
1

2

MSIT – 102

PROGRAMMING

CONCEPTS AND C

3

Programming Concepts and C

Module Unit No. Page No.

1

Unit - 1 7 – 17

Unit - 2 18 – 25

Unit - 3 26 – 36

Unit - 4 37 – 56

2

Unit - 5 57 – 70

Unit - 6 71 – 86

Unit - 7 87 – 97

Unit - 8 98 – 109

3

Unit - 9 110 – 119

Unit - 10 120 – 134

Unit - 11 135 – 145

Unit - 12 146 – 154

4

Unit - 13 155 – 174

Unit - 14 175 – 195

Unit - 15 196 – 207

Unit - 16 208 - 217

4

Preface

The objective of Programming Concepts and C is to understand and effective use of the C

programming language syntax to develop special programs, and provides I/O control for special

applications. The students are expected use both the integrated environment development system

and command line compilation. The ultimate goal of the Program Concept and C is make the

reader clear, readable, and possibly even authorative in analyzing program concepts and improve

their skills in programming with C language.

We introduce basic knowledge as well advanced programming concepts and C language in

perceptive of information technology. Programming Concepts and C concerns with certain

issues. Programming concepts concerns with visualizing real time problem in modularizing

pattern and simulating them to work on the system. C language deals with programming models

program concept to work on the machine with their defined syntax and semantics. Hence this

course offers students in understanding their skills to maximum extent in both designing model

and implanting them on PC.

This concise study material is an introduction to Programming Concept and C supports that

makes foundation for problem solving model designing and foundation to master their

programming skills in C language. Study material presents real time problem examples and rich

set of C programming language tool and techniques.

Organization of the material: Whole material is break into four modules, a module consist four

units each. The organization of book is of two fold. It means that when a problem is modeled as

a programming concept, in subsequent section we talk about the tool and technique to solve them

on machine through C language. So students will get good grip in better understand in concepts.

In the very first module, we begin with introduction to problem solving, introduction to C

language, C standards and its characteristics. We give some useful information about current

trend and details about advanced compilers. It has been neatly given for better understanding for

students to set up compiler on their own. In next stage we have given all basic requirements

which are very much necessary for further proceed.

5

In the second module, we move on to little bit deeper in program concept and C covering,

Operators, expression and control flow statements.

In the third module, we discuss more and more advance and very important topics such as

functions, arrays, string and pointer at this stage.

In the Fourth and final module, we have put maximum effort in creating real time example to

deal with higher level concepts such as pointer and structure. A suitable example and codes are

given in their respective sections.

All the best for the students.

Dr. H.K. Chethan & Mr. Vinay .K

6

__
Course Design and Editorial Committee

Prof. K. S. Rangappa Prof. Vikram Raj Urs

Vice Chancellor & Chairperson Dean (Academic) & Convener

Karnataka State Open University Karnataka State Open University

Manasagangotri, Mysore – 570 006 Manasagangotri, Mysore – 570 006

Head of the Department – Incharge Course Co-Ordinator

Prof. Kamalesh Mr. Mahesha DM

DIRECTOR IT&Technology Lecturer, DOS in Information

Karnataka State Open University Technology

Manasagangotri, Mysore – 570 006 Karnataka State Open University

 Manasagangotri, Mysore – 570 006

Course Writers

Dr. H.K. Chethan Modules 1 and 3 Units 1-4 and 9-12

Lecturer

DOS in Computer Science

University of Mysore

Manasagangotri, Mysore – 570 006

And

Mr. Vinay .K Modules 2 and 4 Units 5-8 and 13-16

Assistant Professor

DOS in Computer Science

University of Mysore

Manasagangotri, Mysore – 570 006

Publisher

Registrar

Karnataka State Open University

Manasagangotri, Mysore – 570 006

Developed by Academic Section, KSOU, Mysore

Karnataka State Open University, 2012

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any

other means, without permission in writing from the Karnataka State Open University.

Further information on the Karnataka State Open University Programmes may be obtained from

the University‘s Office at Manasagangotri, Mysore – 6.

Printed and Published on behalf of Karnataka State Open University, Mysore-6 by the Registrar

(Administration)

7

Programming Concepts and C

Module - 1

8

Unit - 1

Structure

1.0 Objectives

1.1 Introduction

1.2 C language standards

1.3 C language features

1.4 Program Concepts and Characteristics

1.5 Structure of C Program

1.6 Summary

1.7 Key words

1.8 Questions

1.9 References

1.0 Objectives

At the end of this unit you will be able to

 Understand the evolution of C programming language

 List out the features and characteristics of C programming language

 Explain the structure of C program

1.1 Introduction to C

C was developed by Dennis Ritchie at Bell Laboratories in 1972. Most of its principles and ideas

were taken from the earlier language B, BCPL and CPL. CPL was developed jointly between the

Mathematical Laboratory at the University of Cambridge and the University of London

Computer Unit in 1960s. CPL (Combined Programming Language) was developed with the

purpose of creating a language that was capable of both machine independent programming and

9

would allow the programmer to control the behavior of individual bits of information. But the

CPL was too large for use in many applications. In 1967, BCPL (Basic Combined Programming

Language) was created as a scaled down version of CPL while still retaining its basic features.

This process was continued by Ken Thompson. He made B Language during working at Bell

Labs. B Language was a scaled down version of BCPL. B Language was written for the systems

programming. In 1972, a co-worker of Ken Thompson, Dennis Ritchie developed C Language

by taking some of the generality found in BCPL to the B language.

The original PDP-11 version of the Unix system was developed in assembly language. In 1973,

C language had become powerful enough that most of the Unix kernel was rewritten in C. This

was one of the first operating system kernels implemented in a language other than assembly.

During the rest of the 1970's, C spread throughout many colleges and universities because of its

close ties to UNIX and the availability of C compilers. Soon, many different organizations began

using their own versions of C Language. This was causing great compatibility problems. In

1983, the American National Standards Institute (ANSI) formed a committee to establish a

standard definition of C Language. That is known as ANSI Standard C. Today C is the most

widely used System Programming Language.

1.2 C language standards

With the introduction of new devices and extended character sets, new features may be added to

this International Standard. Subclauses in the language and library clauses warn implementors

and programmers of usages which, though valid in themselves, may conflict with future

additions.

Certain features are obsolescent, which means that they may be considered for withdrawal in

future revisions of this International Standard. They are retained because of their widespread use,

but their use in new implementations (for implementation features) or new programs.

This International Standard is divided into four major subdivisions:

10

 preliminary elements

 the characteristics of environments that translate and execute C programs

 the language syntax, constraints, and semantics

 the library facilities

Examples are provided to illustrate possible forms of the constructions described. Footnotes are

provided to emphasize consequences of the rules described in that subclause or elsewhere in this

International Standard. References are used to refer to other related subclauses.

Recommendations are provided to give advice or guidance to implementors. Annexes provide

additional information and summarize the information contained in this International Standard. A

bibliography lists documents that were referred to during the preparation of the standard.

The library clause is based on the 1984 /usr/group Standard.

1.3 C language Features

Characteristics of ‗c‘ language/main features:

1. Modularity.

2. Portability.

3. Extendibility.

4. Speed.

5. Flexibility.

Modularity: Ability to breakdown a large module into manageable sub modules called as

modularity, which is an important feature of structured programming languages.

Advantages:

 Projects can be completed in time.

 Debugging will be easier and faster.

11

Portability:

The ability to port i.e. to install the software in different platform is called portability.

Highest degree of portability: ‗C‘ language offers highest degree of portability i.e., percentage of

changes to be made to the sources code is at minimum when the software is to be loaded in

another platform. Percentage of changes to the source code is minimum. The software that is

100% portable is also called as platform independent software or architecture neutral software.

Eg: Java.

Extendibility: Ability to extend the existing software by adding new features is called as

extendibility.

SPEED:

‗C‘ is also called as middle level language because programs written in ‗c‘ language run at the

speeds matching to that of the same programs written in assembly language so ‗c‘ language has

both the merits of high level and middle level language and because if this feature it is mainly

used in developing system software.

Flexibility: Key words or reverse words

ANSIC has 32 reverse words

‗C‘ language has right number of reverse words which allows the programmers to have complete

control on the language.

‗C‘ is also called as programmer‘s language since it allows programmers to induce creativeness

into the programmers.

12

1.4 Program Concepts and Characteristics

1. Program startup

The function called at program startup is named main. The implementation declares no prototype

for this function. It shall be defined with a return type of int and with no parameters:

int main(void) { /* ... */ }

or with two parameters (referred to here as argc and argv, though any names may be used, as

they are local to the function in which they are declared):

int main(int argc, char *argv[]) { /* ... */ }

or in some other implementation-defined manner.

If they are declared, the parameters to the main function shall obey the following constraints:

 The value of argc shall be nonnegative.

 argv[argc] shall be a null pointer.

 If the value of argc is greater than zero, the array members argv[0] through

argv[argc-1] inclusive shall contain pointers to strings, which are given implementation-defined

values by the host environment prior to program startup. The intent is to supply to the program

information determined prior to program startup from elsewhere in the hosted environment. If

the host environment is not capable of supplying strings with letters in both uppercase and

lowercase, the implementation shall ensure that the strings are received in lowercase.

If the value of argc is greater than zero, the string pointed to by argv[0] represents the program

name; argv[0][0] shall be the null character if the program name is not available from the host

environment. If the value of argc is greater than one, the strings pointed to by argv[1] through

argv[argc-1] represent the program parameters.

2. Program execution

In a hosted environment, a program may use all the functions, macros, type definitions, and

objects described in the library clause.

13

3. Program termination

 If the return type of the main function is a type compatible with int, a return from the initial call

to the main function is equivalent to calling the exit function with the value returned by the

main function as its argument) reaching the } that terminates the main function returns a value

of 0. If the return type is not compatible with int, the termination status returned to the host

environment is unspecified.

4. Program execution

(i) The semantic descriptions in this International Standard describe the behavior of an

abstract machine in which issues of optimization are irrelevant.

(ii) Accessing a volatile object, modifying an object, modifying a file, or calling a function

that does any of those operations are all side effects,11) which are changes in the state of

the execution environment. Evaluation of an expression may produce side effects. At

certain specified points in the execution sequence called sequence points, all side effects

of previous evaluations shall be complete and no side effects of subsequent evaluations

shall have taken place.

(iii)In the abstract machine, all expressions are evaluated as specified by the semantics. An

actual implementation need not evaluate part of an expression if it can deduce that its

value is not used and that no needed side effects are produced (including any caused by

calling a function or accessing a volatile object).

(iv) When the processing of the abstract machine is interrupted by receipt of a signal, only the

values of objects as of the previous sequence point may be relied on. Objects that may be

modified between the previous sequence point and the next sequence point need not have

received their correct values yet.

(v) The least requirements on a conforming implementation are:

(vi) At sequence points, volatile objects are stable in the sense that previous accesses are

complete and subsequent accesses have not yet occurred.

14

1.5 Structure of C Program

C language is very popular language among all the languages. The structure of a C program is a

protocol (rules) to the programmer, while writing a C program. The general basic structure of C

program is shown in the figure below. The whole program is controlled within main () along

with left brace denoted by ―{‖ and right braces denoted by ―}‖. If you need to declare local

variables and executable program structures are enclosed within ―{‖ and ―}‖ is called the body of

the main function. The main () function can be preceded by documentation, preprocessor

statements and global declarations.

Documentations

The documentation section consist of a set of comment lines giving the name of the program, the

another name and other details, which the programmer would like to use later.

Preprocessor Statements

The preprocessor statement begin with # symbol and are also called the preprocessor directive.

These statements instruct the compiler to include C preprocessors such as header files and

15

symbolic constants before compiling the C program. Some of the preprocessor statements are

listed below.

Global Declarations

The variables are declared before the main () function as well as user defined functions are

called global variables. These global variables can be accessed by all the user defined functions

including main () function.

The main () function

Each and Every C program should contain only one main (). The C program execution starts

with main () function. No C program is executed without the main function. The main ()

function should be written in small (lowercase) letters and it should not be terminated by

semicolon. Main () executes user defined program statements, library functions and user defined

functions and all these statements should be enclosed within left and right braces.

Braces

Every C program should have a pair of curly braces ({, }). The left braces indicates the

beginning of the main () function and the right braces indicates the end of the main () function.

These braces can also be used to indicate the user-defined functions beginning and ending. These

two braces can also be used in compound statements.

16

Local Declarations

The variable declaration is a part of C program and all the variables are used in main () function

should be declared in the local declaration section is called local variables. Not only variables,

we can also declare arrays, functions, pointers etc. These variables can also be initialized with

basic data types.

For Example

Main ()

{

int sum = 0;

int x;

float y;

}

Here, the variable sum is declared as integer variable and it is initialized to zero. Other variables

declared as int and float and these variables inside any function are called local variables.

Program statements

These statements are building blocks of a program. They represent instructions to the computer

to perform a specific task (operations). An instruction may contain an input-output statements,

arithmetic statements, control statements, simple assignment statements and any other statements

and it also includes comments that are enclosed within /* and */ . The comment statements are

not compiled and executed and each executable statement should be terminated with semicolon.

User defined functions

These are subprograms, generally, a subprogram is a function and these functions are written by

the user are called user ; defined functions. These functions are performed by user specific tasks

and this also contains set of program statements. They may be written before or after a main ()

function and called within main () function. This is an optional to the programmer.

First Program using C

Here is your first c program. Write carefully because C Language is a case sensitive language.

17

#include <stdio.h>

void main()

{

printf("Hello World\n Welcome to C Programming");

}

Press ALT+F9 to compile your program. If you have any error in your program, you will get the

message, remove your errors and then execute your program you will got the output.

Hello World

Welcome to C Programming

Some other sample C programs

/*Display Current date and time*/

#include <stdio.h>

#include <time.h>

void main()

{

time_t t;

time(&t);

clrscr();

printf("Today's date and time : s",ctime(&t));

getch();

}

/* addition of 2 numbers */

#include<stdio.h>

#include<conio.h>

void main()

{

int a, b,c;

c=0;

a=3;

b=4;

c = a + b:

printf(―result of addition = %d‖,c);

}

18

1.6 Summary

At the end this unit you are able to understand the history of C programming language and how it

evolved as a powerful programming language. In this unit we have covered the topics such as C

language standards, features and characteristics. It has been neatly covered with program

concepts and different stages which involve in developing a program. At the end of this a simple

C program has been illustrated to explain the structure of the simple C program.

1.7 Keywords

C programming language, program execution, program termination, structure of program

1.8 Questions

1. List out the characteristics of C program concepts?

2. With an example explain the structure of C program?

1.9 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

19

Unit - 2

Structure

2.0 Objectives

2.1 C Programming/Compiling

2.2 List of Compilers

2.3 IDE features of Turbo C compiler

2.4 Compiling C program

2.5 Summary

2.6 Key words

2.7 Questions

2.8 References

2.0 Objectives

At the end of this unit you will be able to

 Understand the C compilers

 Understand the creating and compiling C programs

 Explain the IDE features of C compilers

 Elucidate the common line options to compile C program

2.1 C Programming/Compiling

Like any programming language, C by itself is completely incomprehensible to

a microprocessor. Its purpose is to provide an intuitive way for humans to provide instructions

that can be easily converted into machine code that is comprehensible to a microprocessor.

The compiler is what takes this code, and translates it into the machine code.

http://en.wikipedia.org/wiki/microprocessor

20

To those new to programming, this seems fairly simple. A naive compiler might read in every

source file, translate everything into machine code, and write out an executable. This could work,

but has two serious problems. First, for a large project, the computer may not have enough

memory to read all of the source code at once. Second, if you make a change to a single source

file, you would rather not have to recompile the entire application.

