm_wday and tm_yday; otherwise, -1 
(cast to t ime_t) is returned. 

A.8.2 Time Conversion 
These functions, except for str ftime, return values in a broken-down time 
structure or a character array. The values returned in either of these objects may 
be overwritten by an execution of any of the other functions. 

char *asctime(const struct tm *tp) ; 

converts the broken-down time in *tp into a string of the form 

Thu June 25 09:05:45 1986\n\0 
and returns a pointer to the string. 

struct tm *localtime(const time_t *tp) ; 
converts the calendar time *tp into broken-down local time, and returns a 
pointer to this structure. 

char *ctime(const time_t *tp) ; 
converts the calendar time *tp into local time in the form of a string. It is equiv-
alent to asctime (localtime (tp) ) . 

struct tm *gmtime(const time_t *tp) ; 
converts the calendar time *tp into Coordinated Universal Time (UTC), repre-
sented in a broken-down time structure, and returns a pointer to this structure. 
If UTC is not available, a null pointer is returned. 

size_t strftime (char *s, size_t maxsize, 
const char *format, const struct tm *tp) ; 

formats date and time information in *tp into a string according to format, and 
places the result in the character array pointed to by s. The format string may 
contain ordinary characters, which (including the terminating null character) 
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are copied as is into s. It may also contain zero or more conversion specifica-
tions, which are replaced in s by appropriate characters described below: 

%a abbreviated weekday name 
%A full weekday name 
%b abbreviated month name 
%B full month name 
%C appropriate date and time representation 
%d day of the month (01-31) 
%H hour in 24-hour clock (00-23) 
%I hour in 12-hour clock (01-12) 
%j day of the year (001-366) 
%m month (01-12) 
%M minute (00-59) 
•sp equivalent of either AM or PM 
%s second (00-59) 
%u week number of the year with Sunday as the first day of the 

week (00-53) 
the first day of the 

%w weekday with Sunday as 0 (0-6) 
%W week number of the year with Monday as 

week (00-53) 
the first day of the 

%x appropriate date representation 
%X appropriate time representation 
%y year without century (00-99) 
%Y year with century 
%z time zone name, if any 
o o *o "o o. •O 

If the total number of resulting characters including the terminating null char-
acter is not more than maxsize, strftime returns the number of characters 
placed into s excluding the terminating null character; otherwise, zero is 
returned and the contents of s are indeterminate. 



B Precedence and 
Associativity of Operators 

Symbol Description Associativity 

0 Function call Left to right 

[] Array subscript 
Structure member 

- > Structure pointer 

+ Unary plus Right to left 
- Unary minus 

++ Postfix/prefix increment 
— Postfix/prefix decrement 

Bitwise logical complement 
l Logical NOT 
* Indirection (dereferencing) 
& Address 

sizeof Size of an object 
(type) Cast to type 

* Multiplication Left to right 

/ Division 
% Remainder (modulus) 

+ Addition Left to right 
- Subtraction 

« Bitwise left shift Left to right 
» Bitwise right shift 

< Less than Left to right 
< = Less than or equal to 
> Greater than 

> = Greater than or equal to 

== Equal to Left to right 
! = Not equal to 

& Bitwise AND Left to right 
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Symbol Description Associativity 

- Bitwise exclusive OR Left to right 

1 Bitwise inclusive OR Left to right 

&s Logical AND Left to right 

1 1 Logical OR Left to right 

9 ; Conditional Right to left 
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II
 II
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 I
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II
 1

1 Assignment (simple) 
Multiplication assignment 
Division assignment 
Remainder assignment 
Addition assignment 
Subtraction assignment 
Bitwise AND assignment 
Bitwise exclusive OR assignment 
Bitwise inclusive OR assignment 
Left shift assignment 
Right shift assignment 

Right to left 

/ Comma Left to right 

Operators grouped together between horizontal lines have the same prece-
dence and associativity. Those in higher groups have higher precedence. 

Besides the operators given in the table, ANSI C has introduced the opera-
tors # and ## for creation of strings and concatenation of tokens. The order of 
evaluation of these operators is unspecified. The unary plus (+) operator has 
been introduced by ANSI C for symmetry with the unary minus ( - ) operator. 



c Living with an Old C 
Compiler 

The reference manual contained in Kernighan and Ritchie's 1978 classic book 
The C Programming Language provided the original definition of C. While ANSI 
C preserves the spirit of the original C, it has incorporated various enhance-
ments to the original C and modern developments in programming languages. 
Most of the changes, however, are minor. Considering that some of you may 
still have pre-ANSI-C compilers, we discuss important differences between the 
original and ANSI C, so that you may be able to write C programs for these 
compilers as well. 

C.1 MOST NOTABLE CHANGE 
ANSI C differs from the original C most notably in the way a function is 
defined and used. 

Function Definition 

The general form for defining a function in the original C is as follows: 

function-type function-name (parameter-list) 
parameter-declarations 

{ 

variable-declarations 

function-statements } 
Only the parameter names are specified in the parameter-list. Their types are 
specified in the parameter-declarations, following the parameter list. A parameter 
whose type is not specified is taken to be of type int. If a function does not 
have any parameters, it is indicated by an empty pair of parentheses (), fol-
lowing the function name. The specification of function-type is optional, if it is 
int. 

Here are some examples of function definitions in ANSI C and their corre-
sponding definitions in the original C: 

425 
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ANSIC Original C 

int main(void) { main() { 

int quotient(int i, int j) { 

} 

int quotient(i, j) 

} 

double chebyshev(int n, float x) { 

} 

} 

double chebyshev(n, x) 
int n; 
float x; 

{ 

char *cmp(char s[], int n, char *t) 
( 
) 

} 

char *cmp(s, n, t) 
char s[], *t; 
int n; 

void raktree(struct info **parent) mktree(parent) 
struct info **parent; 

In the first example, the return type of main has not been specified in the origi-
nal C version, as it is taken to be int by default. Instead of void, the empty 
pair of parentheses following the function name are used to specify that main 
takes no arguments. In the quotient example, the types of the parameters i 
and j have not been specified, and they are taken to be of type int. But 
remember that the omission of type specification is a bad programming prac-
tice, and you should avoid it. You should also specify the return type of a func-
tion, even if it is int, as we have done for quotient. The chebyshev exam-
ple shows the type declarations for parameters. Note that each parameter 
declaration is terminated with a semicolon. The cmp example shows that 
parameters of the same type can be declared together in one declaration, and 
that the parameters need not be declared in the same order in which they 
appear in the parameter list. Finally, the mktree example illustrates the con-
vention of not specifying the return type for a function that does not return a 
value, if the type void is not supported by the compiler. 

Function Call 

In the original C, no declaration is required in the calling function for a func-
tion being called that returns an int . However, if a called function returns a 
value other than int and its declaration is not available, it must be explicitly 
declared in the calling function using a declaration of the form 

function-type function-name (); 
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Unlike ANSI C function prototypes, parameter names and their types are not 
specified in the declaration. The following example shows the declaration and 
call to the cmp function in ANSI C and the original C: 

ANSIC Original C 

char *scmp(char s[], char *t, int n) char *scmp(s, t, n) 
{ char s[], *t; 
char *cmp(char [], int, char *)'; int n; 
int safestr(char [], int); { 

char * cmp (); 
return safestr(s,n) ? 

cmp(s,n,t): NULL; return safestr(s,n) ? 
} cmp(s,n,t): NULL; 

} 

In the original C version, it has been specified that cmp returns a char *, but 
the types of its parameters have not been specified. Also, no declaration has 
been given for safestr, as it returns an int. 

Parameter Binding 

The type conversion rules at the time of binding arguments to the parameters 
are different in ANSI and the original C. In the original C, when an expression 
appears as an argument in a function call, adjustments are made in the type of 
the value of the expression, using the unary conversion rules. In particular, 
arguments of type float are converted to double, and of type char or 
short to int, before being passed as arguments. Adjustments are also made 
to the types of the function's parameters, and parameters of type char, short, 
or float are implicitly promoted to int, int, and double respectively. No 
other conversions are performed automatically; appropriate casts must be used 
to effect necessary conversions. The following example illustrates this differ-
ence: 

ANSI C Original C 

double poly (int i, int j) double poly(i, j) 
{ int i, j; 
double chebyshev(int, float); { 

double chebyshev (); 
return chebyshev(i,j); 

) return chebyshev(i, (float) j); 
} 

In ANSI C, when a function for which a prototype has been specified is called, 
the arguments to the function are converted, as if by assignment, to the 
declared types of the parameters. Thus, the call 

chebyshev(i, j) ; 
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is equivalent to 

chebyshev (i, (float) j) ; 
and no explicit casting is necessary. 