To deal with these problems, compilers break their job down into steps; for each source file

(each .c file), the compiler reads the file, reads the files it references with #include, and translates

it to machine code. The result of this is an "object file" (.o). Once every object file is made, a

"linker" collects all of the object files and writes the actual program. This way, if you change one

source file, only that file needs to be recompiled and then the application needs to be re-linked.

Without going into the painful details, it can be beneficial to have a superficial understanding of

the compilation process.

Preprocessor

The preprocessor provides the ability for the inclusion of header files, macro expansions,

conditional compilation, and line control. Many times you will need to give special instructions

to your compiler. This is done by inserting preprocessor directives into your code. When you

begin compiling your code, a special program called the preprocessor scans the source code and

performs simple substitution of tokenized strings for others according to predefined rules. The

preprocessor is not a part of the C language.

In C language, all preprocessor directives begin with the pound character (#). You can see one

preprocessor directive in the Hello world program introduced in A taste of C:

Example:

#include <stdio.h>

This directive causes the header to be included into your program. Other directives such

as #pragma control compiler settings and macros. The result of the preprocessing stage is a text

string. You can think of the preprocessor as a non-interactive text editor that prepares your code

http://en.wikipedia.org/wiki/Preprocessor_directives
http://en.wikibooks.org/wiki/Hello_world_program
http://en.wikibooks.org/wiki/C_Programming/A_taste_of_C

21

for the compilation step. The language of preprocessor directives is agnostic to the grammar of

C, so the C preprocessor can also be used independently to process other kinds of text files.

Syntax Checking

This step ensures that the code is valid and will sequence into an executable program. Under

most compilers, you may get messages or warnings indicating potential issues with your program

(such as a statement always being true or false, etc.)

When an error is detected in the program, the compiler will normally report the file name and

line that is preventing compilation.

Object Code

The compiler produces a machine code equivalent of the source code that can then be linked into

the final program. The code itself can't be executed yet, as it has to complete the linking stage.

It's important to note after discussing the basics that compilation is a "one way street". That is,

compiling a C source file into machine code is easy, but "decompiling" (turning machine code

into the C source that creates it) is not. Decompilers for C do exist, but they rarely create useful

code.

Linking

Linking combines the separate object codes into one complete program by integrating libraries

and the code and producing either an executable program or a library. Linking is performed by a

linker, which is often part of a compiler.

Common errors during this stage are either missing functions, or duplicate functions.

Automation

For large C projects, many programmers choose to automate compilation, both in order to reduce

user interaction requirements and to speed up the process by only recompiling modified files.

http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Library_(computing)

22

Most integrated development environments have some kind of project management, which

makes such automation very easy. On UNIX-like systems, make and Makefiles are often used to

accomplish the same.

2.2 List of Free compilers available

 GNU C Compiler: The most famous and widely used at present. Primarly for Unix and

Unix-like platforms.

 DJGPP: Port of the GNU development utilties to the Intel 32-bit platforms.

 Cygwin: This is an environment and a port of most GNU utilties including the GCC set to

the Windows platform.

 MinGW: Minimalist GNU for Windows. Includes support for the GNU Compiler

Collection (GCC).

 Turbo C: Remember Turbo C from Borland? Now it is available as a free download.

Though it's a little out of date, it still is extremely usable.

 Borland C++ Builder: The compiler and command line tools are available as a free

download.

 OpenWatcom Compilers: The original Watcom compilers are now available as open

source software.

 Digital Mars C/C++ Compiler: Offshoot of the Zortech/Symantec C/C++ Compilers

(probably it is the Zortech compiler re-incarnated). Touted as drop in replacements for

the Symantec C/C++ compilers.

 lcc: Portable compiler for ANSI C.

 lcc-win32: Free for non-commerical use. Windows support with IDE, etc.

http://en.wikibooks.org/wiki/Make

23

 Pelles C: Based on lcc. With IDE, etc for Windows platform.

 Ch: This is actually an interpreter. Standard edition is free.

 EiC: Extensible Interactive C. Another interpreter.

2.3 IDE features of Turbo C compiler

Turbo C is an Integrated Development Environment and compiler for the C programming

language from Borland. First introduced in 1987, it was noted for its integrated development

environment, small size, fast compile speed, comprehensive manuals and low price.

In May 1990, Borland replaced Turbo C with Turbo C++. In 2006, Borland reintroduced

the Turbo moniker.

History

Turbo C had the same properties as Turbo Pascal: an integrated development environment (IDE),

a fast compiler, a good editor and a competitive price. Turbo C was not as successful as the

Pascal-sister product. First, C was a language for professional programming and systems

development rather than a school language. Turbo C competed with other professional

programming tools (Microsoft C, Lattice C, Watcom C, etc.).

Versions

Version 2.0, Released on May 13, 1987, offered the first integrated edit-compile-run

development environment for C on IBM PCs. The software was, like many Borland products of

the time, bought from another company and branded with the "Turbo" name, in this case Wizard

C by Bob Jervis
[1]

 (Borland's flagship product at that time, Turbo Pascal, which at this time did

not have pull-down menus, would be given a facelift with version 4 released late in 1987 to make

it look more like Turbo C.) It ran in 384 kB of memory. It allowed inline assembly with full

access to C symbolic names and structures, supported all memory models, and offered

optimizations for speed, size, constant folding, and jump elimination.
[2]

http://en.wikipedia.org/wiki/Integrated_Development_Environment
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Borland
http://en.wikipedia.org/wiki/Turbo_C%2B%2B
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Microsoft_C
http://en.wikipedia.org/wiki/Lattice_C
http://en.wikipedia.org/wiki/Watcom_C/C%2B%2B_compiler
http://en.wikipedia.org/wiki/IBM_PC
http://en.wikipedia.org/wiki/Borland_Turbo_C#cite_note-0
http://en.wikipedia.org/wiki/Pull-down_menu
http://en.wikipedia.org/wiki/Borland_Turbo_C#cite_note-foldoc_turboc-1

24

Turbo C 2.5 startup screen.

Version 2.5, in January 1988 was an incremental improvement over version 2.0. It included

more sample programs, improved manuals and bug fixes. It was shipped on five 360

KB diskettes of uncompressed files, and came with sample C programs, including a stripped

down spreadsheet called mcalc. This version introduced the <conio.h> header file (which

provided fast, PC-specific console I/O routines).

Turbo C 2.0 startup screen.

Version 2.0, in 1989 was released was in late 1988, and featured the first "blue screen" version,

which would be typical of all future Borland releases for MS-DOS. The American release did not

have Turbo Assembler or a separate debugger. (These were sold separately as Turbo Assembler.)

Turbo C, Asm, and Debugger were sold together as a suite. This seems to describe another

release: FeaturedTurbo Debugger, Turbo Assembler, and an extensive graphics library. This

version of Turbo C was also released for the Atari ST, but distributed in Germany only.

2.4 Compiling C Program

There are two types of C compilers, each of which has advantages and disadvantages:

(i) Command-line C compilers and

http://en.wikipedia.org/wiki/Diskette
http://en.wikipedia.org/w/index.php?title=Mcalc&action=edit&redlink=1
http://en.wikipedia.org/wiki/MS-DOS
http://en.wikipedia.org/wiki/Turbo_Assembler
http://en.wikipedia.org/wiki/Turbo_Debugger
http://en.wikipedia.org/wiki/Atari_ST
http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/File:Tc20startup.png
http://en.wikipedia.org/wiki/File:Tc15startup.png

25

(ii) IDE or Windows C compilers

To compile and run a C program using a command-line C compiler, you have to go through the

following steps:

1. Write the C program (call it ``myfile.c'') in a text editor or word processor (for example,

the simple ``Hello'' program below)

2. Save it as a file on your computer's hard disk,

3. ``Compile it'' to a computer-executable program by entering a compile command

at a command prompt, for example for the following C compiler programs:

gcc -Wall -o myfile myfile.c (on gcc compiler)

(using the GNU C compiler, UNIX or Microsoft Windows)

cl myfile.c

(Microsoft Visual C++ command-line compiler)

bcc32 myfile.c

(Borland C/C++ compiler, Microsoft Windows)

followed by the ``Enter'' key, and finally

4. Run the program by entering

myfile

at a command prompt, again followed by ``Enter''. If you want to save the output of ``myfile'' as

a text file ``myfile.txt'', enter instead

myfile > myfile.txt

Example code:

myfile.c

#include <stdio.h>

int main()

26

{

 printf("Hello world\n");

 return 0;

}

2.5 Summary

In this unit we gave discussed about the various compiling options in executing C programs viz.,

IDE features and Common line options. It has been list out the various freely available C

compilers along the features. At the end of this unit you will be able understand the compilation

of C programs.

2.6 Keywords

Compilers, Turbo C, gcc, IDE

2.7 Questions

1. Explain the different compile options to execute C program?

2. List of the IDE feature available under various compilers for C programs?

2.8 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

27

Unit - 3

Structure

3.0 Objectives

3.1 Introduction

3.2 Identifiers

3.3 Keywords

3.4 Variable

3.5 Constants

3.6 Scope and Life of Variable

3.7 Data type and Size

3.8 Declaring, Initialization and Assigning

3.9 Symbolic Constants

3.10 Summary

3.11 Key words

3.12 Questions

3.13 References

3.0 Objectives

At the end of this unit you will be able to

 Understand the C compilers

 Understand the creating and compiling C programs

 Explain the IDE features of C compilers

 Elucidate the common line options to compile C program

28

3.1 Introduction

IDENTIFIERS AND KEYWORDS

Every word in C language is a keyword or an identifier/variable. Keywords in C language

cannot be used as a variable name. They are specifically used by the compiler for its own

purpose and they serve as building blocks of a c program.

3.2 Identifiers

• Identifiers are the names given to variables, classes, methods and interfaces.

• It must be a whole word and starts with either an alphabet or an underscore.

• They are case sensitive.

• No commas or blanks are allowed in it

• No special symbol other than an underscore can be used in it.

Ex.: marks gracesem1_rollno alpha

3.3 Keywords

• Keywords are words that have special meaning to the C compiler.

• An identifier cannot have the same spelling and case as a C keyword.

• C makes use of only 32 keywords or reserved words which combine withthe formal

syntax to the form the C programming language.

• All keywords in C are written in lower case.

• A keyword may not be used as a variable name.

auto double int struct

break else long switch

case enum register typedef

29

3.4 Variables

A variable is value that can change any time. It is a memory location used to store a data value.

A variable name should be carefully chosen by the programmer so that its use is reflected in a

useful way in the entire program. Variable names are case sensitive.

Examples of variable names are

sum, number, salary, emp_name, average1

Types of variables

integer, char, string etc. Each type of variable has their own size and range. For ex. Range of

integer is -32768 to 32767 and the range for it is 2, 4 bytes (1 byte = 8 bits).

The size of a char is 1 byte. And range is from 1 to 255.

Initialization of Variable

Initialize a variable in c to assign it a starting value. Without this we can't get whatever

happened to memory at that moment.

C does not initialize variables automatically. So if you do not initialize them properly, you can

get unexpected results. Fortunately, C makes it easy to initialize variables when you declare

them.

For Example:

int x=45;

int month_lengths[] = {23,34,43,56,32,12,24};

struct role = { "Hamlet", 7, FALSE, "Prince of Denmark ", "Kenneth Branagh"};

Note: The initialization of variable is a good process in programming.

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

30

3.5 Constants

A constant value is the one which does not change during the execution of a program. C supports

several types of constants.

1. Integer Constants

2. Real Constants

3. Single Character Constants

4. String Constants

Integer Constants

An integer constant is a sequence of digits. There are 3 types of integers namely decimal integer,

octal integers and hexadecimal integer.

Decimal Integers consists of a set of digits 0 to 9 preceded by an optional + or - sign. Spaces,

commas and non digit characters are not permitted between digits.

Example for valid decimal integer constants are

123, -3, 0, 562321, + 78

Some examples for invalid integer constants are

15 750, 20,000, Rs. 1000

Octal Integers constant consists of any combination of digits from 0 through 7 with a O at the

beginning. Some examples of octal integers are

O26, O, O347, O676

Hexadecimal integer constant is preceded by OX or Ox, they may contain alphabets from A to F

or a to f. The alphabets A to F refers to 10 to 15 in decimal digits.

Example of valid hexadecimal integers are

OX2, OX8C, OXbcd, Ox

1. Real Constants

Real Constants consists of a fractional part in their representation. Integer constants are

inadequate to represent quantities that vary continuously. These quantities are represented by

numbers containing fractional parts like 26.083.

Example of real constants are

0.0026, -0.97, 435.29, +487.0

31

Real Numbers can also be represented by exponential notation. The general form for exponential

notation is mantissa exponent. The mantissa is either a real number expressed in decimal

notation or an integer. The exponent is an integer number with an optional plus or minus sign.

Single Character Constants

A Single Character constant represent a single character which is enclosed in a pair of quotation

symbols.

Example for character constants are

8

'5', 'x', ';', ' '

All character constants have an equivalent integer value which is called ASCII Values.

String Constants

 String constant is a set of characters enclosed in double quotation marks. The characters in a

string constant sequence may be an alphabet, number, special character and blank space.

Example of string constants are

"VISHAL", "1234", "God Bless", "!.....?"

3.6 Scope and Life Span Of a Variable

The area of the program where that variable is valid, the amount of time that a variable is

retained, as well as where it can be accessed from, depends on its specified location and type.

The life span of the variable, i.e. the length of time that the variable remains in memory. The

programmer has to be very much aware of the type of the variable he/she going to use. Each and

every sort of scenario requires different type of scope. For example suppose the variable which

should remain constant and also required by external functions then it is not good practice to

declare same variable again and again instead of that it may be called as a global variable.

On the other hand, for the sake security reason some variable has be visible in only one function

can be treated and declared as static variable.

This section of the unit will be discusses thoroughly in forth coming units when we introduce

storage class and different types of variables.

32

3.7 Data types and Sizes

The basic data structure used in C programs is a number. C provides for two types of numbers -

integers and floating point. Computer operations that involve text (characters, words or strings)

still manipulate numbers. Each data item used by a program must have a data type. The basic

data types provided by C are shown in Table 1. Each data type represents a different kind of

number. You must choose an appropriate type for the kind of number you need in the variable

declaration section of the program.

 In c, there are three types of data

 In C language the system has to know before-hand, the type of numbers or characters

being used in the program. These are called data types. There are many data types in C

language.

 A C programmer has to use appropriate data type as per his requirement.

C language data types can be broadly classified as

a) Primary data type

b) Derived data type

c) User-defined data type

33

Integer Data Type

 Integers are numbers without decimal point

 Integers are whole numbers with a range of values, range of values are machine

dependent.

 Generally an integer occupies 2 bytes memory space and its value range limited to -

32768 to +32767 (that is, -215 to +215-1).

 A signed integer use one bit for storing sign and rest 15 bits for number.

 To control the range of numbers and storage space, C has three classes of integer storage

namely short int, int and long int.

 All three data types have signed and unsigned forms.

 A short int requires half the amount of storage than normal integer.

 Unlike signed integer, unsigned integers are always positive and use all the bits for the

magnitude of the number.

 Therefore, the range of an unsigned integer will be from 0 to 65535.

 The long integers are used to declare a longer range of values and it occupies 4 bytes of

storage space.

34

Syntax:

int <variable name>;

int num1;

short int num2;

long int num3;

Example: 5, 6, 100, 2500.

Integer Data Type Memory Allocation:

Floating Point Data Type

 The float data type is used to store fractional numbers (real numbers) with 6 digits of

precision.

 Floating point numbers are denoted by the keyword float. When the accuracy of the

floating point number is insufficient, we can use the double to define the number.

 The double is same as float but with longer precision and takes double space (8 bytes)

than float.

 To extend the precision further we can use long double which occupies 10 bytes of

memory space.

Syntax:

float <variable name>;

float num1;

double num2;

long double num3;

Example: 9.125, 3.1254.

Floating Point Data Type Memory Allocation:

35

Character Data Type

 Character type variable can hold a single character and are declared by using the keyword

char.

 As there are singed and unsigned int (either short or long), in the same way there are

signed and unsigned chars; both occupy 1 byte each, but having different ranges.

 Unsigned characters have values between 0 and 255, signed characters have values from

–128 to 127.

Syntax:

char <variable name>;

char ch = ‗a‘;

Example: a, b, g, S, j.

3.8 Declaring, Initializing, and Assigning Variables

Here is an example of declaring an integer, which we've called some_number. (Note the

semicolon at the end of the line; that is how your compiler separates one program statement from

another.)

int some_number;

This statement means we're declaring some space for a variable called some_number, which will

be used to store integer data. Note that we must specify the type of data that a variable will store.

There are specific keywords to do this – we'll look at them in the next section.

Multiple variables can be declared with one statement, like this:

36

int anumber, anothernumber, yetanothernumber;

We can also declare and assign some content to a variable at the same time.

int some_number=3;

This is called initialization.

After declaring variables, you can assign a value to a variable later on using a statement like this:

some_number=3;

You can also assign a variable the value of another variable, like so:

anumber = anothernumber;

Or assign multiple variables the same value with one statement:

anumber = anothernumber = yetanothernumber = 3;

This is because the assignment x = y returns the value of the assignment. x = y = z is really

shorthand for x = (y = z).

3.9 Symbolic Constants

 C allows the definition of symbolic constants - names that will be replaced with their

values when the program is compiled

 Symbolic constants are defined before main(), and the syntax is

#define NAME value

Example:

#define ANGLE_MIN 0

#define ANGLE_MAX 360

The above piece of code would define ANGLE_MIN and ANGLE_MAX to the values 0 and

360, respectively.

 C distinguishes between lowercase and uppercase letters in variable names.

 It is customary to use capital letters in defining global constants.

37

3.10 Summary

At the end of this unit we have discussed about the basic concepts of C programming viz., c

tokens: Identifiers, Keywords, Variables and symbolic constants. We have also introduced the

life and scope of variable and the same concepts will be discusses in detail in forth coming

module.

3.11 Keywords

Identifier, Variable, Keyword

3.12 Questions

1. Explain the terms variable, keyword, constant and symbolic constant which are supported

in C programming?

2. Briefly describe the life and scope of the variable in C program?

3. Discuss about the data type supported in C language?

3.13 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M.

Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

38

Unit - 4

Structure

4.0 Objectives

4.1 Introduction

4.2 The Standard Input Output File

4.3 Character Input / Output

4.4 Formatted Input / Output

4.5 Whole Lines of Input and Output

4.6 Standard Library Function

4.7 Mathematical Function

4.8 Character Function

4.9 Summary

4.10 Key words

4.11 Questions

4.12 References

4.0 Objectives

At the end of this unit you will be able to

 Understand the C compilers

 Understand the creating and compiling C programs

 Explain the IDE features of C compilers

 Elucidate the common line options to compile C program

39

4.1 Introduction : Input and Output

Input and output are covered in some detail. C allows quite precise control of these. This section

discusses input and output from keyboard and screen.

The same mechanisms can be used to read or write data from and to files. It is also possible to

treat character strings in a similar way, constructing or analyzing them and storing results in

variables. These variants of the basic input and output commands are discussed in the next

section.

4.2 The Standard Input Output File

UNIX supplies a standard package for performing input and output to files or the terminal. This

contains most of the functions which will be introduced in this section, along with definitions of

the datatypes required to use them. To use these facilities, your program must include these

definitions by adding the line. This is done by adding the line

 #include <stdio.h>

near the start of the program file.

If you do not do this, the compiler may complain about undefined functions or datatypes.

4.3 Character Input / Output

This is the lowest level of input and output. It provides very precise control, but is usually too

fiddly to be useful. Most computers perform buffering of input and output. This means that

they'll not start reading any input until the return key is pressed, and they'll not print characters

on the terminal until there is a whole line to be printed.

getchar

getchar returns the next character of keyboard input as an int. If there is an error then EOF (end

of file) is returned instead. It is therefore usual to compare this value against EOF before using it.

40

If the return value is stored in a char, it will never be equal to EOF, so error conditions will not

be handled correctly.

As an example, here is a program to count the number of characters read until an EOF is

encountered. EOF can be generated by typing Control - d.

 #include <stdio.h>

 main()

 { int ch, i = 0;

 while((ch = getchar()) != EOF)

 i ++;

 printf("%d\n", i);

 }

putchar

putchar puts its character argument on the standard output (usually the screen).

The following example program converts any typed input into capital letters. To do this it applies

the function toupper from the character conversion library ctype.h to each character in turn.

 #include <ctype.h> /* For definition of toupper */

 #include <stdio.h> /* For definition of getchar, putchar, EOF */

 main()

 { int ch;

 while((ch = getchar()) != EOF)

 putchar(toupper(ch));

 }

41

4.4 Formatted Input / Output

We have met these functions earlier in the course. They are closest to the facilities offered by

Pascal or Fortran, and usually the easiest to use for input and output. The versions offered under

C are a little more detailed, offering precise control of layout.

printf

This offers more structured output than putchar. Its arguments are, in order; a control string,

which controls what gets printed, followed by a list of values to be substituted for entries in the

control string.

There are several more types available. You can refer the help section in usage compilers. It is

also possible to insert numbers into the control string to control field widths for values to be

displayed. For example %6d would print a decimal value in a field 6 spaces wide, %8.2f would

print a real value in a field 8 spaces wide with room to show 2 decimal places. Display is left

justified by default, but can be right justified by putting a - before the format information, for

example %-6d, a decimal integer right justified in a 6 space field.

scanf

scanf allows formatted reading of data from the keyboard. Like printf it has a control string,

followed by the list of items to be read. However scanf wants to know the address of the items to

be read, since it is a function which will change that value. Therefore the names of variables are

preceded by the & sign. Character strings are an exception to this. Since a string is already a

character pointer, we give the names of string variables unmodified by a leading & Control string

entries which match values to be read are preceded by the percentage sign in a similar way to

their printf equivalents.

42

4.6 Whole Lines of Input and Output

Where we are not too interested in the format of our data, or perhaps we cannot predict its format

in advance, we can read and write whole lines as character strings. This approach allows us to

read in a line of input, and then use various string handling functions to analyze it at our leisure.

gets

gets reads a whole line of input into a string until a newline or EOF is encountered. It is critical

to ensure that the string is large enough to hold any expected input lines. When all input is

finished, NULL as defined in stdio.h is returned.

puts

puts writes a string to the output, and follows it with a newline character.

Example: Program which uses gets and puts to double space typed input.

#include <stdio.h>

main()

{ char line[256]; /* Define string sufficiently large to

 store a line of input */

 while(gets(line) != NULL) /* Read line */

 { puts(line); /* Print line */

 printf("\n"); /* Print blank line */

 }

}

Note that putchar, printf and puts can be freely used together. So can getchar, scanf and gets.

Apart from the above, all the standard input/output library function has been tabulated in next

section.

43

4.7 Standard Library function

<stdio.h>
BUFSIZ

Size of buffer used by setbuf.

EOF

Value used to indicate end-of-stream or to report an error.

FILENAME_MAX

Maximum length required for array of characters to hold a filename.

FOPEN_MAX

Maximum number of files which may be open simultaneously.

L_tmpnam

Number of characters required for temporary filename generated by tmpnam.

NULL

Null pointer constant.

SEEK_CUR

Value for origin argument to fseek specifying current file position.

SEEK_END

Value for origin argument to fseek specifying end of file.

SEEK_SET

Value for origin argument to fseek specifying beginning of file.

TMP_MAX

Minimum number of unique filenames generated by calls to tmpnam.

_IOFBF

Value for mode argument to setvbuf specifying full buffering.

_IOLBF

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#setbuf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#tmpnam
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fseek
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fseek
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fseek
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#tmpnam
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#setvbuf

44

Value for mode argument to setvbuf specifying line buffering.

_IONBF

Value for mode argument to setvbuf specifying no buffering.

stdin

File pointer for standard input stream. Automatically opened when program execution

begins.

stdout

File pointer for standard output stream. Automatically opened when program execution

begins.

stderr

File pointer for standard error stream. Automatically opened when program execution

begins.

FILE

Type of object holding information necessary to control a stream.

fpos_t

Type for objects declared to store file position information.

size_t

Type for objects declared to store result of sizeof operator.

FILE* fopen(const char* filename, const char* mode);

Opens file named filename and returns a stream, or NULL on failure. mode may be one

of the following for text files:

"r"

text reading

"w"

text writing

"a"

text append

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#setvbuf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#setvbuf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.NULL

45

"r+"

text update (reading and writing)

"w+"

text update, discarding previous content (if any)

"a+"

text append, reading, and writing at end

or one of those strings with b included (after the first character), for binary files.

FILE* freopen(const char* filename, const char* mode, FILE* stream);

Closes file associated with stream, then opens file filename with specified mode and

associates it with stream. Returns stream or NULL on error.

int fflush(FILE* stream);

Flushes stream stream and returns zero on success or EOF on error. Effect undefined for

input stream. fflush(NULL) flushes all output streams.

int fclose(FILE* stream);

Closes stream stream (after flushing, if output stream). Returns EOF on error, zero

otherwise.

int remove(const char* filename);

Removes specified file. Returns non-zero on failure.

int rename(const char* oldname, const char* newname);

Changes name of file oldname to newname. Returns non-zero on failure.

FILE* tmpfile();

Creates temporary file (mode "wb+") which will be removed when closed or on normal

program termination. Returns stream or NULL on failure.

char* tmpnam(char s[L_tmpnam]);

Assigns to s (if s non-null) and returns unique name for a temporary file. Unique name is

returned for each of the first TMP_MAX invocations.

int setvbuf(FILE* stream, char* buf, int mode, size_t size);

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.NULL
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EOF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fflush
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.NULL
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EOF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.NULL
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#L_tmpnam
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#TMP_MAX
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.size_t

46

Controls buffering for stream stream. mode is _IOFBF for full buffering, _IOLBF for line

buffering, _IONBF for no buffering. Non-null buf specifies buffer of size size to be used;

otherwise, a buffer is allocated. Returns non-zero on error. Call must be before any other

operation on stream.

void setbuf(FILE* stream, char* buf);

Controls buffering for stream stream. For null buf, turns off buffering, otherwise

equivalent to (void)setvbuf(stream, buf, _IOFBF, BUFSIZ).

int fprintf(FILE* stream, const char* format, ...);

Converts (according to format format) and writes output to stream stream. Number of

characters written, or negative value on error, is returned. Conversion specifications

consist of:

 %

 (optional) flag:

-

left adjust

+

always sign

space

space if no sign

0

zero pad

Alternate form: for conversion character o, first digit will be zero, for [xX],

prefix 0x or 0X to non-zero value, for [eEfgG], always decimal point, for [gG] trailing

zeros not removed.

 (optional) minimum width: if specified as *, value taken from next argument

(which must be int).

 (optional) . (separating width from precision):

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#_IOFBF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#_IOLBF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#_IONBF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#setvbuf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#_IOFBF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#BUFSIZ
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE

47

 (optional) precision: for conversion character s, maximum characters to be printed

from the string, for [eEf], digits after decimal point, for [gG], significant digits,

for an integer, minimum number of digits to be printed. If specified as *, value

taken from next argument (which must be int).

 (optional) length modifier:

h

short or unsigned short

l

long or unsigned long

L

long double

 conversion character:

d,i

int argument, printed in signed decimal notation

o

int argument, printed in unsigned octal notation

x,X

int argument, printed in unsigned hexadecimal notation

u

int argument, printed in unsigned decimal notation

c

int argument, printed as single character

s

char* argument

f

double argument, printed with format [-]mmm.ddd

48

e,E

double argument, printed with format [-]m.dddddd(e|E)(+|-)xx

g,G

double argument

p

void* argument, printed as pointer

n

int* argument : the number of characters written to this point is written into argument

%

no argument; prints %

int printf(const char* format, ...);

printf(f, ...) is equivalent to fprintf(stdout, f, ...)

int sprintf(char* s, const char* format, ...);

Like fprintf, but output written into string s, which must be large enough to hold the

output, rather than to a stream. Output is NUL-terminated. Returns length (excluding the

terminating NUL).

int vfprintf(FILE* stream, const char* format, va_list arg);

Equivalent to fprintf with variable argument list replaced by arg, which must have been

initialised by the va_start macro (and may have been used in calls to va_arg).

int vprintf(const char* format, va_list arg);

Equivalent to printf with variable argument list replaced by arg, which must have been

initialised by the va_start macro (and may have been used in calls to va_arg).

int vsprintf(char* s, const char* format, va_list arg);

Equivalent to sprintf with variable argument list replaced by arg, which must have been

initialised by the va_start macro (and may have been used in calls to va_arg).

int fscanf(FILE* stream, const char* format, ...);

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#printf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fprintf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdout
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fprintf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#va_list
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fprintf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#va_start
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#va_arg
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#va_list
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#printf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#va_start
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#va_arg
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#va_list
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#sprintf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#va_start
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#va_arg
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE

49

Performs formatted input conversion, reading from stream stream according to

format format. The function returns when format is fully processed. Returns number of

items converted and assigned, or EOF if end-of-file or error occurs before any

conversion. Each of the arguments following format must be a pointer. Format string

may contain:

 blanks and tabs, which are ignored

 ordinary characters, which are expected to match next non-white-space of input

 conversion specifications, consisting of:

o %

o (optional) assignment suppression character "*"

o (optional) maximum field width

o (optional) target width indicator:

h

argument is pointer to short rather than int

l

argument is pointer to long rather than int, or double rather than float

L

argument is pointer to long double rather than float

o conversion character:

d

decimal integer; int* parameter required

i

integer; int* parameter required; decimal, octal or hex

o

octal integer; int* parameter required

u

unsigned decimal integer; unsigned int* parameter required

x

hexadecimal integer; int* parameter required

c

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EOF

50

characters; char* parameter required; white-space is not skipped, and NUL-termination is

not performed

s

string of non-white-space; char* parameter required; string is NUL-terminated

e,f,g

floating-point number; float* parameter required

p

pointer value; void* parameter required

n

chars read so far; int* parameter required

[...]

longest non-empty string from specified set; char* parameter required; string is NUL-

terminated

[^...]

longest non-empty string not from specified set; char* parameter required; string is NUL-

terminated

%

literal %; no assignment

int scanf(const char* format, ...);

scanf(f, ...) is equivalent to fscanf(stdin, f, ...)

int sscanf(char* s, const char* format, ...);

Like fscanf, but input read from string s.

int fgetc(FILE* stream);

Returns next character from (input) stream stream, or EOF on end-of-file or error.

char* fgets(char* s, int n, FILE* stream);

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#scanf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fscanf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdin
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fscanf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EOF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE

51

Copies characters from (input) stream stream to s, stopping when n-1 characters copied,

newline copied, end-of-file reached or error occurs. If no error, s is NUL-terminated.