Since the original C does not have function prototypes, the function argu-
ments are not checked for consistency with the parameters. Functions can 
potentially take an arbitrary number of arguments of arbitrary types. Thus, an 
original C compiler does not detect an error in the following call to cmp: 

return safestr(s,n) ? cmp(s,t,n) : NULL; 
in which t, a char *, is being passed to an int, and n, an int, to a char *. It 
also does not detect an error in the following call to safestr: 

return safestr (s,t,n) ? cmp(s,t,n) : NULL; 
in which there is an extra argument and the types of the second argument and 
parameter do not match. Similarly, the error that safestr has been provided 
one less argument in the following call: 

return safestr(s) ? cmp(s,t,n) : NULL; 
is also not detected. Mismatch in number and types of arguments and parame-
ters is the most common error found in programs written in the original C, and 
you should always ensure that the caller provides the correct number of argu-
ments of consistent types, and that the callee does not use an unsupplied argu-
ment. 

C.2 WORK-AROUNDS 
ANSI C provides some convenient features not available in the original C. 
However, you may get by in many instances by using alternative facilities. 

Size of an Identifier 

ANSI C permits a minimum of 31 significant characters in identifiers, whereas 
the original C specifies that only the first eight characters of an identifier are 
significant. Thus, variable names like average_weight and aver-
age width may not be distinguishable in the original C, as they are identical 
up to the first eight characters. Use small variable names. 

String Concatenation 

The original C does not concatenate adjacent string constants. Write them as 
one constant and use a backslash at the end of a line to continue a long string 
onto the next line. 

Automatic Type Conversion 

The automatic type conversion rules in the original C are somewhat different. 
Keep in mind the following figure when writing expressions involving mixed 
types: 
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Predefined Data Types 

The types size_t and ptrdiff_t are not standard in the original C. Use 
int, instead. 

Generic Pointer 

ANSI C uses the type void * as the proper type for a generic pointer. The type 
char * plays this role in the original C. 

switch Statement 

The switch statement control and case label expressions may only be of type 
int (not any integral type) in the original C. Use the if statement for other 
integral types. 

Initialization of Automatic Arrays and Structures 

ANSI C permits the initialization of automatic arrays and structures, a feature 
not permitted in the original C. You should replace initialization with explicit 
assignments in such cases, as shown in the following example: 

ANSIC Original C 

void foo(void) 

int a [2 ] = {0, In-
struct pt 

foo () { 
int a [2]; 
struct pt 

float x, y; 
} P = (0, 0}; 

float x, y; } p; 
a [0 ] = 0, a [ 1 ] = 1; 
p. x = p. y = 0 ; 

However, the original C does allow initialization of static arrays and struc-
tures. Therefore, if you do not need to subsequently change the elements of the 
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arrays or structures to be initialized, you may declare them to be static and 
initialize them, as shown in the following example: 

ANSIC Original C 

void foo(void) { 
int a [2] = (0, In-
struct pt 

foo () 

static int a[2] = {0, 1} 
static struct pt 

float x, y; 
} P = (0, 0); 

float x, y; 
} P = {0, 0}; 

Initialization of Unions 

ANSI C allows restricted initialization of union variables, whereas the original 
C does not allow any union variable (including static) to be initialized. 
Replace initializations with explicit assignments. 

Structures and Unions in Assignments and Function Definitions 

In ANSI C, a structure variable may be assigned to another structure variable, 
structures may be passed as function arguments, and functions may return 
structures. These features are not available in the original C. However, you may 
replace structure assignment by assignments to individual members; instead of 
passing a structure as argument, you may either pass structure members or a 
pointer to the structure; and a function may return a pointer to the structure, 
rather than returning the structure. The following example illustrates these 
work-arounds: 

ANSIC Original C 

struct pt { 
float x, y; 

} P = (0, Ob-

struct pt { 
float x, y; 

} P = {0, 0}; 

void bar(void) bar () 

struct pt q, r; 
float dist(struct pt), f; 
struct pt polar(struct pt) ; 

struct pt q, *r; 
float dist(/* int, int */); 
struct pt *polar(/* struct pt * */), 

q = p; 
f = dist(q); 
r = polar(q); 

q.x = p.x, q.y = p.y; 
f = dist(q.x, q.y); 
r = polar(&q); 
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The preceding observations also hold for union types. 

Enumeration Types 

The original C does not provide enumeration types. However, their functional-
ity can be partially simulated using #def ines and typedefs, as shown in the 
following example: 

ANSIC Original C 

typedef enum {chablis,claret) wine; #define chablis 0 
•define claret 1 
typedef int wine; 

wine bordeaux, *burgundy; wine bordeaux, *burgundy; 

bordeaux = claret; bordeaux = claret; 
*burgundy = chablis; *burgundy = chablis; 

Standard Library 

The "standard" library is not standard in the original C, and the functions pres-
ent in one implementation may differ from those in another. However, you 
should be able to find most of the functions defined in the standard library by 
ANSI C in your implementation's library, although sometimes under different 
names. 

C.3 IRRECONCILABLES 
The following are some of the important ANSI C features for which there are 
no analogs in the original C: 

• A standard and portable facility for writing functions that take a vari-
able number of arguments. 

• The type qualifiers const and volatile to indicate special properties 
of the objects being declared. 

• The extra-precision type long double. 
• The facility to explicitly specify the signedness of characters and other 

types by using the keywords signed and unsigned. 
• The suffixes U or L for integers and F or L for reals, to make the types of 

constants explicit. 
• The notation for expressing a hexadecimal constant by a bit pattern of 

the form ' \xhh'. 
• Trigraph sequences as alternative spellings of C characters not in the 

ASCII invariant code set, and the data type wchar_t for wide charac-
ters. 

• The preprocessing operators defined, #, and ##. 
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• Flexibility to allow whitespaces to precede or follow the directive-intro-
ducing character #. 

• The preprocessing directives # e l i f and #pragma. 
• The #include directive of the form 

#include token-sequence 

• The special macro names LINE , FILE , DATE , 
TIME , and STDC 



D Internal Representation 

Consider the simple problem: 6 + 5 = ?. Almost all of you would say that the 
answer is 11 and, of course, you are right. However, certain computer scientists 
and inhabitants of the planet of Hex, who have 16 fingers and toes, may reply 
that the answer is V and they are also perfectly right. Instead of counting 0,1, 
2,3,4,5,6, 7,8,9,10,11,12,13,14,15,16,17,18,19,20, and so on like the rest of 
us, these people count 0,1,2,3,4,5, 6,7,8,9, a, b, c, d, e, f, 10, 11,12,13,14,15, 
16/17,18,19, la, lb, lc, Id, le, If, 20, and so on. The point is that an entity can 
be represented in many ways as long as the meaning of the symbols used and 
the system of representation is well defined and understood. Computers are 
built using devices that can be at any time in one of the two states: 'on' and 
'off', which represent 1 and 0 respectively. It is not surprising, therefore, that 
almost all present-day computers are based on the binary system of representa-
tion that uses only two symbols: 1 and 0. In this appendix, we first review some 
number systems and then see how numbers and characters are internally rep-
resented in a computer. 

D.l NUMBER SYSTEMS 
The number system that we are accustomed to uses the ten digits 0,1,2,3,4, 5, 
6, 7, 8, and 9, and is called the decimal, or base-10, number system. The signifi-
cance of a digit in a number depends upon the position occupied by the digit. 
For example, the number 596 represents the number five hundred ninety-six 
and can be written in the expanded form as 

(5 x 100) + (9 x 10) + (6xl ) , 

or 

(5 x 102) + (9 x 101) + (6 x 10°). 

Thus, the digits that appear in the various positions of a decimal number are 
coefficients of powers of 10, representing various positions. 

In a decimal number representing a fraction, digits to the right of the deci-
mal point also represent coefficients of powers of 10, but the powers appearing 
on the base 10 are negative integers. For example, the number 47.238 can be 
written in the expanded form as 
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(4 x 10) + (7 x 1) + (2 x Wo) + (3 x Moo) + (8 x Viooo), 

or 

(4 x 101) + (7 x 1°) + (2 x 10"1) + (3 x 10-2) + (8 x 10~3). 

Other than decimal, the important positional number systems used in com-
puting are binary, octal, and hexadecimal. These number systems differ in the 
base (also called the radix) used. Whereas the decimal system uses base 10, the 
binary system uses base 2, the octal system uses base 8, and the hexadecimal 
system uses base 16. 

The binary number system is a base-2 system and makes use of the binary 
digits 0 and 1. As in the case of the decimal system, the significance of a digit in 
a binary number is determined by its position. For example, the binary number 
101.110 can be expanded as 

(1 x 21) + (0 X21) + (1 x 2°) + (1 x 2"1) + (1 x 2"2) + (0 x 2~\ 

and thus has the decimal number value 

4 + 0 + 1 + 1/2 + 1/4 + 0 = 5.75. 

The octal number system is a base-8 system and makes use of the eight dig-
its 0,1,2, 3,4,5,6, and 7. Again, the significance of a digit in an octal number is 
determined by its position. For example, the octal number 7.2 can be expanded 
as 

(7 x 8°) + (2 x 8"1), 

and thus has the decimal number value 

7 + 2/8 = 7.25. 

The hexadecimal number system is a base-16 system and makes use of the 
sixteen digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a(10), b(ll), c(12), d(13), e(14), and f(15). 
The significance of a digit in this system also depends on its position in the 
number. For example, the hexadecimal number 8.c can be expanded as 

(8 x 16°) + (12 x 16_1), 

and thus has the decimal number value 

8 + 12/16 = 8.75. 

To determine the decimal number value of a binary, octal, or hexadecimal 
number with a non-terminating fraction, we make use of the formula 

1 + r + r2 + r3 + - • • = - , -1 <r <1 
1 - r 

for the sum of an infinite geometric series. For example, the binary number 

0.1 0110 0110 0110 . . . 

can be expanded as 

lx2_1 + (lx2~3 + lx2~4) + (lx2~7 + lx2"8) + (lx2"n + lx2"12) + . . . 
and thus has the decimal nnmhpr valup 
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lx2 -1 + (lx2~3 + Ixl"4) (1 + 2~4 + 2~8 + . . . ) 
= lx2_1 + (lx2~3 + lx2~4) (1/(1 - 2-4)) 
= 1/2 + (1/8 +1/16) (16/15) 
= 0.7 

To avoid confusion about the base that is being used, we will enclose a 
nondecimal number within parentheses and write the base as a subscript. 
Thus, (101.110)2 denotes a base-2 (binary) number, (7.2)8 denotes a base-8 
(octal) number, and (8.c)i6 denotes a base-16 (hexadecimal) number. 

D.l.l Conversion from Base-10 to Base-b 
To convert the integer portion of a base-10 number to its base-fr equivalent, the 
integer is divided repeatedly by b until a quotient of zero results. The succes-
sive remainders are the digits from right to left of the base-b representation. To 
convert the fractional part of a decimal number to its base-b equivalent, the 
fractional part is repeatedly multiplied by b till the derived fraction reduces to 
zero, or the derived fraction begins to repeat, or the derived fraction has 
enough digits for the required precision. The integer portions of the successive 
products are the digits from left to right of the base-b representation. 

For example, the binary representation of ( 2 5 ) i o is (11001 since 

0 1 
2 I 1 1 

2 I 3 0 

2 r e 0 

2 I 12 1 

2 I 25 

The octal representation of ( 2 5 ) i o is (31)8, since 

0 
8 nr 
8 I 25 

The hexadecimal representation of ( 2 5 ) i o is (19)j6, since 

0 
16 nr 
16 f~25 

1 
9 
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The binary representation of (.3125)io is (.0101)2, since 

.3125 
,x 2 

0 .625 
x 2 

1 .25 
x 2 

0 .5 
x 2 

1 0 

The binary representation of (.7)w is (.1 0110 0110 .. .)2, where the pattern 
0110 is repeated ad infinitum, since 

.7 
x 2 

1 .4 
x 2 

0 .8 
x 2 

1 .6 
x 2 

1 .2 
x 2 

0 .4 

This representation is commonly written as (.10110)2. 
Finally, the binary representation of (25.3125)io is (11001.0101)2, since the 

binary representation of (25)10 is (11001 )2 and that of (.3125)i0 is (.0101 )2. 

D.1.2 Conversion from Octal or Hexadecimal 
to Binary and Vice Versa 
For conversion from octal or hexadecimal to binary, we need only replace each 
octal or hexadecimal digit by its binary equivalent. For example, to convert 
(2705)8 to binary, replace 2 by 010, 7 by 111, 0 by 000, and 5 by 101 to obtain 
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(010111000101)2, and to convert (abc)i6 to binary, replace a by 1010, b by 1011, 
and c by 1100 to obtain (101010111100)2. 

To convert a binary number to octal, group the digits in threes to the left 
and to the right of the radix point. If the number of digits left in the last group 
is less than three, the missing digits are made up by adding zeros. A similar 
procedure is followed for converting a binary number to a hexadecimal num-
ber, except that the groups now consist of four digits. For example: 

(110010)2 = (110010) (62)8 
(110010)2 = (0011 0010)2 (32)i6 

(10101111)2 = (010101111)2 (257)8 
(10101111)2 = (1010 1111)2 (af)i6 

(1010.10101)2 = (001 010 .101 010)2 = (12.52)8 
(1010.10101)2 = (1010 .10101000)2 = (a.a8)i6 

The conversion from octal or hexadecimal to binary and vice versa can also 
be effected via decimal equivalents. Thus, to convert the octal (62)$ to binary, 
we first convert it to its decimal equivalent (50)io and then convert the decimal 
equivalent to its binary equivalent (110010)2- Similarly, to convert the binary 
number (1010.10101)2 to hexadecimal, we first convert it to its decimal equiva-
lent (10.65625)io and then convert the decimal equivalent to its hexadecimal 
equivalent (a.a8)i6. 

D.2 NUMBER REPRESENTATION 
To store a decimal integer in a computer, it is first converted to its binary equiv-
alent and then stored right-justified, in a word. One bit of the word, usually the 
leftmost, is reserved to specify the sign of the integer. Typically, a 0 implies pos-
itive and 1 a negative sign. For example, the decimal integer 25 has the binary 
representation (11001)2, and +25 is stored in a 16-bit word as 

+25 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 

whereas -25 is stored as 

-25 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 

the difference in the two being in the leftmost sign bit. 
The fixed size of the word imposes a limitation on the magnitude of the 

integers that can be stored internally. Thus, since the leftmost bit is used to rep-
resent the sign of the integer, the largest positive integer that can be stored in an 
8-bit word is (1111111)2, which is the binary representation of the decimal num-
ber 
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(lx26) + (1x2s) + (lx24) + (lx23) + (lx22) + (lx2]) + (1x2°) 
= 26 + 2s + 24 + 23 + 22 + 2 +1 
= 2 7 - l 

= 127. 

Similarly, the largest positive integer that can be stored in a 16-bit word is 
215 - 1 = 32767, and in a 32-bit word the limit is 231 -1 = 2147483647. 

In many computers, twos complement is used to store integers, the advan-
tage being that the arithmetic operation of subtraction can be realized by add-
ing the twos complement of the subtrahend. In the binary system, the comple-
ment of 0 is_l, and that of 1 is 0. The ones complement of a binary number N, 
denoted by N, is the number obtained by complementing each of the digits of 
N. For example, if 

N = 00000000 01100101 

then 
N= 1111111110011010 

The twos complement of a binary number N is the number resulting from adding 
1 to the rightmost digit positionjregardless of the position of the radix point) of 
its ones complement N, that is, N+ 1. Thus, in the preceding example 

N+ 1 = 11111111 10011011 

and 
N + (N +1 ) = 00000000 00000000 

after deleting 1, which would be an overflow in a 16-bit word. Since the sum of 
any number and its negative is 0 in any number system, it follows that the twos 
complement of a binary number N can be used to represent the negative of N, 
i.e., - N. The following shows the representation of +25 and -25 in a twos com-
plement machine: 

+25 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 

- 2 5 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 

If the twos complement form of representing negative integers is used, 
then the range of integer values that may be stored in a word is -2" _ 1 to 
2"_1 - 1, where n is the number of bits in a word. 