Returns NULL on end-of-file or error, s otherwise.

int fputc(int c, FILE* stream);

Writes c, to stream stream. Returns c, or EOF on error.

char* fputs(const char* s, FILE* stream);

Writes s, to (output) stream stream. Returns non-negative on success or EOF on error.

int getc(FILE* stream);

Equivalent to fgetc except that it may be a macro.

int getchar(void);

Equivalent to getc(stdin).

char* gets(char* s);

Copies characters from stdin into s until newline encountered, end-of-file reached, or

error occurs. Does not copy newline. NUL-terminates s. Returns s, or NULL on end-of-

file or error. Should not be used because of the potential for buffer overflow.

int putc(int c, FILE* stream);

Equivalent to fputc except that it may be a macro.

int putchar(int c);

putchar(c) is equivalent to putc(c, stdout).

int puts(const char* s);

Writes s (excluding terminating NUL) and a newline to stdout. Returns non-negative on

success, EOF on error.

int ungetc(int c, FILE* stream);

Pushes c (which must not be EOF), onto (input) stream stream such that it will be

returned by the next read. Only one character of pushback is guaranteed (for each

stream). Returns c, or EOF on error.

size_t fread(void* ptr, size_t size, size_t nobj, FILE* stream);

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.NULL
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EOF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EOF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fgetc
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#getc
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdin
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdin
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.NULL
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fputc
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#putc
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdout
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdout
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EOF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EOF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EOF
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.size_t
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.size_t
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.size_t
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE

52

Reads (at most) nobj objects of size size from stream stream into ptr and returns number

of objects read. (feof and ferror can be used to check status.)

size_t fwrite(const void* ptr, size_t size, size_t nobj, FILE* stream);

Writes to stream stream, nobj objects of size size from array ptr. Returns number of

objects written.

int fseek(FILE* stream, long offset, int origin);

Sets file position for stream stream and clears end-of-file indicator. For a binary stream,

file position is set to offset bytes from the position indicated by origin: beginning of file

for SEEK_SET, current position for SEEK_CUR, or end of file for SEEK_END.

Behaviour is similar for a text stream, but offset must be zero or, for SEEK_SET only, a

value returned by ftell. Returns non-zero on error.

long ftell(FILE* stream);

Returns current file position for stream stream, or -1 on error.

void rewind(FILE* stream);

Equivalent to fseek(stream, 0L, SEEK_SET); clearerr(stream).

int fgetpos(FILE* stream, fpos_t* ptr);

Stores current file position for stream stream in *ptr. Returns non-zero on error.

int fsetpos(FILE* stream, const fpos_t* ptr);

Sets current position of stream stream to *ptr. Returns non-zero on error.

void clearerr(FILE* stream);

Clears end-of-file and error indicators for stream stream.

int feof(FILE* stream);

Returns non-zero if end-of-file indicator is set for stream stream.

int ferror(FILE* stream);

Returns non-zero if error indicator is set for stream stream.

void perror(const char* s);

Prints s (if non-null) and strerror(errno) to standard error as would:

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#feof
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#ferror
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.size_t
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.size_t
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#SEEK_SET
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#SEEK_CUR
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#SEEK_END
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#SEEK_SET
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#ftell
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fseek
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#clearerr
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fpos_t
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fpos_t
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#FILE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#strerror
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#errno

53

fprintf(stderr, "%s: %s\n", (s != NULL ? s : ""), strerror(errno))

4.8 Mathematical Function Concept

<math.h>

On domain error, implementation-defined value returned and errno set to EDOM. On

range error, errno set to ERANGE and return value is HUGE_VAL with correct sign for

overflow, or zero for underflow. Angles are in radians.

HUGE_VAL

magnitude returned (with correct sign) on overflow error

double exp(double x);

exponential of x

double log(double x);

natural logarithm of x

double log10(double x);

base-10 logarithm of x

double pow(double x, double y);

x raised to power y

double sqrt(double x);

square root of x

double ceil(double x);

smallest integer not less than x

double floor(double x);

largest integer not greater than x

double fabs(double x);

absolute value of x

http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#fprintf
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stderr
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#stdio.NULL
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#strerror
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#errno
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#errno
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#EDOM
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#errno
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#ERANGE
http://www.utas.edu.au/infosys/info/documentation/C/CStdLib.html#HUGE_VAL

54

double ldexp(double x, int n);

x times 2 to the power n

double frexp(double x, int* exp);

if x non-zero, returns value, with absolute value in interval [1/2, 1), and assigns

to *exp integer such that product of return value and 2 raised to the power *exp equals x;

if x zero, both return value and*exp are zero

double modf(double x, double* ip);

returns fractional part and assigns to *ip integral part of x, both with same sign as x

double fmod(double x, double y);

if y non-zero, floating-point remainder of x/y, with same sign as x; if y zero, result is

implementation-defined

double sin(double x);

sine of x

double cos(double x);

cosine of x

double tan(double x);

tangent of x

double asin(double x);

arc-sine of x

double acos(double x);

arc-cosine of x

double atan(double x);

arc-tangent of x

double atan2(double y, double x);

arc-tangent of y/x

double sinh(double x);

55

hyperbolic sine of x

double cosh(double x);

hyperbolic cosine of x

double tanh(double x);

hyperbolic tangent of x

4.8 Character Functions

<ctype.h>

int isalnum(int c);

isalpha(c) or isdigit(c)

int isalpha(int c);

isupper(c) or islower(c)

int iscntrl(int c);

is control character. In ASCII, control characters are 0x00 (NUL) to 0x1F (US),

and 0x7F (DEL)

int isdigit(int c);

is decimal digit

int isgraph(int c);

is printing character other than space

int islower(int c);

is lower-case letter

int isprint(int c);

is printing character (including space). In ASCII, printing characters are 0x20 (' ')

to 0x7E ('~')

int ispunct(int c);

56

is printing character other than space, letter, digit

int isspace(int c);

is space, formfeed, newline, carriage return, tab, vertical tab

int isupper(int c);

is upper-case letter

int isxdigit(int c);

is hexadecimal digit

int tolower(int c);

return lower-case equivalent

int toupper(int c);

return upper-case equivalent

4.9 Summary

At the end of this unit we have discussed about the basic input and output functions. We have list

out various format of input and output functions such as Character IO function, formatted IO

functions, Whole line IO functions. Apart from that it has been also covered about the various

mathematical and character library functions available in C with their syntax and various flavors

4.10 Keywords

Printf, scanf, gets, puts, stdlib.h, math.h, getchar, putchar

4.11 Questions

1. List out the different types of formatting options provided by C language?

2. Briefly explain about, printf, scanf, gets, put, getchar, putchar functions with their usage?

3. Discuss about standard library functions of C language?

4. List out some standard functions provide under math.h and string.h in C language?

57

4.12 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

58

Programming Concepts and C

Module - 2

59

Unit - 5

Structure

5.0 Objectives

5.1 Expressions and Operators

5.2 Arithmetic Operators

5.3 Type Conversion

5.4 Comparison

5.5 Relational Operators

5.6 Logical Operators

5.7 Assignment Operators

5.8 Increment and Decrement Operators

5.9 Bitwise Operators

5.10 Summary

5.11 Key words

5.12 Questions

5.13 References

5.0 Objectives

At the end of this unit you will be able to

 Understand the concept of expressions and operators

 Understand the type conversion and comparison

 List out different operators supported in C language

60

5.1 Expressions and Operators

One reason for the power of C is its wide range of useful operators. An operator is a function

which is applied to values to give a result. You should be familiar with operators such as +, -, /.

Arithmetic operators are the most common. Other operators are used for comparison of values,

combination of logical states, and manipulation of individual binary digits. The binary operators

are rather low level for so are not covered here.

Operators and values are combined to form expressions. The values produced by these

expressions can be stored in variables, or used as a part of even larger expressions.

5.2 Arithmetic operators

Here are the most common arithmetic operators

*, / and % will be performed before + or - in any expression. Brackets can be used to force a

different order of evaluation to this. Where division is performed between two integers, the result

will be an integer, with remainder discarded. Modulo reduction is only meaningful between

integers. If a program is ever required to divide a number by zero, this will cause an error,

usually causing the program to crash.

Here are some arithmetic expressions used within assignment statements.

velocity = distance / time;

force = mass * acceleration;

count = count + 1;

61

C has some operators which allow abbreviation of certain types of arithmetic assignment

statements.

These operations are usually very efficient. They can be combined with another expression.

Versions where the operator occurs before the variable name change the value of the variable

before evaluating the expression, so

These can cause confusion if you try to do too many things on one command line. You are

recommended to restrict your use of ++ and -- to ensure that your programs stay readable.

Another shorthand notation is listed below

These are simple to read and use.

5.3 Type Conversion

You can mix the types of values in your arithmetic expressions. char types will be treated as int.

Otherwise where types of different size are involved, the result will usually be of the larger size,

62

so a float and a double would produce a double result. Where integer and real types meet, the

result will be a double.

There is usually no trouble in assigning a value to a variable of different type. The value will be

preserved as expected except where;

 The variable is too small to hold the value. In this case it will be corrupted (this is bad).

 The variable is an integer type and is being assigned a real value. The value is rounded

down. This is often done deliberately by the programmer.

Values passed as function arguments must be of the correct type. The function has no way of

determining the type passed to it, so automatic conversion cannot take place. This can lead to

corrupt results. The solution is to use a method called casting which temporarily disguises a

value as a different type.

eg. The function sqrt finds the square root of a double.

int i = 256;

int root

root = sqrt((double) i);

The cast is made by putting the bracketed name of the required type just before the value.

(double) in this example. The result of sqrt((double) i); is also a double, but this is automatically

converted to an int on assignment to root.

5.4 Comparison

C has no special type to represent logical or boolean values. It improvises by using any of the

integral types char, int, short, long, unsigned, with a value of 0 representing false and any other

value representing true. It is rare for logical values to be stored in variables. They are usually

generated as required by comparing two numeric values. This is where the comparison operators

are used, they compare two numeric values and produce a logical result.

63

Note that == is used in comparisons and = is used in assignments. Comparison operators are used

in expressions like the ones below.

x == y

i > 10

a + b != c

In the last example, all arithmetic is done before any comparison is made.

These comparisons are most frequently used to control an if statement or a for or a while loop.

These will be introduced in later units.

5.5 Relational Operators

C provides you a list of relational operators to allow you to compare data. The relational

operators enable you to check whether two variables or expressions are equal, not equal, which

one is greater or less than other...etc. The relational operators are used in boolean conditions or

expressions to return 0 or 1.The following table illustrates the relational operators in C:

Relational Operators Description

== Equal to

> Greater than

< Less than

>= Greater than or equal to

64

Relational Operators Description

<= Less than or equal to

!= Not equal to

The following program demonstrates the relational operators in C:

#include <stdio.h>

#include <stdlib.h>

/* Relational operators demo */

void demo(int x, int y) {

 printf("x = %d;y = %d\n", x, y);

 if (x == y) {

 printf("x is equal to y\n");

 } else if (x != y) {

 printf("x is not equal to y\n");

 if (x > y) {

 printf("x is greater than y\n");

 } else {

 printf("x is less than y\n");

 }

 }

}

/ * main program */

int main(int argc, char** argv) {

 int x = 10;

 int y = 10;

 demo(x, y);

 x = 10;

 y = 20;

65

 demo(x, y);

 x = 20;

 y = 10;

 demo(x, y);

 return (0);

}

5.6 Logical Operators

These are the usual And, Or and Not operators.

They are frequently used to combine relational operators, for example

x < 20 && x >= 10

In C these logical connectives employ a technique known as lazy evaluation. They evaluate their

left hand operand, and then only evaluate the right hand one if this is required. Clearly false &&

anything is always false, true || anything is always true. In such cases the second test is not

evaluated.

Not operates on a single logical value, its effect is to reverse its state. Here is an example of its

use.

if (! acceptable)

 printf("Not Acceptable !!\n");

66

5.7 Assignment Operator

C assignment operators are used to assigned the value of a variable or expression to a variable.

The syntax of assignment operators is:

1 var = expression;

2 var = var;

Beside = operator, C programming language supports other short hand format which acts the

same assignment operator with additional operator such as +=, -=, *=, /=, %=.

1 var +=expression; //means

2 var = var + expression;

Each assignment operator has a priority and they are evaluated from right to left based on its

priority. Here is assignment operator and its priority: =, +=, -=, *=, /=, %=.

A simple C program to demonstrate assignment operators:

#include <stdio.h>

/* a program demonstrates C assignment operator */

void main(){

 int x = 10;

 /* demonstrate = operator */

 int y = x;

 printf("y = %d\n",y);

 /* demonstrate += operator */

 y += 10;

 printf("y += 10;y = %d\n",y);

 /* demonstrate -= operator */

 y -=5;

 printf("y -=5;y = %d\n",y);

 /* demonstrate *= operator */

 y *=4;

 printf("y *=4;y = %d\n",y);

 /* demonstrate /= operator */

67

 y /=2;

 printf("y /=2;y = %d\n",y);

 }

5.8 Increment and decrement operator

The traditional method of incrementing numbers is by coding something like:

 a = a + 1;

Within C, this syntax is valid but you can also use the ++ operator to perform the same function.

 a++;

will also add 1 to the value of a. By using a similar syntax you can also decrement a variable as

shown below.

 a--;

These operators can be placed as a prefix or post fix as below:

 a++; ++a;

When used on their own (as above) the prefix and postfix have the same effect BUT within an

expression there is a subtle difference....

1. Prefix notation will increment the variable BEFORE the expression is evaluated.

2. Postfix notation will increment AFTER the expression evaluation.

Here is an example:

 main() main()

 { {

 int a=1; int a=1;

 printf(" a is %d", ++a); printf(" a is %d", a++);

 } }

In both examples, the final value of a will be 2. BUT the first example will print 2 and the

second will print 1.

68

Example Code

#include<stdio.h>

main()

{

 /*

 * ++i - i incremented before i is used.

 * --i - i decremented before i is used.

 * j++ - j is incremented AFTER j has been used.

 * j-- - j is decremented AFTER j has been used.

 */

 int i=1,j=1;

 puts("\tDemo 1");

 printf("\t%d %d\n",++i, j++); /* O/P 2 1 */

 printf("\t%d %d\n",i, j); /* O/P 2 2 */

 i=1;j=1;

 puts("\n\tDemo 2");

 printf("\t%d \n",i=j++); /* O/P 1 */

 printf("\t%d \n",i=++j); /* O/P 3 */

 /* Consider this code */

 i = 0; j = 0;

 puts("\n\tDemo 3");

 if ((i++ == 1) && (j++ == 1)) puts("Some text");

 /* Will i and j get incremented? The answer is NO! Because

 * the expression in the left of '&&' resolves to false the

 * compiler does NOT execute the expression on the right and

 * so 'j' does not get executed!!!!! */

 printf("\t%d %d\n",i, j); /* O/P 1 0 */

}

69

5.9 Bitwise operators

C provides six bitwise operators for manipulating bit. The bitwise operator ca only be applied to

integral operands such as char, short, int and long. The following table illustrate C bitwise

operators:

C Bitwise Operators Description

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise exclusive OR

<< Bitwise left shift

>> Bitwise right shift

~ one's complement

The bitwise operators are preferred in some contexts because bitwise operations are faster than

(+) and (-) operations and significantly faster than (*) and (/) operations.

Example of C Bitwise Operators

Here is a simple program that demonstrates C bitwise operators:

/* Purpose: Demonstrates C bitwise operators */

#include <stdio.h>

void main() {

 int d1 = 4, /* binary 101 */

 d2 = 6, /* binary 110 */

 d3;

 printf("\nd1=%d", d1);

 printf("\nd2=%d", d2);

70

 d3 = d1 & d2; /* 0101 & 0110 = 0100 (=4) */

 printf("\n Bitwise AND d1 & d2 = %d", d3);

 d3 = d1 | d2; /* 0101 | 0110 = 0110 (=6) */

 printf("\n Bitwise OR d1 | d2 = %d", d3);

 d3 = d1 ^ d2; /* 0101 & 0110 = 0010 (=2) */

 printf("\n Bitwise XOR d1 ^ d2 = %d", d3);

 d3 = ~d1; /* ones complement of 0000 0101 is 1111 1010 (-5) */

 printf("\n Ones complement of d1 = %d", d3);

 d3 = d1 << 2; /* 0000 0101 left shift by 2 bits is 0001 0000 */

 printf("\n Left shift by 2 bits d1 << 2 = %d", d3);

 d3 = d1 >> 2; /* 0000 0101 right shift by 2 bits is 0000 0001 */

 printf("\n Right shift by 2 bits d1 >> 2 = %d", d3); }

5.10 Summary

Three types of expression have been introduced here;

 Arithmetic expressions are simple, but watch out for subtle type conversions. The

shorthand notations may save you a lot of typing.