The scheme used for storing floating-point numbers differs among various 
computers. A floating-point number has two parts: an exponent and a fraction. 
The fraction is often referred to as the mantissa. For example, in the floating-
point number 0.8 x 102, the exponent is 2 and the mantissa is 0.8. In general, a 
floating-point number is of the form mx(3e, where m is the mantissa, which is a 
signed fraction such that -1 < m < 1, e is the exponent, which is an integer, and 
p is the radix, which is 10 for decimal computers, 2 for binary computers, and 
16 for hexadecimal computers. 
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A common scheme for storing floating-point numbers is to use one part of 
a word or some contiguous words to store a fixed number of bits of the man-
tissa and another part to store the exponent. In addition, a bit is used for stor-
ing the sign of the mantissa. No sign bit is provided for storing the sign of the 
exponent; instead, a large positive integer is added to the exponent to take care 
of a negative exponent. This adjusted exponent is often referred to as the char-
acteristic. For example, 0.8 x 102 is stored in the short (single precision) format 
in IBM System/370 as 

0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

characteristic mantissa 

sign of mantissa 

System/370 can be considered to be a hexadecimal machine. The twos 
complement discussed earlier is not used in representing floating-point num-
bers; instead, each four-bit (a hexadecimal digit) forms a basic unit. Thus, the 
magnitude of a floating-point number is the mantissa times a power of 16. The 
true exponent indicates this power. The characteristic is obtained by adding 
(64)io = (40)i6 to the exponent. Therefore, the true exponent in the preceding 
figure is (42)i6 - (40)i6 = 2. The mantissa is (.5)i6. Thus, the number represented 
is 

(5 x 16_1) x 162 = 80.0 

Observe that the number of bits available to store the mantissa determines 
the precision, and the number of bits available to store the exponent bounds 
the largest (smallest in the case of negative) floating-point number that can be 
represented. 

An attempt to store an integer greater than the maximum permissible 
value results in what is known as overflow, i.e., the loss of some of the bits of its 
binary representation. This limitation may be partially overcome by using 
more than one word to store an integer, but it does not solve the problem of 
overflow, as the range of representable integers is still finite. A similar problem 
arises when storing a fraction that does not have a terminating binary represen-
tation, or a floating-point number if the binary representation of its exponent or 
mantissa or both may require more than the available number of bits. For 
example, only a fixed number of bits of the mantissa of the floating-point num-
ber 0.7 that has a nonterminating representation can be stored, which results in 
loss of precision that can be reduced but not eliminated by using a larger num-
ber of bits. 

D.3 CHARACTER REPRESENTATION 
The internal representation of characters is based upon an assignment of 
numeric codes to characters. Using these numeric codes, characters are 
arranged in an order in which one character precedes another if its numeric 
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code is less than the numeric code of the other. This ordering of characters 
based on their numeric codes is called the collating sequence, and varies from 
one computer to another. All that is guaranteed is as follows: 

1. Blank (space) precedes all letters and digits. 
2. Letters are in alphabetical order. 
3. Digits are in numerical order. 
4. Letters and digits are not intermingled; that is, either all the digits 

precede all the letters or vice versa. 

Amongst the several coding schemes that have been developed, the two 
most popular are ASCII (American Standard Code for Information Inter-
change) and EBCDIC (Extended Binary Coded Decimal Interchange Code). A 
complete table of ASCII and EBCDIC character codes is given in Appendix E. 

A character is internally represented by storing the binary equivalent of its 
numeric code in a byte. Character strings are represented by storing the 
numeric codes of the characters involved in adjacent bytes. The C compiler 
automatically puts a null character, whose numeric code is 0, at the end of each 
string. Thus, the string "TO" is stored in three bytes with the numeric code for 
the character T in the first byte, the code for the character O in the next byte, 
and the code for the null character in the last byte. The string then is repre-
sented in ASCII as 

0 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 

T 

and in EBCDIC as 

0 null 

1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 

T O null 



E ASCII and EBCDIC 
Character Codes 

Deci-
mal 

Binary Octal Hexa-
deci-
mal 

ASCII EBCDIC Deci-
mal 

Binary Octal Hexa-
deci-
mal 

ASCII EBCDIC 

0 0 0 0 NUL NUL 1 1 1 1 
2 10 2 2 3 11 3 3 
4 100 4 4 5 101 5 5 
6 110 6 6 7 111 7 7 
8 1000 10 8 9 1001 11 9 

10 1010 12 a 11 1011 13 b 
12 1100 14 c 13 1101 15 d 
14 1110 . 16 e 15 1111 17 f 
16 10000 20 10 17 10001 21 11 
18 10010 22 12 19 10011 23 13 
20 10100 24 14 21 10101 25 15 
22 10110 26 16 23 10111 27 17 
24 11000 30 18 25 11001 31 19 
26 11010 32 1a 27 11011 33 1b 
28 11100 34 1c 29 11101 35 1d 
30 11110 36 1e 31 11111 37 1f 
32 100000 40 20 space 33 100001 41 21 ! 
34 100010 42 22 35 100011 43 23 # 
36 100100 44 24 $ 37 100101 45 25 % 
38 100110 46 26 & 39 100111 47 27 • 

40 101000 50 28 ( 41 101001 51 29 ) 
42 101010 52 2a * 43 101011 53 2b + 
44 101100 54 2c ( 45 101101 55 2d 
46 101110 56 2e 47 101111 57 2f / 
48 110000 60 30 0 , 49 110001 61 31 1 
50 110010 62 32 2 51 110011 63 33 3 
52 110100 64 34 4 53 110101 65 35 5 
54 110110 66 36 6 55 110111 67 37 7 
56 111000 70 38 8 57 111001 71 39 9 
58 111010 72 3a 59 111011 73 3b | 
60 111100 74 3c < 61 111101 75 3d = 

62 111110 76 3e > 63 111111 77 3f ? 
64 1000000 100 40 @ space 65 1000001 101 41 A 
66 1000010 102 42 B 67 1000011 103 43 C 
68 1000100 104 44 D 69 1000101 105 45 E 
70 1000110 106 46 F 71 1000111 107 47 G 
72 1001000 110 48 H 73 1001001 111 49 I 
74 1001010 112 4a J 0 75 1001011 113 4b K 
76 1001100 114 4c L < 77 1001101 115 4d M ( 
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Deci-
mal 

Binary Octal Hexa-
deci-
mal 

ASCII EBCDIC Deci-
mal 

Binary Octal Hexa-
deci-
mal 

ASCII EBCDIC 

78 1001110 116 4e N + 79 1001111 117 4f O I 
80 1010000 120 50 P & 81 1010001 121 51 Q 
82 1010010 122 52 R 83 1010011 123 53 S 
84 1010100 124 54 T 85 1010101 125 55 U 
86 1010110 126 56 V 87 1010111 127 57 w 
88 1011000 130 58 X 89 1011001 131 59 Y 
90 1011010 132 5a z ! 91 1011011 133 5b [ $ 
92 1011100 134 5c \ •fc 93 1011101 135 5d ] ) 
94 1011110 136 5e A J 95 1011111 137 5f ~ 

96 1100000 140 60 - 97 1100001 141 61 a / 
98 1100010 142 62 b 99 1100011 143 63 c 

100 1100100 144 64 d 101 1100101 145 65 e 
102 1100110 146 66 f 103 1100111 147 67 g 
104 1101000 150 68 h 105 1101001 151 69 i 

106 1101010 152 6a j 107 1101011 153 6b k , 
108 1101100 154 6c I % 109 1101101 155 6d m 
110 1101110 156 6e n > 111 1101111 157 6f 0 ? 
112 1110000 160 70 P 113 1110001 161 71 q 
114 1110010 162 72 r 115 1110011 163 73 s 
116 1110100 164 74 t 117 1110101 165 75 u 
118 1110110. 166 76 V 119 1110111 167 77 w 
120 1111000 170 78 X 121 1111001 171 79 y 
122 1111010 172 7a z 123 1111011 173 7b { # 
124 1111100 174 7c I @ 125 1111101 175 7d } * 

126 1111110 176 7e = 127 1111111 177 7f DEL 11 

128 10000000 •200 80 129 10000001 201 81 a 
130 10000010 202 82 b 131 10000011 203 83 c 
132 10000100 204 84 d 133 10000101 205 85 e 
134 10000110 206 86 f 135 10000111 207 87 g 
136 10001000 210 88 h 137 10001001 211 89 i 

138 10001010 212 8a 139 10001011 213 8b 
140 10001100 214 8c 141 10001101 215 8d 
142 10001110 216 8e 143 10001111 217 8f 
144 10010000 220 90 . 145 10010001 221 91 j 
146 10010010 222 92 k 147 10010011 223 93 1 
148 10010100 224 94 m 149 10010101 225 95 n 
150 10010110 226 96 0 151 10010111 227 97 P 
152 10011000 230 98 q 153 10011001 231 99 r 
154. 10011010 232 9a 155 10011011 233 9b 
156 10011100 234 9c 157 10011101 235 9d 
158 10011110 236 9e 159 10011111 237 9f 
160 10100000 240 aO 161 • 10100001 241 a1 
162 10100010 242 a2 s 163 10100011 243 a3 t 
164 10100100 244 a4 u 165 10100101 245 a5 V 