 Comparison takes two numbers and produces a logical result. Comparisons are usually

found controlling if statements or loops.

 Logical connectors allow several comparisons to be combined into a single test. Lazy

evaluation can improve the efficiency of the program by reducing the amount of

calculation required.

71

5.11 Keywords

AND, OR, NOT, &, ! , type conversion, relational operator

5.12 Questions

1. List out the different operators available in C language?

2. Write a program which uses relational operators to display AND, OR and Not Truth

table?

3. Explain the concept of type conversion? Why it is required?

5.13 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

72

Unit - 6

Structure

6.0 Objectives

6.1 Introduction

6.2 Arithmetic Expression

6.3 Type of Expressions

6.4 Operator Precedence

6.5 Arithmetic expression Evaluation

6.6 Some computational problems

6.7 Type conversion in expression

6.8 Operator precedence and Associativity

6.9 Mathematical functions

6.10 Summary

6.11 Key words

6.12 Questions

6.13 References

6.0 Objectives

At the end of this unit you will be able to

 Understand the concept of different types of expression

 Understand the computational complexity with the expression

 List out the mathematical functions available in C language

73

6.1 Introduction

Once we can declare data to be the type and size with the appropriate precision for our task, we

would like to perform operations with the data. We have already discussed some of the basic C

operators, and in this section we provide the complete precedence table for all C operators. We

present a few new operators here, and others shown in the table will be discussed in detail in

later chapters.

6.2 Arithmetic Expressions

 An expression is a string of symbols

 Arithmetic expressions are made up of variable names, binary operators and brackets. But

in actual computer languages there are many other things such as powers(**),unary

minus(-a),numbers(22/7*3.12a) and things like function(a=find(a,b)+c) and array

references may be present.

 We are going to consider the expressions with variables(a-z), digits, binary operators(+,-

,*,/) and brackets[(-left &)-right]

 Example of some arithmetic expression

 a+b-c

 a+b+c*d

 (a+b)*(c-d)

6.3 Types of Expression

An expression can be in 3 form

1. Infix Expression

2. Prefix Expression

3. Postfix Expression

 Infix, prefix and postfix notations are different ways of writing expression.

 In the 3 ways, the operands occur in the same order but the operators have to be moved.

74

 We are using infix type of expression in our daily life but the computer uses postfix

or prefix type of expression

Infix Notation:

Operators are written in between their operands

 This is used in our common mathematical expressions.

 The operations(order of evaluation) are performed from left to right. and it obeys

precedence rules ie multiplication and division are performed before addition and

subtraction.

 Brackets can be used to change the order of evaluation

examples

A+B (b) X*(Y+Z)

Prefix Notation (Polish notation)

 Operators are written before their operands

 Order of evaluation from right to left.

 example

+AB (b)*X+YZ

Postfix Notation (Reverse Polish notation)

 Operators are written after their operands

 The order of evaluation of operators is always from left to right

 brackets cannot be used to change the order of evaluation.

 Example

AB+, (b) XYZ+*

75

6.4 Operator Precedence

 In the table the precedence is decreasing downwardly

 If there are two operators with same precedence then computer start to solve the

expression from left to right

Operator

()

*,/,%

+,-

6.5 Arithmetic Expression Evaluation

An important application of stacks is parsing. ie a compiler must evaluate arithmetic expressions

written using infix notation.

 The problem of parsing infix expression can be break in to 2 stages

1. Infix to Postfix Conversion

2. Evaluating a Postfix expression

 Converting an infix expression in to postfix expression and evaluating a Postfix

expression is a easier problem than directly evaluating Infix expression

6.6 Some Computational Problems

Program: converting Infix expression to postfix expression

#include<stdio.h>

#define SIZE 40

char stack[SIZE];

int top=-1;

76

void push(char data)

{

 if(top==SIZE-1)

 {

 printf("Stack is full\n");

 return;

 }

 else

 {

 top=top+1;

 stack[top]=data;

 printf("Pushed element is %c\n",data);

 }

}

char pop()

{

 char ch;

 if(top<0)

 {

 printf("stack is empty\n");

 return;

 }

 else

 {

 ch=stack[top];

 printf("poped element is%c\n",ch);

 top=top-1;

 return(ch);

 }

}

int check_pre(char a ,char b)

{

 //operators are arranged in the array based

 //on their priority. from low to high

 char op[]={'-','+','%','/','*','(',')'};

 int i,c1=0,c2=0;

 for(i=0;i<7;i++)

 {

 if(a==op[i])

77

 c1=i+1;

 else if(b==op[i])

 c2=i+1;

 }

 if(c1>c2)

 return(1);

 else if(c1<c2)

 return(-1);

 else

 return(0);

}

int main()

{

 char in_str[50],out_str[50];

 char ch,temp;

 int x=0,y=0,pre;

 printf("Enter the infix string\n");

 scanf("%s",in_str);

 ch=in_str[x];

 while(ch!='\0')

 {

 //for operand

 if((ch>='a' && ch<='z') ||

(ch<='A' && ch>='Z') ||

(ch>='0' && ch<='9'))

 out_str[y++]=ch;

 //for '(' paranthesis

 else if(ch=='(')

 push(ch);

 //for ')' parenthesis

 else if(ch==')')

 {

 temp=pop();

 while(temp!='(')

 {

 out_str[y++]=temp;

 temp=pop();

 }

 // if(temp=='(')

78

 // pop();

 }

 //for operator

 else

 {

 //if the stack is empty or

 // the stack top element is '('

 //just push the operator in to the stack

 if (top==-1 || stack[top]=='(')

 push(ch);

 else

 {

 temp=stack[top];

 //check the precedence

 pre=check_pre(ch,temp);

 if(pre<0)

 {

 do{

 out_str[y++]=pop();

 temp=stack[top];

}while(top!=-1 && temp!='(' && (check_pre(ch,temp)<0));

 push(ch);

 }

 else

 {

 push(ch);

 }

 }

 }

 x++;

 ch=in_str[x];

 }

 while(top!=-1)

 {

 out_str[y++]=pop();

 }

 out_str[y]='\0';

 printf("Postfix string=%s\n",out_str);

 return;

79

}

Output:

Enter the infix string

((a+b)*c-(d-e))%(f+g)

Pushed element is (

Pushed element is (

Pushed element is +

poped element is+

poped element is(

Pushed element is *

poped element is*

Pushed element is -

Pushed element is (

Pushed element is -

poped element is-

poped element is(

poped element is-

poped element is(

Pushed element is %

Pushed element is (

Pushed element is +

poped element is+

poped element is(

poped element is%

Postfix string=ab+c*de--fg+%

6.7 Type Conversions in Expressions

Consider the following statements:

CharVar = 15; // A char variable

integerVar = 56000; // An integer variable

Sum:= CharVar + integerVar;

The last statement involves one or two type conversions. The rightmost statement involves the

evaluation of the expression CharVar + integerVar (char + integer). In order to evaluate this

expression, the first operand (CharVar) will have to be converted from char to integer. The

addition operator will then return an integer result.

If the type of the leftmost variable has been declared as, for example, decimal, the result must be

converted from integer to decimal before its value can be assigned to Sum.

80

The following examples describe the type conversions which can take place when expressions

are evaluated. The following guidelines are used:

 When asked to evaluate an expression of mixed data types, the system will (if possible)

always convert at least one of the operands to a more general data type.

 The data types in the two main groups, numbers and strings, can be ranked from "most

general" to "least general."

 The most general data types include all the possible values from the less general data

types: a decimal is more general than an integer, which is more general than a char.

 Type conversion can take place in some cases even though two operands have the same

type.

These rules can be illustrated by the following examples.

Example 1

The following example shows the evaluation of a numeric expression.

integer + decimal

81

This expression contains two sub-expressions of different data types. Before it can add these two

sub-expressions, the system must convert the leftmost sub-expression to decimal.

decimal + decimal

When the leftmost sub-expression has been converted, the expression can be evaluated, and the

resulting data type will be decimal.

decimal + decimal = decimal

Example 2

The following example shows the evaluation of a string expression.

text + code

This expression contains two sub-expressions that must be concatenated. To do this, the system

must convert the sub-expression of the least general data type (code) to the most general data

type (text).

text + text

When the rightmost argument has been converted, the expression can be evaluated, and the

resulting data type will be text.

text + text = text

6.8 Operator Precedence and Associativity

The data type and the value of an expression depend on the data types of the operands and the

order of evaluation of operators which is determined by the precedence and associativity of

operators. Let us first consider the order of evaluation. When expressions contain more than one

operator, the order in which the operators are evaluated depends on their precedence levels. A

higher precedence operator is evaluated before a lower precedence operator. If the precedence

levels of operators are the same, then the order of evaluation depends on their associativity (or,

grouping).

82

In the table, there are 15 precedence levels 0 through 14: higher level implies higher precedence.

The precedence levels of operators are separated by solid lines with operators within solid lines

having the same precedence level. For example, binary arithmetic operators, , and % have the

same precedence level which is higher than binary +, and. Observe that the precedence of the

assignment operator is lower than all but the ``comma'' operator (described below). This is in

accordance with the rule that the expression on the right side of an assignment is evaluated first,

and then its value is assigned to the left hand side object. On the other hand, ``function call'' has

the highest precedence, since a function value is treated like a variable reference in an

expression. In any expression, parentheses may be used to over ride the precedence of the

operators - innermost parentheses are always evaluated first. The precedence of binary logical

operators is lower than that of binary relational operators; that of binary relational operators is

lower than that of binary arithmetic operators, and so forth. The unary NOT operator has

precedence higher than that of all binary operators.

83

Table below shows the precedence levels and associativity of all C operators.

84

When operators of the same precedence level appear in an expression, the order of evaluation is

determined by the associativity. Except for the assignment operator, associativity of most binary

operators is left to right; associativity of the assignment operator and most unary operators is

right to left. Consider the following program fragment:

int x = 10, y = 7, z = 20;

When a logical operator is used in an expression, the entire expression is not evaluated if the

result of the entire logical expression is clear. For example,

(x > 0) && (y > 0)

 (x > 0) || (y > 0)

In the first expression, if x > 0 is False, there is no need to evaluate the second part of the logical

AND expression since the AND operation will be False. Similarly, in the second expression, the

logical OR expression is True if the first part, x > 0, is True; there is no need to evaluate the

second part. C evaluates only those parts of a logical expression that are required in order to

arrive at the result of the expression.

When in doubt as to the order of evaluation within an expression, parentheses may be used to

ensure evaluation is performed as intended.

6.9 Mathematical Function

<math.h>

Mathematics is relatively straightforward library to use again. You must #include <math.h> and

must remember to link in the math library at compilation:

 cc mathprog.c -o mathprog -lm

A common source of error is in forgetting to include the <math.h> file (and yes experienced prog

rammers make this error also). Unfortunately the C compiler does not help much. Consider:

double x;

x = sqrt(63.9);

85

Having not seen the prototype for sqrt the compiler (by default) assumes that the function returns

 an int and converts the value to a double with meaningless results.

Math Functions available in C

Below we list some common math functions. Apart from the note above they should be easy to u

se and we have already used some in previous examples. We give no further examples here:

double acos(double x) -- Compute arc cosine of x.

double asin(double x) -- Compute arc sine of x.

double atan(double x) -- Compute arc tangent of x.

double atan2(double y, double x) -- Compute arc tangent of y/x, using the signs of both argument

s to determine the quadrant of the return value.

double ceil(double x) -- Get smallest integral value that exceeds x.

double cos(double x) -- Compute cosine of angle in radians.

double cosh(double x) -- Compute the hyperbolic cosine of x.

div_t div(int number, int denom) -- Divide one integer by another.

double exp(double x -- Compute exponential of x

double fabs (double x) -- Compute absolute value of x.

double floor(double x) -- Get largest integral value less than x.

double fmod(double x, double y) -- Divide x by y with integral quotient and return remainder.

double frexp(double x, int *expptr) -- Breaks down x into mantissa and exponent of no.

labs(long n) -- Find absolute value of long integer n.

double ldexp(double x, int exp) -- Reconstructs x out of mantissa and exponent of two.

ldiv_t ldiv(long number, long denom) -- Divide one long integer by another.

double log(double x) -- Compute log(x).

double log10 (double x) -- Compute log to the base 10 of x.

double modf(double x, double *intptr) -- Breaks x into fractional and integer parts.

double pow (double x, double y) -- Compute x raised to the power y.

double sin(double x) -- Compute sine of angle in radians.

double sinh(double x) - Compute the hyperbolic sine of x.

double sqrt(double x) -- Compute the square root of x.

void srand(unsigned seed) -- Set a new seed for the random number generator (rand).

86

double tan(double x) -- Compute tangent of angle in radians.

double tanh(double x) -- Compute the hyperbolic tangent of x.

6.10 Summary

At the end of this unit we have covered the arithmetic expressions and valuation of expressions.

The same thing is demonstrated with an example of code which converts infix expression to post

fix. Later we have focused on type converts in the expressions and we have mentioned the signifi

cance of it. At the end the section we have list out some mathematic functions which are availabl

e in C language.

6.11 Keywords

Expressions, INFIX, PREFIX, POSTFIX, type conversion, mathtype.h

6.12 Questions

1. Write a C program to evaluate following expressions?

a) Give postfix form of the following expression

1. A*(B+(C+D)*(E+F)/G)*H

2. A+((B+C)*(D+E)*F)/G

3. A*(B+D)/E-F-(G+H/K)

4. ((A-B)*(D/E))/(F*G*H)

b) Evaluate the following postfix expression using a stack and show the contents of
stack after each step

1. 50 40 +18 14-4*+

2. 100 40 8+20 10 -+*

3. 5 6 9 +80 5*-/

4. 120 45+20 10-15+*

5. 20 45+20 10-15+*

2. Explain about the operator precedence and associativity?

87

6.13 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

Essential C

Solving computational problem using C

88

Unit - 7

Structure

7.0 Objectives

7.1 Control Statements

7.2 The if else Statement

7.3 The switch Statement

7.4 Loops

7.5 The while Loop

7.6 The do while Loop

7.7 The for Loop

7.8 The break Statement

7.9 The continue Statement

7.10 The goto Statement and Labels

7.11 Summary

7.12 Keywords

7.13 Questions

7.14 Reference

http://www2.its.strath.ac.uk/courses/c/section3_8.html#SECTION0008000000000000000
http://www2.its.strath.ac.uk/courses/c/subsection3_8_1.html#SECTION0008100000000000000
http://www2.its.strath.ac.uk/courses/c/subsection3_8_2.html#SECTION0008200000000000000
http://www2.its.strath.ac.uk/courses/c/subsection3_8_3.html#SECTION0008300000000000000
http://www2.its.strath.ac.uk/courses/c/subsection3_8_4.html#SECTION0008400000000000000
http://www2.its.strath.ac.uk/courses/c/subsection3_8_5.html#SECTION0008500000000000000
http://www2.its.strath.ac.uk/courses/c/subsection3_8_6.html#SECTION0008600000000000000
http://www2.its.strath.ac.uk/courses/c/subsection3_8_7.html#SECTION0008700000000000000
http://www2.its.strath.ac.uk/courses/c/subsection3_8_8.html#SECTION0008800000000000000
http://www2.its.strath.ac.uk/courses/c/subsection3_8_9.html#SECTION0008900000000000000

89

7.0 Objectives

At the end of this unit you will be able to

 Understand the concept of loops

 List out the working principle of do while, for loop statements

 Know about the break, switch statement

 Explain the role of goto and labels in c program

7.1 Control Statements

A program consists of a number of statements which are usually executed in sequence. Programs

can be much more powerful if we can control the order in which statements are run.

Statements fall into three general types;

 Assignment, where values, usually the results of calculations, are stored in variables.

 Input / Output, data is read in or printed out.

 Control, the program makes a decision about what to do next.

This section will discuss the use of control statements in C. We will show how they can be used

to write powerful programs by;

 Repeating important sections of the program.

 Selecting between optional sections of a program.

7.2 The if else Statement

This is used to decide whether to do something at a special point, or to decide between two

courses of action.

90

The following test decides whether a student has passed an exam with a pass mark of 45

if (result >= 45)

 printf("Pass\n");

else

 printf("Fail\n");

It is possible to use the if part without the else.

if (temperature < 0)

 print("Frozen\n");

Each version consists of a test, (this is the bracketed statement following the if). If the test is true

then the next statement is obeyed. If is is false then the statement following the else is obeyed if

present. After this, the rest of the program continues as normal.

If we wish to have more than one statement following the if or the else, they should be grouped

together between curly brackets. Such a grouping is called a compound statement or a block.

if (result >= 45)

{ printf("Passed\n");

 printf("Congratulations\n")

}

else

{ printf("Failed\n");

91

 printf("Good luck in the resits\n");

}

Sometimes we wish to make a multi-way decision based on several conditions. The most general

way of doing this is by using the else if variant on the if statement. This works by cascading

several comparisons. As soon as one of these gives a true result, the following statement or block

is executed, and no further comparisons are performed. In the following example we are

awarding grades depending on the exam result.

if (result >= 75)

 printf("Passed: Grade A\n");

else if (result >= 60)

 printf("Passed: Grade B\n");

else if (result >= 45)

 printf("Passed: Grade C\n");

else

 printf("Failed\n");

In this example, all comparisons test a single variable called result. In other cases, each test may

involve a different variable or some combination of tests. The same pattern can be used with

more or fewer else if's, and the final lone else may be left out. It is up to the programmer to

devise the correct structure for each programming problem.

7.3 The switch Statement

This is another form of the multi way decision. It is well structured, but can only be used in

certain cases where;

92

 Only one variable is tested, all branches must depend on the value of that variable. The

variable must be an integral type. (int, long, short or char).

 Each possible value of the variable can control a single branch. A final, catch all, default

branch may optionally be used to trap all unspecified cases.

Hopefully an example will clarify things. This is a function which converts an integer into a

vague description. It is useful where we are only concerned in measuring a quantity when it is

quite small.

estimate(number)

int number;

/* Estimate a number as none, one, two, several, many */

{ switch(number) {

 case 0 :

 printf("None\n");

 break;

 case 1 :

 printf("One\n");

 break;

 case 2 :

 printf("Two\n");

 break;

 case 3 :

93

 case 4 :

 case 5 :

 printf("Several\n");

 break;

 default :

 printf("Many\n");

 break;

 }

}

Each interesting case is listed with a corresponding action. The break statement prevents any

further statements from being executed by leaving the switch. Since case 3 and case 4 have no

following break, they continue on allowing the same action for several values of number.

Both if and switch constructs allow the programmer to make a selection from a number of

possible actions.

The other main type of control statement is the loop. Loops allow a statement, or block of

statements, to be repeated. Computers are very good at repeating simple tasks many times, the

loop is C's way of achieving this.

7.4 Loops

C gives you a choice of three types of loop, while, do while and for.

 The while loop keeps repeating an action until an associated test returns false. This is

useful where the programmer does not know in advance how many times the loop will be

traversed.

 The do while loops is similar, but the test occurs after the loop body is executed. This

ensures that the loop body is run at least once.

94

 The for loop is frequently used, usually where the loop will be traversed a fixed number

of times. It is very flexible, and novice programmers should take care not to abuse the

power it offers.

7.5 The while Loop

The while loop repeats a statement until the test at the top proves false.

As an example, here is a function to return the length of a string. Remember that the string is

represented as an array of characters terminated by a null character '\0'.

int string_length(char string[])

{ int i = 0;

 while (string[i] != '\0')

 i++;

 return(i);

}

The string is passed to the function as an argument. The size of the array is not specified, the

function will work for a string of any size.

7.6 The do while Loop

This is very similar to the while loop except that the test occurs at the end of the loop body. This

guarantees that the loop is executed at least once before continuing. Such a setup is frequently

used where data is to be read. The test then verifies the data, and loops back to read again if it

was unacceptable.

do

{ printf("Enter 1 for yes, 0 for no :");

 scanf("%d", &input_value);

95

} while (input_value != 1 && input_value != 0)

7.7 The for Loop

The for loop works well where the number of iterations of the loop is known before the loop is

entered. The head of the loop consists of three parts separated by semicolons.

 The first is run before the loop is entered. This is usually the initialisation of the loop

variable.

 The second is a test, the loop is exited when this returns false.

 The third is a statement to be run every time the loop body is completed. This is usually

an increment of the loop counter.

The example is a function which calculates the average of the numbers stored in an array. The

function takes the array and the number of elements as arguments.

float average(float array[], int count)

{ float total = 0.0;

 int i;

 for(i = 0; i < count; i++)

 total += array[i];

 return(total / count);

}

The for loop ensures that the correct number of array elements are added up before calculating

the average.

The three statements at the head of a for loop usually do just one thing each, however any of

them can be left blank. A blank first or last statement will mean no initialisation or running

increment. A blank comparison statement will always be treated as true. This will cause the loop

to run indefinitely unless interrupted by some other means. This might be a return or a break

statement.

It is also possible to squeeze several statements into the first or third position, separating them

with commas. This allows a loop with more than one controlling variable. The example below

96

illustrates the definition of such a loop, with variables hi and lo starting at 100 and 0 respectively

and converging.

for (hi = 100, lo = 0; hi >= lo; hi--, lo++)

The for loop is extremely flexible and allows many types of program behavior to be specified

simply and quickly.

7.8 The break Statement

We have already met break in the discussion of the switch statement. It is used to exit from a

loop or a switch, control passing to the first statement beyond the loop or a switch.

With loops, break can be used to force an early exit from the loop, or to implement a loop with a

test to exit in the middle of the loop body. A break within a loop should always be protected

within an if statement which provides the test to control the exit condition.

The while loop is used to look at the characters in the string one at a time until the null character

is found. Then the loop is exited and the index of the null is returned. While the character isn't

null, the index is incremented and the test is repeated.

7.9 The continue Statement

This is similar to break but is encountered less frequently. It only works within loops where its

effect is to force an immediate jump to the loop control statement.

 In a while loop, jump to the test statement.

 In a do while loop, jump to the test statement.

 In a for loop, jump to the test, and perform the iteration.

Like a break, continue should be protected by an if statement. You are unlikely to use it very

often.

97

7.10 The goto Statement and labels

C has a goto statement which permits unstructured jumps to be made. The goto statement is

used to alter the normal sequence of program execution by transferring control to some other part

of the program unconditionally. In its general form, the goto statement is written as

goto label;

Where the label is an identifier that is used to label the target statement to which the control is

transferred. Control may be transferred to anywhere within the current function. The target

statement must be labeled, and a colon must follow the label. Thus the target statement will

appear as

label:statement;

Each labeled statement within the function must have a unique label, i.e., no two statements can

have the same label.

7.11 Summary

In this unit we have introduced the concept of loop statements. We have covered all possible

looping statements such as do-while, while, for, break, switch, goto and labels. Required

examples are given in their sections. At the end of this unit reader are able to figure out the

concept of loop constructs which are available in C.

7.12 Keyword

Loops, break, switch, goto, label, for, while, do-while

7.13 Questions

1. What is meant by looping? Why looping is required?

2. List out the difference between increment and decrement for loop

3. Differentiate conditional and unconditional looping with an example?

98

4. Write a c program to find the Fibonacci series using

(i) while loop

(ii) for loop

(iii) goto statement

5. Write a program to check the given character as vowel or consonant using switch

statement?

7.14 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

99

Unit - 8

Structure

8.0 Objectives

8.1 Introduction

8.2 Automatic Variables

8.3 auto storage class

8.4 External variables

8.5 extern storage class

8.6 register storage class

8.7 Static Variables

8.8 static storage class

8.9 Summary

8.10 Keywords

8.11 Questions

8.12 Reference

100

8.0 Objectives

At the end of this unit you will be able to

 Understand the concept storage class

 Explain the scope and visibility of variable

 Elucidate optimization of C program

8.1 Introduction

Storage class refers to the permanence of a variable, and its scope which the program, i.e., the

portion of the program over which the variable is recognized.

C has a concept of 'Storage classes' which are used to define the scope (visibility) and life time of

variables and/or functions.

There are four different storage-class specifications in C:

 automatic,

 external,

 static

 register

They are identified by the keywords,

 auto

 extern,

 static,

 register, respectively.

We will discuss the automatic, external and static storage classes within this unit. The storage

class associated with a variable can sometimes be established simply by the location of the

variable declaration within the program. In other situations, however, the keyword that specifies

a particular storage class must be placed at the beginning of the variable declaration.

101

8.2 AUTOMATIC VARIABLES

Automatic variables are always declared within a function and are local to the function in which

they are declared; that is, their scope is confined to that function. Automatic variables defined in

different functions will therefore be independent of one another, even though they may have the

same name. Any variable declared within a function is interpreted as an automatic variable unless

a different storage-class specification is shown within the declaration. This includes formal

argument declarations. All of the variables in the programming examples encountered earlier in

this book have been automatic variables. Since the location of the variable declarations within the

program determines the automatic storage class, the keyword auto is not required at the beginning

of each variable declaration. There is no harm in including an auto specification within a

declaration, though this is normally not done.

8.3 auto - storage class

auto is the default storage class for local variables.

 {

 int Count;

 auto int Month;

 }

The example above defines two variables with the same storage class. auto can only be used

within functions, i.e. local variables.

EXAMPLE: Calculating Factorials Consider once again the program for calculating factorials,

originally shown in Example.. Within main, n is an automatic variable. Within factorial, i and

prod, as well as the formal argument n, are automatic variables. - The storage-class designation

auto could have been included explicitly in the variable declarations if we had wished. Thus, the

program could have been written as follows.

102

/* calculate the factorial of an integer quantity */

#include <stdio. h>

long int factorial(int n);

main ()

{

auto int n;

1* read in the integer quantity *1

printf (―\nn = ―);

scanf(―%d‖, &n);

/* calculate and display the factorial */

printf (‖\nn! = %ld‖, factorial(n));

}

 long int factorial (auto int n) /* calculate the factorial */

{

 auto int i;

auto long int prod = 1;

if (n > 1)

for (i = 2; i <= n; ++j)

prod *= i;

return (prod);

}

Either method is acceptable. As a rule, however, the auto designation is not included in variable

or formal argument declarations, since this is the default storage class. Thus, the program shown

in Example 8.10 represents a more common programming style. Automatic variables can be

assigned initial values by including appropriate expressions within the variable declarations, as

in the above example, or by explicit assignment expressions elsewhere in the function. Such

values will be reassigned each time the function is reentered. If an automatic variable is not

initialized in some manner, however, its initial value will be unpredictable, and probably

unintelligible.

103

An automatic variable does not retain its value once control is transferred out of its defining

function. Therefore, any value assigned to an automatic variable within a function will be lost

once the function is exited. If the program logic requires that an automatic variable be assigned a

particular value each time the function is executed, that value will have to be reset whenever the

function is reentered (i.e., whenever the function is accessed).

8.4 EXTERNAL (GLOBAL) VARIABLES

External variables, in contrast to automatic variables, are not confined to single functions. Their

scope extends from the point of definition through the remainder of the program. They are often

referred to as global variables.

 Since external variables are recognized globally, they can be accessed from any function

that falls within their scope. They retain their assigned values within this scope.

Therefore an external variable ‗can be assigned a value within one function, and this

value can be used (by accessing the external variable) within another function.

 The use of external variables provides a convenient mechanism for transferring

information back and forth between functions. In particular, we can transfer information

into a function without using arguments. This is especially convenient when a function

requires numerous input data items. Moreover, we now have a way to transfer multiple

data items out of a function, since the return statement can return only one data item.

 When working with external variables, we must distinguish between external variable

definitions and external variable declarations. An external variable definition is written in

the same manner as an ordinary variable declaration. It must appear outside of, and

usually before, the functions that access the external variables. An external variable

definition will automatically allocate the required storage space for the external variables

within the computer‘s memory.

 The storage-class specifier extern is not required in an external variable definition, since

the external variables will be identified by the location of their definition within the

104

program. In fact, many C compilers forbid the use of extern within an external variable

definition. We will follow this convention within this book.

If a function requires an external variable that has been defined earlier in the program,

then the function may access the external variable freely, without any special declaration

within the function. (Remember however, that any alteration to the value an external

variable within a function will be recognized within the entire scope of the external

variable.)

On the other hand, if the function definition precedes the external variable definition,

then the function must include a declaration for that external variable. The function

definitions within a large program often include external variable declarations, whether

they are needed or not, as a matter of good programming practice.

 An external variable declaration must begin with the storage-class specifier extern. The

name of the external variable and its data type must agree with the corresponding external

variable definition that appears outside of the function. Storage space for external

variables will not be allocated as a result of an external variable declaration. Moreover,

an external variable declaration cannot include the assignment of initial values. These

distinctions between an external variable definition and an external variable declaration

are very important.

Finally, it should be pointed out that there are inherent dangers in the use of external variables,

since an alteration in the value of an external variable within a function will be carried over into

other parts of the program. Sometimes this happens inadvertently, as a side effect of some other

action. Thus, there is the possibility that the value of an external value will be changed

unexpectedly, resulting in a subtle programming error. You should decide carefully which

storage class is most appropriate for each particular programming situation.

105

8.5 extern - storage Class

extern defines a global variable that is visible to ALL object modules. When you use 'extern' the

variable cannot be initialized as all it does is point the variable name at a storage location that

has been previously defined.

Source 1

extern int count;

write()

 {

 printf("count is %d\n",

count);

 }

Source 2

int count=5;

main()

{

write();

}

Count in 'source 1' will have a value of 5. If source 1 changes the value of count - source 2 will

see the new value.

8.6 register - Storage Class

register is used to define local variables that should be stored in a register instead of RAM. This

means that the variable has a maximum size equal to the register size (usually one word) and

cant have the unary '&' operator applied to it (as it does not have a memory location).

 {

 register int Miles;

 }

Register should only be used for variables that require quick access - such as counters. It should

also be noted that defining 'register' goes not mean that the variable will be stored in a register. It

means that it might be stored in a register - depending on hardware and implementation

restrictions.

106

8.7 STATIC VARIABLES

 Static variables are defined within individual functions and therefore have the same scope

as automatic variables; i.e., they are local to the functions in which they are defined.

Unlike automatic variables, however, static variables retain their values throughout the

life of the program. Thus, if a function is exited and then re-entered at a later time, the

static variables defined within that function will retain their former values. This feature

allows functions to retain information permanently throughout the execution of a

program.

 Static variables are defined within a function in the same manner as automatic variables,

except that the variable declaration must begin with the static storage-class designation.

Static variables can be utilized within the function in the same manner as other variables.

They cannot, however, be accessed outside of their defining function. It is not unusual to define

automatic or static variables having the same names as external variables. In such situations the

local variables will take precedence over the external variables, though the values of the external

variables will be unaffected by any manipulation of the local variables. Thus the external

variables maintain their independence from locally defined automatic and static variables. The

same is true of local variables within one function that have the same names as local variables

within another function.

EXAMPLE: Shown below is the skeletal structure of a C program that includes variables

belonging to several different storage classes.

float a, b, c;

void dummy(void);

main ()

{

static float a;

…………..