166 10100110 246 a6 w 167 10100111 247 a7 X 

168 10101000 250 a8 y 169 10101001 251 a9 z 
170 10101010 252 aa 171 10101011 253 ab 
172 10101100 254 ac 173 10101101 255 ad 
174 10101110 256 ae 175 10101111 257 af 
176 10110000 260 b0 177 10110001 261 b1 
178 10110010 262 b2 179 10110011 263 b3 
180 10110100 264 b4 181 10110101 265 b5 
182 10110110 266 b6 183 10110111 267 b7 
184 10111000 270 b8 185 10111001 271 b9 
186 10111010 272 ba 187 10111011 273 bb 
188 10111100 274 be 189 10111101 275 bd 
190 10111110 276 be 191 10111111 277 bf 
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Deci-
mal 

Binary Octal Hexa- ASCII 
deci-
mal 

EBCDIC Deci-
mal 

Binary Octal Hexa-
deci-
mal 

ASCII EBCDIC 

192 11000000 300 CO { 193 11000001 301 c1 A 
194 11000010 302 c2 B 195 11000011 303 c3 C 
196 11000100 304 c4 D 197 11000101 305 c5 E 
198 11000110 306 c6 F 199 11000111 307 c7 G 
200 11001000 310 c8 H 201 11001001 311 c9 I 
202 11001010 312 ca 203 11001011 313 cb 
204 11001100 314 cc 205 11001101 315 cd 
206 11001110 316 ce 207 11001111 317 cf 
208 11010000 320 dO } 209 11010001 321 d1 J 
210 11010010 322 d2 K 211 11010011 323 d3 L 
212 11010100 324 d4 M 213 11010101 325 d5 N 
214 11010110 326 d6 O 215 11010111 327 d 7 P 
216 11011000 330 d8 Q 217 11011001 331 d9 R 
218 11011010 332 da 219 11011011 333 db 
220 11011100 334 dc 221 11011101 335 dd 
222 11011110 336 de 223 11011111 337 df 
224 11100000 340 eO 225 11100001 341 e1 
226 11100010 342 e2 S 227 11100011 343 e3 T 
228 11100100 344 e4 U 229 11100101 345 e5 V 
230 11100110 346 e6 W 231 11100111 347 e7 X 
232 11101000 350 e8 Y 233 11101001 351 e9 Z 
234 11101010 352 ea 235 11101011 353 eb 
236 11101100 354 ec ' 237 11101101 355 ed 
238 11101110 356 ee 239 11101111 357 ef 
240 11110000 360 to 0 241 11110001 361 f1 1 
242 11110010 362 f2 2 243 11110011 363 f3 3 
244 11110100 364 f4 4 245 11110101 365 f5 5 
246 11110110 366 f6 6 247 11110111 367 f7 7 
248 11111000 370 f8 8 249 11111001 371 f9 9 
250 11111010 372 fa 251 11111011 373 fb 
252 11111100 374 fc 253 11111101 375 fd 
254 11111110 376 fe 255 11111111 377 ff 

A blank entry in the table indicates that the code either has not been 
assigned or is used for control. 
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abort function, 417 
absolute value function, 413. See 

also standard library func-
tions 

abstract data object, 166 
access mechanism, 4 
accumulator, 3 
acos function, 411 
actual arguments, 142 
adders, 3 
addition operator (+), 26,34 
address operator (&), 210 
Algol 60 language, 6 
algorithm, 9 
AND operator, 66, 71-72,319-320 
ANSI X3J11,6 
apostrophe, in character constant, 

33 
application programs, 4-5 
argc, 239 
arguments, 22 

command-line, 238-240 
passing array elements as, 187-

188 
passing arrays as, 188-189 
variable, 399-401 

argv, 239 
arithmetic, pointer, 213-214 
arithmetic expressions, 26,35 
arithmetic-logic unit, 1,3 
arithmetic operators, 26,34-35 

addition (+), 26,34 
decrement (—), 35 
division (/) , 26,34 
increment (++), 35 
multiplication (*), 26,34 
precedence and associativity 

of, 36,39 
remainder (%), 35 
subtraction (-), 26,34 
unary minus (-), 34-35 
unary plus (+), 34 

arithmetic type, 29 
array declaration, 182-183 
array initialization, 184-187 
arrays, 179-202 

accessing elements of, 183-184 
arrays of structures containing, 

295-296 
as function arguments, 187-

189,222-224 
multi-dimensional, 184,234-

237 
one-dimensional, 179 
pointer, 220-226,237-248 
properties of, 179 
of structures, 292-295 
three-dimensional, 179-181 
two-dimensional, 179 

array subscripting, 220 
array subscript operator ([ ]), 279 
arrow operator (->), 279,283-284 
ASCII character codes, 33,401, 

441-443 
asctime function, 421 
asin function, 411 
assembler, 5 
assembly language, 5 
assert function, 410 
assert. h standard header file, 

409-410 
assignment expression, 38 
assignment operator (=), 39 

as cause of infinite loop, 110 
assignments 

compound, 41-42 
nested, 42 
structures and unions in, 430-

431 
type conversions in, 48 

assignment statements, 26,38-39 
assignment suppression character, 

346 
associativity, 36-37 

of arithmetic operators, 36 

of bitwise logical operators, 
323-324 

of bitwise shift operators, 326 
of logical operators, 74-75 
of relational operators, 69-71 

atan function, 412 
atan2 function, 412 
a t e x i t function, 417 
a t o f function, 416 
a t o i function, 416 
a t o l function, 416 
audible alarm (\a), 33 
auto variables, 154-155 
automatic binary conversions, 46 
automatic type conversion, 45-47, 

428-429 
automatic unary conversions, 45 
automatic variables, 154-155 

B language, 6 
backslash (\), 27 

in character constant, 33 
backspace (\b), 33 
BCPL language, 6 
binary digit, 2 
binary operator, 35 
binary search algorithm, 206 
binary stream, 339 
binary tree, 305 
bit-fields, 326-328 
bit-length, 327 
bit operations, 319-336 

AND operator (&), 319-320 
associativity (s), 323-324,326 
complement operator (~), 323 
division, 325-326 
exclusive OR operator ("), 321-

322 
inclusive OR operator (|), 320-

321 
left-shift operator ( « ) , 324 
multiplication, 325-326 

445 
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precedence, 323-324,326 
right-shift operator ( » ) , 325 

bits, 2 
bitwise logical operators 

AND (&), 319-320 
associativity, 323-324 
complement (~), 323 
exclusive OR ("), 321-322 
inclusive OR (I), 320-321 
precedence, 323-324 

bitwise shift operators 
associativity, 326 
division, 325-326 
left shift ( « ) , 324 
multiplication, 325-326 
precedence, 326 
right shift ( » ) , 325 

block, 67,149 
block structure, 149-150 
boolean values, 66 
Borland Turbo C, 15 
braces, 85 

in function, 22,138 
in nested structures, 281-282 

b r e a k statement, 91,124-125 
b s e a r c h function, 418 
bubble sort algorithm, 197-199, 

205 
bugs, 17 
byte, 2 

call by reference parameter pass-
ing, 143,217-219 

call by value parameter passing, 
143 

called function, 142,217-218 
calling function, 142,217-218 
c a l l o c function, 254 
carriage return (\r), 33 
case , 88-89,91 
cast, 47 
C compiler, living with old, 425-

432 
c e i l function, 413 
central processing unit, 1 
character case mapping functions, 

411. See also standard library 
functions 

character codes 
ASCII and EDCDIC, 441-143 

character constants, 32-34 
character handling functions, 410-

411. See also standard library 
functions 

character input/output functions, 
107-109,354-356. See also 
standard library functions 

character representation, 439-440 

character testing functions, 410-
411. See also standard library 
functions 

characters, alternative representa-
tions of, 401-403 

trigraph sequences, 401-402 
wchar_t data type, 402 

character set, 27-28 
char data type, 28 
c l e a r e r r function, 358 
c l o c k function, 420-421 
cntrl-c, 109 
command-line arguments, 238-240 
comma operator ( ,) , 129-133 
commas 

as invalid in integer constants, 
31 

to separate function argu-
ments, 142 

communication with the environ-
ment functions, 417-418. See 
also standard library func-
tions 

comparators, 3 
compilation, 14-15,162,384 

IBM PC, 15-16,162,384 
UNIX, 16-17,162,384 

compiler, 5 
compile-time errors, 17 
compound assignment operators, 

41-42 
compound statement, 67 
computer program, 4 
conditional expression operator 