}

107

void dummy(void)

{

static int a;

int b;

}

Within this program a, b and c are external, floating-point variables. However, a is redefined as a

static floating-point variable within main. Therefore, b and c are the only external variables that

will, be recognized within main. Note that the static local variable a will be independent of the

external variable a. Similarly, a and b are redefined as integer variables within dummy. Note

that a is a static variable, but b is an automatic variable. Thus, a will retain its former value

whenever dummy is reentered, whereas b will lose its value whenever control is transferred out

of dummy. Furthermore, c is the only external variable that will be recognized within dummy.

 Since a and b are local to dummy, they will be independent of the external variables a, b and c,

and the static variable a defined within main. The fact that a and b are declared as integer

variables within dummy and floating-point variables elsewhere is therefore immaterial, Initial

values can be included in the static variable declarations. The rules associated with the

assignment of these values are essentially the same as the rules associated with the initialization

of external variables, even though the static variables are defined locally within a function. In

particular:

1.The initial values must be expressed as constants, not expressions.

2.The initial values are assigned to their respective variables at the beginning of program

execution.

The variables retain these values throughout the life of the program, unless different

values are assigned during the course of the computation.

3.Zeros will be assigned to all static variables whose declarations do not include explicit

initial values.

 Hence, static variables will always have assigned values.

108

8.8 static - Storage Class

Static is the default storage class for global variables. The two variables below (count and road)

both have a static storage class.

static int Count;

 int Road;

 main()

 {

 printf("%d\n", Count);

 printf("%d\n", Road);

 }

'static' can also be defined within a function. If this is done, the variable is initialized at

compilation time and retains its value between calls. Because it is initialized at compilation time,

the initialization value must be a constant. This is serious stuff - treated with care.

 void Func(void)

 {

 static Count=1;

 }

There is one very important use for 'static'. Consider this bit of code.

109

char *Func(void);

 main()

 {

 char *Text1;

 Text1 = Func();

 }

 char *Func(void)

 {

 char Text2[10]="martin";

 return(Text2);

 }

‗Func' returns a pointer to the memory location where 'Text2' starts BUT Text2 has a storage

class of auto and will disappear when we exit the function and could be overwritten by

something else. The answer is to specify:

static char Text[10]="martin";

The storage assigned to 'Text2' will remain reserved for the duration if the program.

8.9 Summary

In this unit we have discussed in detail about the variables and storage classes. It has been

covered in detail about automatic, external (global), register and static variable and storage class

with an example.

8.10 Keywords

Auto, extern, register, static

8.11 Questions

1.Explain with an example about storage classes in C?

2.With an program show how efficiently you can utilize available storage class in C?

110

8.12 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

111

 Programming Concepts and C

Module - 3

112

Unit - 9

Structure

9.0 Objectives

9.1 Introduction

9.2 Graphical Representation

9.3 The Need for a Function

9.4 Types of C Function

9.5 Library Function

9.6 User Defined Function

9.7 Prototype of Function

9.8 Calling a Function

9.9 Summary

9.10 Keywords

9.11 Questions

9.12 Reference

113

9.0 OBJECTIVES

After going through this lesson you will be able to

 explain of function

 describe access to function

 define parameters data types specification

 explain function prototype and recursion

9.1 Introduction to Functions

A number of statements grouped into a single logical unit are called a function. The use of

function makes programming easier since repeated statements can be grouped into functions.

Splitting the program into separate function make the program more readable and maintainable.

 It is necessary to have a single function ‗main‘ in every C program, along with other functions

used/defined by the programmer.

A function definition has two principal components: the function header and body of the

function. The function header is the data type of return value followed by function name and

(optionally) a set of arguments separated by commas and enclosed in parenthesis. Associated

type to which function accepts precedes each argument. In general terms function header

statement can be written as

return_type function_name (type1 arg1,type2 arg2,..,typen argn)

 where return_type represents the data type of the item that is returned by the function,

function_name represents the name of the function, and type1,type2,…,typen represents the data

type of the arguments arg1,arg2,..,argn.

Example: Following function returns the sum of two integers.

int add(int p, int q)

 {

 return p+q; //Body of the function

 }

114

 Here p and q are arguments. The arguments are called formal arguments or formal

parameters, because they represent the name of the data item that is transferred into the function

from the calling portion of the program. The corresponding arguments in the function call are

called actual arguments or actual parameters, since they define the data items that are actually

transferred.

 A function can be invoked whenever it is needed. It can be accessed by specifying

its name followed by a list of arguments enclosed in parenthesis and separated by commas.

e.g., add(5,10);

The following condition must be satisfied for function call.

 The number of arguments in the function calls and function declaration must be same.

 The prototype of each of the argument in the function call should be same as the

corresponding parameter in the function declaration statement.

For example the code shown bellow illustrate how function can be used in programming

//C Program for Addition of Two Number's using User Define Function

#include<stdio.h>

#include<conio.h>

float add(float,float); // function declaration

void main()

{

float a,b,c;

clrscr();

printf("Enter the value for a & b\n\n");

scanf("%f

%f",&a,&b);

c=add(a,b);

printf("\nc=%f",c);

getch();

}

115

// Here is the function definitation

float add(float x,float y)

{

float z;

z=x+y;

return(z);

}

9.2 Graphical Representation of Working Principal of Functions

116

9.3 The Need for Function

Functions are very much required in hard core programming because of many reasons. Here we

list out most common necessity for function requirement:

 Functions can be executed as many times as necessary from different points in a program.

 Without the ability to package a block of code into a function, programs would end up

being much larger, since you would typically need to replicate the same code at various

points in your program.

 But the real reason that you need functions is to modularize your program into easily

manageable chunks.

 Functions allow a program to be segmented so that it can be written piecemeal, and each

piece tested independently before bringing it together with the other pieces.

 It also allows the work to be divided among members of a programming team, with each

team member taking responsibility for a tightly specified piece of the program, with a

well defined functional interface to the rest of the code.

 Real world large scale programming projects are developed using this approach

9.4 Types of C functions

Basically, there are two types of functions in C on basis of whether it is defined by user or not.

 Library function

 User defined function

9.5 Library function

Library functions are the in-built function in C programming system.

For example:

main()

 The execution of every C program starts from this main.

printf()

 prinf() is used for displaying output in C.

117

scanf()

 scanf() is used for taking input in C.

for further information about the library functions readers can look into help section of C

compiler and more library functions and their usage is discussed in forthcoming sections and

modules.

9.6 User defined function

C provides programmer to define their own function according to their requirement known as

user defined functions.

Example of how C function works

#include <stdio.h>

void function_name(){

................

................

}

int main(){

...........

...........

function_name();

...........

...........

}

As mentioned earlier, every C program begins from main() and program starts executing the

codes inside main function. When the control of program reaches to function_name() inside

main. The control of program jumps to "void function_name()" and executes the codes inside it.

When, all the codes inside that user defined function is executed, control of the program jumps to

statement just below it. Analyze the figure below for understanding the concept of function in C.

118

Remember, the function name is an identifier and should be unique.

Advantages of user defined functions

 User defined functions helps to decompose the large program into small segments which

makes programmer easy to understand, maintain and debug.

 If repeated code occurs in a program. Function can be used to include those codes and

execute when needed by calling that function.

 Programmer working on large project can divide the workload by making different

functions.

Example of user defined function

/*Program to demonstrate the working of user defined function*/

#include <stdio.h>

int add(int a, int b); //function prototype(declaration)

int main(){

 int num1,num2,sum;

 printf("Enters two number to add\n");

 scanf("%d %d",&num1,&num2);

 sum=add(num1,num2); //function call

 printf("sum=%d",sum);

 return 0;

}

int add(int a,int b) //function declarator

{

119

/*line 13-19 is called function body

line 12-19 is called function definition.*/

 int add;

 add=a+b;

 return add; //return statement of function

}

9.7 Prototype of a Function

Every function in C programming should be declared before they are used. This type of

declaration are also called function prototype. Function prototype gives compiler information

about function name, type of arguments to be passed and return type.

Syntax of function prototype

return_type function_name(type(1) argument(1),....,type(n) argument(n));

Here, in the above example, function prototype is "int add(int a, int b);" which provides

following information to the compiler:

1. name of the function is "add"

2. return type of the function is int.

3. two arguments of type int are passed to function.

Function prototype is not needed, if you write function definition above the main function. In

this program if the code from line 12 to line 19 is written above main(), there is no need of

function prototype.

9.8 Calling a Function

Control of the program cannot be transferred to user-defined function (function definition) unless

it is called (invoked).

Syntax of function call

function_name(argument(1),....argument(n));

In the above example, function call is made using statement "add(num1,num2);" in line 9. This

makes control of program transferred to function declarator (line 12). In line 8, the value

120

returned by function is kept into "sum" which you will study in detail in function return type of

next unit.

9.9 Summary

At the end of this unit you have learnt about functions, how to define and declare functions, what

are the functions different data types. It has been also discussed about the library functions and

user defined functions. You are now able to execute function from different places of a program.

9.10 Keywords

Function call, prototype, library function, used defined function

9.11 Questions

1. Distinguish between a user-defined and one supplied, functions in the C library.

2. In what sense does the user-defined function feature of 'C' extends its repertoire?

3. How many values can a function return?

4. How are argument data types specified in a function declaration?

9.12 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

121

Unit - 10

Structure

10.0 Objectives

10.1 Function Arguments

10.2 Passing Arguments to Function

10.3 The Return Statement

10.4 Nesting Functions

10.5 The main() Function

10.6 Recursion

10.7 Storage Class Specifier

10.8 Summary

10.9 Keywords

10.10 Questions

10.11 Reference

122

10.0 OBJECTIVES

After going through this lesson you will be able to

 explain of function arguments

 describe access to function and passing parameters to function

 understand the working of recursion

 explain about storage class specifier

10.1 Functions Arguments

Before the Standard, it was not possible to give any information about a function's arguments

except in the definition of the function itself. The information was only used in the body of the

function and was forgotten at the end. In those bad old days, it was quite possible to define a

function that had three double arguments and only to pass it one int, when it was called. The

program would compile normally, but simply not work properly. It was considered to be the

programmer's job to check that the number and the type of arguments to a function matched

correctly. As you would expect, this turned out to be a first-rate source of bugs and portability

problems. Here is an example of the definition and use of a function with arguments, but

omitting for the moment to declare the function fully.

#include <stdio.h>

#include <stdlib.h>

main(){

 void pmax(); /* declaration */

 int i,j;

 for(i = -10; i <= 10; i++){

 for(j = -10; j <= 10; j++){

 pmax(i,j);

 }

 }

 exit(EXIT_SUCCESS);

}

123

/*

* Function pmax.

* Returns: void

* Prints larger of its two arguments.

*/

void

pmax(int a1, int a2){ /* definition */

 int biggest;

 if(a1 > a2){

 biggest = a1;

 }else{

 biggest = a2;

 }

 printf("larger of %d and %d is %d\n",

 a1, a2, biggest);

}

To start with, notice the careful declaration that pmax returnsvoid. In the function definition, the

matching void occurs on the line before the function name. The reason for writing it like that is

purely one of style; it makes it easier to find function definitions if their names are always at the

beginning of a line.

The function declaration (in main) gave no indication of any arguments to the function, yet the

use of the function a couple of lines later involved two arguments. That is permitted by both the

old and Standard versions of C, but must nowadays be considered to be bad practice. It is

much better to include information about the arguments in the declaration too, as we will see.

The old style is now an ‗obsolescent feature‘ and may disappear in a later version of the

Standard.

Now on to the function definition, where the body is supplied. The definition shows that the

function takes two arguments, which will be known as a1 and a2 throughout the body of the

function. The types of the arguments are specified too, as can be seen.

124

In the function definition you don't have to specify the type of each argument because they will

default to int, but this is bad style. If you adopt the practice of always declaring arguments, even

if they do happen to be int, it adds to a reader's confidence. It indicates that you meant to use that

type, instead of getting it by accident: it wasn't simply forgotten. The definition

of pmax could have been this:

 /* BAD STYLE OF FUNCTION DEFINITION */

 void

 pmax(a1, a2){

 /* and so on */

The proper way to declare and define functions is through the use of prototypes.

10.2 Passing Argument to a Function

Arguments can be passed to a function by two methods, they are called passing by value and

passing by reference. When a single value is passed to a function via an actual argument, the

value of the actual argument is copied into the function. Therefore, the value of the

corresponding formal argument can be altered within the function, but the value of the actual

argument within the calling routine will not change. This procedure for passing the value of an

argument to a function is known as passing by value.

Let us consider an example

#include <stdio.h>

main()

{

int x=3;

printf(“\n x=%d(from main, before calling the

function”),x);

change(x);

printf(“\n\nx=%d(from main, after calling the

function)”,x);

}

change(x)

int x;

125

{

x=x+3;

printf(“\nx=%d(from the function, after being

modified)”,x);

return;

}

The original value of x (i.e. x=3) is displayed when main begins execution. This value is then

passed to the function change, where it is sum up by 3 and the new value displayed. This new

value is the altered value of the formal argument that is displayed within the function. Finally,

the value of x within main is again displayed, after control is transferred back to main from

change.

x=3 (from main, before calling the function)

x=6 (from the function, after being modified)

x=3 (from main, after calling the function)

Passing an argument by value allows a single-valued actual argument to be written as an

expression rather than being restricted to a single variable. But it prevents information from

being transferred back to the calling portion of the program via arguments. Thus, passing by

value is restricted to a one-way transfer of information. Arrays are passed differently than single-

valued entities. If an array name is specified as an actual argument, the individual array elements

are not copied to the function. Instead the location of the array is passed to the function. If an

element of the array is accessed within the function, the access will refer to the location of that

array element relative to the location of the first element. Thus, any alteration to an array element

within the function will carry over to the calling routine.

10.3 The return statement

The return statement is very important. Every function except those returning void should have

at least one, each return showing what value is supposed to be returned at that point. Although it

is possible to return from a function by falling through the last }, unless the function

returns void an unknown value will be returned, resulting in undefined behavior.

126

Here is another example function. It uses getchar to read characters from the program input and

returns whatever it sees except for space, tab or newline, which it throws away.

#include <stdio.h>

int non_space(void) {

 int c;

 while ((c=getchar ())=='\t' || c== '\n' || c==' ')

 ; /* empty statement */

 return (c);

}

Look at the way that all of the work is done by the test in the while statement, whose body was

an empty statement. It is not an uncommon sight to see the semicolon of the empty statement

sitting there alone and forlorn, with only a piece of comment for company and readability.

Please, please, never write it like this:

 while (something);

with the semicolon hidden away at the end like that. It's too easy to miss it when you read the

code, and to assume that the following statement is under the control of the while.

The type of expression returned must match the type of the function, or be capable of being

converted to it as if an assignment statement were in use. For example, a function declared to

return double could contain

 return (1);

and the integral value will be converted to double. It is also possible to have just return without

any expression—but this is probably a programming error unless the function returns void.

Following the return with an expression is not permitted if the function returns void.

127

10.4 Nesting Function

A nested function is a function defined inside the definition of another function. It can be defined

wherever a variable declaration is permitted, which allows nested functions within nested functions.

Within the containing function, the nested function can be declared prior to being defined by using the

auto keyword. Otherwise, a nested function has internal linkage.

 A nested function can access all identifiers of the containing function that precede its definition.

 A nested function must not be called after the containing function exits.

 A nested function cannot use a goto statement to jump to a label in the containing function, or to

a local label declared with the __label__ keyword inherited from the containing function.

10.5 The main() function

When a program begins running, the system calls the function main, which marks the entry point

of the program. By default, main has the storage class extern. Every program must have one

function named main, and the following constraints apply:

 No other function in the program can be called main.

 main cannot be defined as inline or static.

 main cannot be called from within a program.

 The address of main cannot be taken.