( : ? ) , 67, 76-77 
conditional inclusion, 381-384 
conditional statements, 78 

constant multiway, 88-92 
i f - e l s e statement, 79-81 
if statement, 78-79 
multiway, 87-88 
nested, 82-84 

dangling else, 85-87 
sequence of nested i f s, 84-

85 
const type qualifier, 394-395 
constant, 26,31,35 

character constants, 32-34 
floating-point constants, 32 
integer constants, 31-32 
string constants, 34 
symbolic constants, 49 

constant expression, 35 
cont inue statement, 125-129 

control construct, 10 
control string, 43,44,345,350 
control unit, 1 ,2-3 
conversion control character, 43, 

45,345-346,350 

conversion specifications, 43,44, 
345,350 

cos function, 412 
cosh function, 412 
counters, 3 
CPL language, 6 
c t ime function, 421 
ctrl-d, 109 
ctrl-z, 109 
c t y p e . h standard header file, 

409-410 
cylinder, 4 

dangling else problem, 85-87 
data, classes of, 29-34 
date functions, 420-422. See also 

standard library functions 
data types, 28-29 

char, 28,282 
const , 394-395 
double, 28 
f l o a t , 25,28 
i n t , 25,33,282 
long, 28-29 
long double, 28-29 
long i n t , 28 
p t r d i f f _ t , 213 
s h o r t , 28-29 
s h o r t i n t , 28-29 
s i z e _ t , 229, 253 
v o l a t i l e , 395-396 
wchar_t , 402 

debugging, 162,383-384 
decimal integer constant, 31 
declarations, 29-30 
decrement operator (—), 35,39-

40 
•define directive, 48-49,372,376 
dereferencing operator (*), 210 
desk checking, 17 
diagnostics function, 410. See also 

standard library functions 
diagnostics, 17,410 
diagonal matrix, 206 
di f f t ime function, 421 
direct input/output functions, 

356-357. See also standard 
library functions 

directive(s) 
• define , 48-49,372,376 
• e r r o r , 385-386 
• include, 23,384-385 
• l i n e , 385 
• (null), 386 
•pragma, 386 

diskette, 4 
disk pack, 4 
division by bit shifting, 325-326 
division operator ( / ) , 26,34 
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documentation, 18 
domain error, 411 
dot operator (.), 279 
double data type, 28,29 
double quotation mark, in string 

constant, 34 
do-while loop, 112-115,117-118 
dynamic memory management 

functions, 254r-255. See also 
standard library functions 

EBCDIC character codes, 33,441-
443 

else=block, 80 
end of input, signaling, 109 
enum, 396-399 
enumerations, 396-399,431 
EOF, 378 
equal to operator (==), 323 
equals symbol (=), 38-39 
errno. h standard header file, 

358-409 
t e r r o r directive, 385-386 
error handling functions, 358. See 

also standard library func-
tions 

escape sequence, 27,33 
exchange sort algorithm, 206 
execution-time errors, 17 
exit function, 417 
exit point, 104 
exp function, 412 
exponent, 32 
exponential functions, 412. See also 

standard library functions 
expression, 26,35 

constant, 35 
evaluation of, 35-37 

external variables, 150-154 
extern declaration, 159-162 

f abs function, 413 
fclose function, 342-343 
feof function, 358 
ferror function, 358 
fflush function, 342-343 
fgetc function, 354-355 
f getpos function, 357 
fgets function, 355 
file access functions, 342-344. See 

also standard library func-
tions 

file inclusion, 384-385 
file pointer, 339 
file positioning functions, 357-

358. See also standard library 
functions 

file processing, 338-342 
flag characters, 350 

float data type, 25,28 
f loat. h standard header file, 409 
floating-point constant, 26,32 
floating-point data type, 29 
floor function, 413 
floppy disk, 4 
fmod function, 413 
fopen function, 342-343 
for loop, 115-119 
form feed (\f), 33 
formal parameter, 139 
formatted input/output func-

tions, 43-45,345-354. S< e al 
standard library functions 

fprintf function, 349-354 
fputc function, 356 
fputs function, 356 
f read function, 356-357 
free function, 255 
free-format language, 27 
f reopen function, 342-343 
f rexp function, 412 
fscanf function, 345-349 
fseek function, 357 
f setpos function, 357 
ftell function, 357 
function, 137-171 

called, 142-143 
calling, 142-143 
defining, 425-426 
pointers to, 217-220,248-252 
recursion, 167-168 
and structures, 285-292 

function arguments 

arrays as, 187-189,222-224 
structures as, 286-288 

function body, 22,138,140 
function call, 142-144,426-427 
function call operator (()), 279 
function definition, 139-140 

structures and unions in, 430-
431 

function name, 138-139,142 
function prototype, 138,144-149 
function statements, 138,140 
ftmction type, 138-139 
function values, structures as, 288-

290 
fwrite function, 356-357 

general utilities functions, 254-
255,416-418. See also stan-
dard library functions 

generic pointer (void*), 217,429 
getc function, 354-355 
getchar function, 107-109,354-

355 
in while loop, 108-109 

get env function, 417 

ge ts function, 355 
global variables, 151 
gmt ime function, 421 
goto statement, 402-403 
graphic characters, 27-28 
greater than operator (>), 66,69 
greater than or equal to operator 

(>=), 66,69 

hard copy, 4 
hardware, 1-4 
header files, 23,161-162,384 

standard, 409-410 
a s s e r t . h, 409-410 
c type. h, 409-410 
er rno. h, 358,409 
f l o a t . h, 409 
l i m i t s , h, 409 
l o c a l e , h, 409 
math. h, 409,411 
se t jmp. h, 409-413 
s i g n a l , h, 409-414 
* s t d a r g . h, 399,409 
s tddef . h, 213,229,253, 

402,409 
s t d i o . h, 43,212,339-340, 

342,409 
s t d l i b . h, 240,254,409, 

416 
s t r i n g , h, 229,409,418 
t ime. h, 409,420 

hexadecimal integer constant, 31 
higher-level languages, 5 
hyperbolic functions, 412. See also 

standard library functions 

IBM-PC, program compilation and 
execution for, 15-16,162,384 

identifier, 31 
size of, 428 

if-block, 80 
i f - e l s e statement, 79-81 
i f statement, 65-66, 78-79 
• include directive, 23,384-385 
increment operator (++), 35,39-

40,214 
index, 179 
inequality operator (! =), 323 
infinite loop, 109-110 
information hiding, 163-166 
initialization 

of automatic arrays and struc-
tures, 429-430 

of unions, 430 
inner product method, 176 
input device, 1,3-4 
input failure, 347 
input/output functions, 43-45, 

107-109,338-358. See also 
standard library functions 
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insertion sort algorithm, 205-206 
instruction register, 2-3 
int data type, 23,25,28,32-33, 

282 
integer constant, 26,31-32 
integral type, 29 
internal representation, 433 

character representation, 439-
440 

number representation, 437-
439 

number systems, 433-437 
isalnum function, 410 
isalpha function, 410 
iscntrl function, 410 
isdigit function, 410 
is graph function, 411 
islower function, 410 
isprint function, 411 
ispunct function, 411 
i supper function, 410 
isxdigit function, 411 
iteration, recursion versus, 168-171 
iterative structure. See repetitive 

structure 

keywords, 30 

least squares method, 175 
ldexp function, 412 
left shift operator ( « ) , 324 
less than operator (<), 66,69 
less than or equal to operator (<=), 

66,69 
1 imit s. h standard header file, 

409 
linear congruential method, 157 
linear search algorithm, 206 
• line directive, 385 
linked lists, 302-304 
list, 302 

doubly linked, 317 
linked, 302-304 

list pointer, 302 
local variable, 138,140 
locale. h standard header file, 

409 
localtime function, 421 
log function, 412 
loglO function, 412 
logarithmic functions, 412. See also 

standard library functions 
logical AND operator (& &), 66,71 
logical errors, 17-18 
logical expression, 66 

evaluation of, 76 
logical NOT operator (!) , 66 
logical operators, 71-76,319-326 

precedence and associativity, 
72,75,323-324 

logical operator 
AND (S&), 66,71 
bitwise, 319 

complement, 323 
exclusive OR, 321-322 
inclusive OR, 320-321 

NOT (!), 66,73 
OR(| |),66,72 

logical OR operator (| |), 66,72 
long data type, 29,30,32 
long double data type, 29 
long int data type, 28 
long jmp function, 413 
loop body, 104 
loop continuation condition, 104, 

105 
loop control variable, 105 
loop initialization, 107 
loop interruption, 124 

break statement, 124-125 
continue statement, 125-129 

lvalue, 39 

machine language, 5 
macro arguments, side effects in, 

379-380 
macro definitions, scope of, 378 
macro expansions, precedence 

errors in, 379 
macro expressions, rescanning of, 

376-378 
macro-name, 373 
macro redefinitions, 378 
macro replacement, 49,372-380 
macros 

parameterized, 373-375 
simple, 48-50 

magic square, 208 
magnetic disk unit, 4 
magnetic tape unit, 4 
main function, 22 
malloc function, 254 
mantissa, 32 
matching failure, 347 
mathematics functions, 411-413. „ 

See also standard library func-
tions 

math. h standard header file, 409-
411 

matrix, 180 
diagonal, 206 
square, 206 

maximum field width specifica-
tion, 346 

memccmp function, 420 
memchr function, 420 
memcpy function, 419 
memmove function, 419 
memory, 1,2 

memory address register, 2 
memory buffer register, 2 
memory management, dynamic, 

252-260 
memset function, 420 
Microsoft C compiler, 15,162 
minimum field width, 351 
minimum field width specifica-

tion, 350 
minus operator (-) , 35 
mktime function,421 
modf function, 412 
mode string, 342 
mouse, 3-4 
multiplication, 325-326 
multiplication operator (*), 26,34 
multipliers, 3 
multiway conditional statements, 

87-88 

narcissistic cubes, 138 
nearest integer functions, 413. See 

also standard library func-
tions 

nested assignments, 42 
nested conditional statement, 82-

87 
nested i fs , sequence of, 84-85 
nested loops, 119-124 
nested structures, 281-282 
newline character (\n), 23,33 
Newton-Raphson method, 174 
non-graphic characters, 27,33 
non-local jumps functions, 413-

414. See also standard library 
functions 

not equal to operator (! =), 66,69, 
323 

NOT operator (!) , 66,73 
NULL, 378 
null character (\ 0), 27,33,226 
# (null) directive, 386 
null pointer, 212 
null statement, 129 
number representation, 437-439 
number systems 

binary, 434 
conversion from base-10 to 

base-fc, 435-436 
conversion from octal or hexa-

decimal to binary, 436-437 
decimal, 433-434 
hexadecimal, 434 
octal, 434 

object code, 14 
object program, 5 
octal integer constant, 31 
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operations on files functions, 344-
345. See also standard library 
functions 

operator, 26,34,375 
addition (+), 26,34 
address (&), 210 
array subscript ([ ]), 279 
arrow (->>,279,283-284 
assignment (=), 39 
bitwise AND (s), 319-320 
bitwise complement (~), 323 
bitwise exclusive OR 321-

322 
bitwise inclusive OR (I), 320-

321 
comma, 129-133 
compound assignment, 41-42 
conditional expression, 67,76-

77 
decrement (—), 39-40 
dereferencing (*), 210 
division ( / ) , 26,34 
dot ( . ) , 279 
equal to (==), 66,69,323 
function call, 279 
greater than (>), 66,69 
greater than or equal to (>=), 

66,69 
increment (++), 39-40,214 
left shift ( « ) , 324 
logical AND (&&), 66,71 
logical NOT (!), 66,73 
logical OR (I I), 66, 72 
multiplication (*), 26,34 
not equal to (! =), 66,69,323 
precedence and associativity 

of, 423-424 
remainder (%), 35 
right shift ( » ) , 325 
sizeof, 213,227,253-254,280 
stringizing (#), 375 
subtraction (-) , 26,34 
token pasting (##), 375-376 
unary minus (-), 34-35 
unary plus (+), 34 

ordinary characters, 345 
OR operator, 66,72-73,320-322 
output device, 1,3-4 

parameter binding, 427-28 
parameter declarations, 138,139, 

425 
parameterized macro call, process-

ing, 376-378 
parameterized macros, 373-375 
parameter passing 

by reference, 143,217-219 
by value, 143 

parameter list, 22,425 parameter-
type-list, 144-145 

parentheses, 37 
in function, 22,139,142 
for macros, 373 

parentheses rule, 35,37 
Pascal's triangle, 206 
perfect square, 134 
perror function, 358 
pointer arithmetic, 213-214 
pointer arrays, 237-248 
pointer assignment, 211-212 
pointer comparison, 215-216 
pointer conversion, 216-217 
pointer initialization, 212 
pointers, 209-271 

and arrays, 220-226 
basics of, 209 
containing structures, 301-306 
to functions, 217-220,248-252 
and memory management, 

252-260 
pointers to, 240-242 
strings and, 226-233 
to structures, 282-285 

pointer type declaration, 211 
postfix, 39 
post-test loop, 105 
pow function, 413 
power functions, 413. See also stan-

dard library functions 
power series, 174 
#pragma directive, 386 
precedence, 36-37 

of arithmetic operators, 36-37, 
39 

of bitwise logical operators, 
323-324 

of bitwise shift operators, 326 
of logical operators, 74-75 
of relational operators, 69-71 

precedence errors, in macro expan-
sions, 379 

precision, 351 
precision specification, 350 
predefined macro names, 386 
prefix, 39 
preprocessor, 372 

for conditioned inclusion, 381-
384 

for file inclusion, 384-385 
for macro replacement, 372-380 

pre-test loop, 105 
printer, 4 
printf function, 22-23, 25-26, 

43-44,349-354,399 
in while loop, 108 

program, 1 program counter, 2 

program loop. See repetitive struc-
ture 

programming languages, 5-6 
programming process, 6-7 

problem definition, 7-9 
program coding, 12-14 
program compilation and exe-

cution, 14-15,162 
IBM PC, 15-16,162 
UNIX, 16-17,162 

program design, 9-12 
program documentation, 18 
program testing and debug-

ging, 17-18 
pseudo-random sequence genera-

tion, 166,176-177,417 
pseudo-random sequence genera-

tion functions, 417. See also 
standard library functions 

ptrdiff_t data type, 213 
putc function, 356 
putchar function, 356 
puts function, 356 

qsort function, 418 
quotation marks, double, 23 
quotation marks, single, 27 

random access, 4 
random number generator, 157 
range error, 411 
raise function, 415 
rand function, 417 
realloc function, 255 
record, 338 
recursion, 167-168 

versus iteration, 168-171 
register, 2 
register storage specifier, 401 
relational comparisons, 215-216 
relational expression, 66,68 
relational operator, 66,68-71 

associativity, 69-71 
equal to (==), 66,69,323 
greater than (>), 66,69 
greater than or equal to (>=), 

66,69 
less than (<), 66,69 
less than or equal to (<=), 66,69 
not equal to (! =), 66,69,323 
precedence, 69-71 

remainder function, 413. See also 
standard library functions 

remainder operator (%), 35 
remove function, 344 
rename function, 344 
repetitive structure, 12,104-107 
return statement, 23,138,140-

141 
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rewind function, 357 
right shift operator ( » ) , 325 
Ritchie, Dennis, 6 
run-time errors, 17 
rvalue, 39 

scanf function, 25-26,44-45,345-
349,399 

scientific notation, 32 
searching function, 418. See also 

standard library functions 
selective structure, 12,64-68 
semicolon 

in assignment statement, 38 
in expression statement, 142 
to terminate statement, 23 

separate compilation, 162 
sequential access, 4 
sequential device, 4 
sequential structure, 12,21-27 
setbuf function, 343-344 
set jmp function, 413 
set jmp. h standard header file, 

409-413 
setvbuf function, 343-344 
Shell sort algorithm, 205 
shift count, 324 
shift operators, 324-326 
short data type, 28 
short int data type, 29 
side effects, in macro arguments, 

379-380 
signal function, 415 
signal handler, 415 
signal handling functions, 414-

415. See also standard library 
functions 

s ignal. h standard header file, 
409,414 

signal handling, 414-415 
signed qualifier, 28 
sign extension, 47 
simple macros, 48-50,372 
sin function, 412 
singly linked lists, 302 
sinh function, 412 
size modifier, 346-47,350,351 
sizeof operator,213,227,253-

254,280 
size_t data type, 229,253 
software, 1,4-6 
sorting function, 418. See also stan-

dard library functions 
source program, 5 
spaces, as invalid in integer con-

stants, 31 
s p e c i a l characters, 27 
s p r i n t f function, 349-354 
s q r t function, 413 

square matrix, 206 
squaring method, 176 
srand function, 417 
sscanf function, 345-349 
standard decimal form of floating-

point constant, 32 
standard header files. See header 

files 
standard I / O library, 43 
standard library, 431 
standard library functions, 23, 

409-410 
character handling, 410-411 

character case mapping, 411 
tolower, 411 
toupper, 411 

character testing, 410-411 
isalnum, 410 
isalpha, 410 
iscntrl, 410 
isdigit, 410 
isgraph, 411 
isprint, 411 
ispunct, 411 
islower, 410 
isupper, 410 
isxdigit, 411 

date and time, 420-422 
time conversion, 421-422 

asctime, 421 
ctime, 421 
gmtime, 421 
localtime, 421 
strftime, 421 

time manipulation, 420-421 
clock, 420-421 
dif ftime, 421 
mkt ime, 421 
time, 421 

diagnostics, 410 
assert, 410 

general utilities, 254-255,416-
418 

communication with the 
environment, 417-418 

abort, 417 
atexit, 417 
exit, 417 
getenv, 417 
system, 418 

dynamic memory manage-
ment, 254-255 

calloc, 254 
free, 255 
malloc, 254 
realloc, 255 

psuedo-random sequence 
generation, 417 

rand, 417 
srand, 417 

searching and sorting, 418 
bsearch, 418 
q s o r t , 418 

string conversion, 416-417 
a t o f , 416 
a t o i , 416 
a t o l , 416 
s t r t o d , 416 
s t r t o l , 416 
s t r t o u l , 417 

mathematics, 411-413 
exponential and logarith-

mic, 412 
exp, 412 
f rexp, 412 
ldexp, 412 
log, 412 
loglO, 412 
modf, 412 

hyperbolic, 412 
cosh, 412 
sinh, 412 
tanh, 412 

nearest integer, absolute 
value, and remainder, 
413 

c e i l , 413 
• fabs, 413 

f l o o r , 413 
fmod, 413 

power, 413 
pow, 413 
s q r t , 413 

trigonometric, 411-412 
acos , 411 
as in, 411 
a t an, 412 
atan2, 412 
cos, 412 
sin, 412 
tan, 412 

non-local jumps, 413-414 
long jmp, 413 
s e t jmp, 413 

signal handling, 414-415 
r a i s e , 415 
s i g n a l , 415 

string procesing, 229-230, 
418-420 

memcpy, 419 
memchr, 420 
memccmp, 420 
memmove, 419 
memset, 420 
s t r c a t , 229 
s t r c h r , 230 
strcmp, 230 
s t r cpn , 419 
s t r c p y , 229 
s t r e r r o r , 419 
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s t r len, 229 
s t r r c h r , 230 
s t r n c a t , 230 
strncmp, 230 
s t rncpy, 229 
s trpbrk, 419 
s t rspn, 419 
s t r s t r , 419 
s t r t o k , 419 

input/output, 43-45,107-109, 
338-358 
character input/output, 

107-109,354-356 
f ge tc , 354-355 
fgets, 355 
fputc , 356 
f puts, 356 
ge tc , 354-355 
ge tchar , 107-109,354-

355 
ge ts , 355 
put c, 356 
putchar , 356 
puts, 356 
ungetc, 354-355 

direct input/output, 356-
357 

f read, 356-357 
f w r i t e , 356-357 

error handling, 358 
c l e a r e r r , 358 
f eof, 358 
f e r r o r , 358 
p e r r o r , 358 

file access, 342-344 
f c l o s e , 342-343 
f f lush, 342-343 
fopen, 342-343 
f reopen, 342-343 
setbuf , 343-344 
setvbuf , 343-344 

file positioning, 357-358 
fgetpos , 358 
fseek, 357 
f setpos , 358 
f t e l l , 357 
rewind, 357 

formatted input/output, 
43-45, 345-354 

f s c a n f , 345-349 
f p r i n t f , 349-354 
p r i n t f , 22-23,25-26, 

43-44,349-354, 
399 

scanf , 25-26,44-45, 
345-349,399 

s p r i n t f , 349-354 
sscanf , 345-349 
v f p r i n t f , 349-354, 

400-401 

vprintf, 349-354, 400-
401 

vsprintf, 349-354, 
400-401 

operations on files, 344-345 
remove, 344 
rename, 344 
tmpfile, 344 
tmpnam, 344 

variable arguments, 399-
401 

va arg, 399-400 
va_end, 399-400 
va_start, 399-400 

statement, 22 
compound, 67 

static declaration, 156,163 
static functions, 163 
static variables, 155-159,163 
stdarg. h standard header file, 

400,409 
stddef. h standard header file, 

213,229,253,402,409 
stderr, 339, 343 
stdin, 339 
stdio. h standard header file, 43, 

212,339-340,342,409 
stdlib. h standard header file, 

240,254,409,416 
stdout, 339 
stepwise refinement, 9 
storage classes 

automatic variables, 154-155 
static variables, 155-159,163 

storage locations, 2 
straight-line method, 135 
strcat function, 229 
strchr function, 230 
strcmp function, 230 
strcpn function, 419 
strcpy function, 229 
stream, 338 
str err or function, 419 
strftime function, 421 
string. See string constant 

library functions for process-
ing, 229-230,418-420 

and pointers, 226-233 
string concatenation, 428 
string constant, 23,26,34,227 
string conversion, 416-417 
string conversion functions, 230, 

416-417. See also standard 
library functions 

string. h standard header file, 
229,409,418 

string processing functions, 229-
230,418-420. See also stan-
dard library functions 

stringizing operator (#), 375 

string processing, 418-420 
str len function, 229 
strncat function, 230 
strncmp function, 230 
strncpy function, 229 
strpbrk function, 419 
strrchr function, 230 
strspn function, 419 
strstr function, 419 
strtod function, 416 
strtok function, 419 
strtol function, 416 
strtoul function, 417 
struct definition, 276 
structures 

arrays of, 292-293,294-296 
assessing members of, 279 
in assignment and function 

definitions, 430-431 
basics of, 276-285 
as function arguments, 286-288 
and functions, 285-292 
as function values, 288-290 
nested, 281-282 
pointers to, 282-285,301-306 
self-referential, 301-306 
size of, 280 

structure assignment, 279-280 
structured programming, 12 
structure initialization, 278-279 
structure pointer, 283-284 
structure tag, 276 
structure variables, 277-278 
subtraction operator (-), 26,34 
sum-of-digits method, 136 
switch statement, 88-92,429 

nesting of, 92 
symbolic constant, 49 
system function, 418 
systems programs, 4 

tan function, 412 
tanh function, 412 
terminal, 3-4 
text stream, 338-339 
Thompson, Ken, 6 
time conversion functions, 421-

422. See also standard library 
functions 

time function, 421 
time functions, 420-422. See also 

standard library functions 
time. h standard header file, 409, 

420 
time manipulation functions, 420-

421. See also standard library 
functions 

tmpfile function, 344 
tmpnam function, 344 
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token pasting operator (##), 375-
376 

tokens, 27 
tolower function, 411 
top-down design, 9 
toupper function, 411 
tracks, 4 
trees, 304-306 

binary, 305 
trigonometric functions, 411-412. 

See also standard library func-
tions 

trigraph sequences, 401-402 
twin primes, 175 
type conversions 

in assignments, 48 
automatic type conversion, 45-

47 
explicit, 47 

typedef facility, 391-393 
type definitions, 391-393 
type qualifiers, 394-396 

const, 394-395 
volatile, 395-3% 

unary minus operator (-), 34-35 
unary operator, 35,39. See also 

operator 
unary plus operator (+), 34 
ungetc function, 354-355 
union, 276,312-314 

in assignment and function 
definitions, 430-431 

initialization of, 430 
UNIX operating system, 6 

program compilation and exe-
cution for, 16-17,162,384 

unsigned qualifier, 28 

va_arg macro, 399-400 
va_end macro, 399-400 
variable arguments macros, 399-

401. See also standard library 
functions 

variable declarations, 22,25-26, 
140,276 

variables, 29-31 
automatic, 154-155 
external, 150-154 
names of, 28,30-31 

static, 155-159 
va_start macro, 399-400 
vector, 180 
vertical tab (\v), 33 

vfprintf function, 349-354,400-
401 

video monitor, 3 
void type, 22,139,141 
void* type, 217 
volatile type qualifier, 31,395-

396 

vprintf function, 349-354,400-
401 

vsprintf function, 349-354,400-
401 

wchar_t data type, 402 
while loop, 107-112 

infinite loop, 109-110 
whitespace characters, 27,345 
word, 2 

XORing, 322 