The function main can be defined with or without parameters, using any of the following forms:

int main (void)

int main ()

int main(int argc, char *argv[])

int main (int argc, char ** argv)

Although any name can be given to these parameters, they are usually referred to

as argc and argv. The first parameter, argc (argument count) is an integer that indicates how

many arguments were entered on the command line when the program was started. The second

parameter, argv(argument vector), is an array of pointers to arrays of character objects. The array

128

objects are null-terminated strings, representing the arguments that were entered on the

command line when the program was started.

The first element of the array, argv[0], is a pointer to the character array that contains the

program name or invocation name of the program that is being run from the command

line. argv[1] indicates the first argument passed to the program, argv[2] the second argument,

and so on.

10.6 Recursion

With argument passing safely out of the way we can look at recursion. Recursion is a topic that

often provokes lengthy and unenlightening arguments from opposing camps. Some think it is

wonderful, and use it at every opportunity; some others take exactly the opposite view. Let's just

say that when you need it, you really do need it, and since it doesn't cost much to put into a

language, as you would expect, C supports recursion.

Every function in C may be called from any other or itself. Each invocation of a function causes

a new allocation of the variables declared inside it. In fact, the declarations that we have been

using until now have had something missing: the keyword auto, meaning ‗automatically

allocated‘.

/* Example of auto */

main(){

 auto int var_name;

 .

 .

 .

}

The storage for auto variables is automatically allocated and freed on function entry and return.

If two functions both declare large automatic arrays, the program will only have to find room for

both arrays if both functions are active at the same time. Although auto is a keyword, it is never

used in practice because it's the default for internal declarations and is invalid for external ones.

If an explicit initial value isn't given for an automatic variable, then its value will be unknown

when it is declared. In that state, any use of its value will cause undefined behavior.

129

The real problem with illustrating recursion is in the selection of examples. Too often, simple

examples are used which don't really get much out of recursion. The problems where it really

helps are almost always well out of the grasp of a beginner who is having enough trouble trying

to sort out the difference between, say, definition and declaration without wanting the extra

burden of having to wrap his or her mind around a new concept as well. The chapter on data

structures will show examples of recursion where it is a genuinely useful technique.

The following example uses recursive functions to evaluate expressions involving single digit

numbers, the operators *, %, /, +, - and parentheses in the same way that C does. The whole

expression is evaluated and its value printed when a character not in the ‗language‘ is read. For

simplicity no error checking is performed. Extensive use is made of the ungetc library function,

which allows the last character read by getchar to be ‗unread‘ and become once again the next

character to be read. Its second argument is one of the things declared in stdio.h.

The main places where recursion occurs are in the function unary_exp, which calls itself, and at

the bottom level where primary calls the top level all over again to evaluate parenthesized

expressions.

Try running following piece of code for better understanding. Trace its actions by hand on inputs

such as

1

1+2

1+2 * 3+4

1+--4

1+(2*3)+4

/*Recursive code for simple C expressions*/

#include <stdio.h>

#include <stdlib.h>

int expr(void);

130

int mul_exp(void);

int unary_exp(void);

int primary(void);

main(){

 int val;

 for(;;){

 printf("expression: ");

 val = expr();

 if(getchar() != '\n'){

 printf("error\n");

 while(getchar() != '\n')

 ; /* NULL */

 } else{

 printf("result is %d\n", val);

 }

 }

 exit(EXIT_SUCCESS);

}

int

expr(void){

 int val, ch_in;

 val = mul_exp();

 for(;;){

 switch(ch_in = getchar()){

 default:

 ungetc(ch_in,stdin);

 return(val);

 case '+':

 val = val + mul_exp();

 break;

 case '-':

131

 val = val - mul_exp();

 break;

 }

 }

}

int

mul_exp(void){

 int val, ch_in;

 val = unary_exp();

 for(;;){

 switch(ch_in = getchar()){

 default:

 ungetc(ch_in, stdin);

 return(val);

 case '*':

 val = val * unary_exp();

 break;

 case '/':

 val = val / unary_exp();

 break;

 case '%':

 val = val % unary_exp();

 break;

 }

 }

}

int

unary_exp(void){

 int val, ch_in;

 switch(ch_in = getchar()){

 default:

132

 ungetc(ch_in, stdin);

 val = primary();

 break;

 case '+':

 val = unary_exp();

 break;

 case '-':

 val = -unary_exp();

 break;

 }

 return(val);

}

int

primary(void){

 int val, ch_in;

 ch_in = getchar();

 if(ch_in >= '0' && ch_in <= '9'){

 val = ch_in - '0';

 goto out;

 }

 if(ch_in == '('){

 val = expr();

 getchar(); /* skip closing ')' */

 goto out;

 }

 printf("error: primary read %d\n", ch_in);

 exit(EXIT_FAILURE);

out:

 return(val);

}

133

10.7 Storage Class Specifier

Every variable and function in C programming has two properties: type and storage class. Type

refers to the data type of variable whether it is character or integer or floating-point value etc.

There are 4 types of storage class:

 automatic

 external

 static

 register

Automatic storage class

Keyword for automatic variable

auto

Variables declared inside the function body are automatic by default. These variables are also

known as local variables as they are local to the function and doesn't have meaning outside that

function Since, variable inside a function is automatic by default, keyword auto are rarely used.

External storage class

External variable can be accessed by any function. They are also known as global variables.

Variables declared outside every function are external variables.

In case of large program, containing more than one file, if the global variable is declared in file 1

and that variable is used in file 2 then, compiler will show error. To solve this problem,

keyword extern is used in file 2 to indicate that, the variable specified is global variable and

declared in another file.

Register Storage Class

Keyword to declare register variable: register

Example of register variable

register int a;

Register variables are similar to automatic variable and exists inside that particular function only.

134

If the compiler encounters register variable, it tries to store variable in microprocessor's register

rather than memory. Value stored in register is much faster than that of memory.

In case of larger program, variables that are used in loops and function parameters are declared

register variables. Since, there are limited number of register in processor and if it couldn't store

the variable in register, it will automatically store it in memory.

Static Storage Class

The value of static variable persists until the end of the program. A variable can be declared

static using keyword: static.

For example:

static int i;

Here, i is a static variable.

10.8 Summary

In this unit we have discussed about function in depth covering the topics such as how an

arguments can be passes and about return statement. We have learnt the nesting of function and

list out the special case of main() function. At the end of the section we have noted the role of

storage class specifier such as auto, extern, register and static. With this knowledge a reader can

be able to write bigger program in modular structure using functions.

10.9 Keywords

Function arguments, return, nesting of function, main(), recursion, storage class, auto, extern,

static, register

10.10 Questions

1. Discuss in detail about passing arguments to the function?

2. What is recursion? With a suitable example explain the recursion?

3. Explain about main() function?

4. Write a program for

135

a) Program to reverse number using functions

b) Program to find power of number using recursion

c) Program to find highest common factor using recursion

10.11 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

136

Unit - 11

Structure

11.0 Objectives

11.1 Introduction: Basics of Array

11.2 One-dimensional Array

11.3 Multi dimensional Array

11.4 Initializing Two Dimension Array

11.5 Array as a Function Argument

11.6 Summary

11.7 Key words

11.8 Questions

11.9 References

11.0 Objectives

At the end of this unit you will be able to

 Understand basic of Array

 Deal with declaring one-dimensional and two-dimensional arrays

 Explain the usage of multidimensional array

11.1 Introduction: Basics of Array

Array is a collection of same type elements under the same variable identifier referenced by

index number. Arrays are widely used within programming for different purposes such as

sorting, searching and etc. Arrays allow you to store a group of data of a single type. Arrays are

efficient and useful for performing operations. You can use them to store a set of high scores in a

137

video game, a two dimensional map layout, or store the coordinates of a multi-dimensional

matrix for linear algebra calculations.

Arrays are of two types single dimension array and multi-dimension array. Each of these array

types can be of either static array or dynamic array. Static arrays have their sizes declared from

the start and the size cannot be changed after declaration. Dynamic arrays that allow you to

dynamically change their size at runtime, but they require more advanced techniques such as

pointers and memory allocation.

It helps to visualize an array as a spreadsheet. A single dimension array is represented be a single

column, whereas a multiple dimensional array would span out n columns by n rows. In this unit,

you will learn how to declare, initialize and access single and multi dimensional arrays.

11.2 One Dimension Arrays

Declaring Single Dimension Arrays

Arrays can be declared using any of the data types available in C. Array size must be declared

using constant value before initialization. A single dimensional array will be useful for simple

grouping of data that is relatively small in size. You can declare a single dimensional array as

follows:

Sample Code

<data type> array_name[size_of_array];

Say we want to store a group of 3 possible data information that corresponds to a char value then

we can declare it like this:

Sample Code

char arr_map[4];

138

Note: In C language the end of string is marked by the null character 'N'. Hence to store a group

of 3 possible string data. We declare the array as char arr_map[4]; This applies for char type

array.

One-dimensional string array containing 3 elements.

Array Element arr_map[0] arr_map[1] arr_map[2] arr_map[3]

Data S R D N

One-dimensional integer array containing 3 elements.

Sample Code

 int emp_code[3];

Array Element emp_code[0] emp_code[1] emp_code[2]

Data 7 5 8

Initializing Single Dimension Arrays

Array can be initialized in two ways, initializing on declaration or initialized by assignment.

Initializing on Declaration

If you know the values you want in the array at declaration time, you can initialize an array as

follows:

Syntax:

Sample Code

<data type> array_name[size_of_array] = {element 1, element 2, ...};

Example:

Sample Code

char arr_map[3] = {'S', 'R', 'D'};

139

This line of code creates an array of 3 chars containing the values 'S', 'R ', and 'D'.

Initialized by Assignment

Sample Code

char arr_map[3];

arr_map[0] = 'S';

arr_map[1] = 'R';

arr_map[2] = 'D';

Accessing Single Dimension Array Elements

Arrays are 0-indexed, so the first array element is at index = 0, and the highest is size_of_array –

To access an array element at a given index you would use the following syntax:

Sample Code

array_name[index_of_element];

To set an element of an array equal to a value you would write:

Sample Code

array_name[index_of_element] = value;

To access one of the arr_map element:

Sample Code

arr_map[0]; //value of 'S'

arr_map[1]; //value of ' R'

arr_map[2]; //value of 'D'

140

Trying to access a value outside the bounds of index 1 through size_of_array – 1, results in

runtime errors. Your compiler will not complain, but your program will crash when it executes.

11.3 Multidimensional Arrays

Arrays can have more than one dimension. Two dimensional arrays are widely used for tables,

matrices and etc. You can have as many dimensions as you would like but you have to consider

the complexity of the code as you add new dimension. Multidimensional arrays allow you to

store data in a spreadsheet or matrix like format.

Declaring Multidimensional Arrays

To declare a multidimensional array:

<data type> array_name[size_of_first_dimension][size_of_second_dimension] ...

A very good example is the creation of 2D maps for arrs.

char arr_map[10][10];

This would declare a 2 dimensional array of chars that is 10 columns by 10 rows in size.

You could even do a 3D map for a arr using a 3 dimensional array.

char arr_map[10][10][5];

You can consider above array as being 10 tiles by 10 tiles on the horizontal plane, and 5 tiles

high on the vertical plane.

11.4 Initializing Multidimensional Arrays

Just like single dimension array, you can initialize the multidimensional array also upon

declaration as well as initialize by assignment.

Sample Code

<datatype>

array_name[size_of_dimension1][size_of_second_dimension2] ... = {

{element 1, element 2, element 3, …},

.

141

.

. }

};

Sample Code

char arr_map[2][4];

array [Y][X]

arr_map[2][4]; X direction ►

Y direction▼ arr_map[0][0] arr_map[0][1] arr_map[0][2] arr_map[0][3]

arr_map[1][0] arr_map[2][1] arr_map[3][2] arr_map[4][3]

Sample Code

char arr_map[2][4] = { {'x', 'b', 'f', '�'} , {'b', 't', '�' } };

array [Y][X]

arr_map[2][4]; X direction ►

Y direction▼ x b f �

b t � empty

Here is what the above 2D arr_map array will look like if you decided to initialize it during

declaration.

Sample Code

char arr_map[10][10] = {

{'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'},

{'X', 'H', ' ', ' ', ' ', ' ', ' ', ' ', ' ', 'X'},

{'X', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', 'X'},

{'X', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', 'X'},

{'X', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', 'X'},

{'X', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', 'X'},

{'X', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', 'X'},

{'X', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', 'X'},

{'X', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', 'X'},

{'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X'}

};

142

The first index accesses the rows in the array, the second one accesses the columns. Dimensions

more than 2 gets difficult to work with, as far as initializing a 3 or more dimensional array goes,

you usually only see them assigned values using a series of nested for loops. Here is a simple

example.

Sample Code

//loop through first dimension

for (i = 0; i < 10; i++) {

 //loop through second dimension

 for (j = 0; j < 10; j++) {

 //loop through third dimension

 for (k = 0; k < 10; k++)

 int_array[i][j][k]) = i * j * k;

 }

}

Accessing Elements in Multidimensional Arrays

To access elements in a multidimensional array, all you have to do is provide a combination of

index values for each dimension to reach the desired element, just like a bunch of cells in a

spreadsheet or coordinates in a n dimensional matrix or graph.

array_name[dim1_index][dim2_index] ... [dimn-1_index];

Setting values in a multidimensional array is just as simple as in a basic array, you need to add

another index per dimension.

array_name[index1][index2] ... [index s-1] = value;

Let's return to our arr_map 2d array for an example of setting a value in a multidimensional

array. We could position our hero character in the arr_map array using this snippet:

arr_map[1][1] = 't';

143

That would insert the character 'H' at the intersection of the cell found at coordinate pair (1, 1) in

the array.

Here we will look at retrieving a value from a multidimensional array using the above syntax. If

we wanted to print out our arr_level map we declared earlier so that it gets displayed in the

console we would use the following group of nested for loops to go through both dimensions and

print every value we encounter.

Sample Code

for (i = 0; i < 10; i++) {

 for (j = 0; j < 10; j++) {

 printf("%c", arr_map[i][j]);

 }

}

The first for loop goes through the index values from 0 to 9 of the first dimension of the 2d array.

The second for loop does the same for the second dimension. We use the stdio built-in printf

function to print the char (―%c‖) found at the coordinate pair (i, j). because of the nested loops,

this code will print every value in the 2d array arr_map out to the console from indexes (0, 0)

through (9, 9).

11.5 Array as Function Argument

We have now seen two examples of the use of arrays - to hold numeric data such as test scores,

and to hold character strings. We have also seen two methods for determining how many cells of

an array hold useful information - storing a count in a separate variable, and marking the end of

the data with a special character. In both cases, the details of array processing can easily obscure

the actual logic of a program - processing a set of scores or a character string. It is often best to

treat an array as an abstract data type with a set of allowed operations on the array which are

performed by functional modules. Let us return to our exam score example to read and store

144

scores in an array and then print them, except that we now wish to use functions to read and print

the array.

LIST1: Read an array and print a list of scores using functional modules.

The algorithm is very similar to our previous task, except that the details of reading and printing

the array is hidden by functions. The function, read_intaray(), reads scores and stores them,

returning the number of scores read. The function, print_intaray(), prints the contents of the

array. The refined algorithm for main() can be written as:

print title, etc.

 n = read_intaray(exam_scores, MAX);

 print_intaray(exam_scores, n);

Notice we have passed an array, exam_scores, and a constant, MAX (specifying the maximum

size of the proposed list), to read_intarray() and expect it to return the number of scores placed in

the array. Similarly, when we print the array using print_intarray, we give it the array to be

printed and a count of elements it contains. We saw in Chapter that in order for a called function

to access objects in the calling function (such as to store elements in an array) we must use

indirect access, i.e. pointers. So, read_intaray() must indirectly access the array, exam_scores, in

main(). One unique feature of C is that array access is always indirect; thus making it particularly

easy for a called function to indirectly access elements of an array and store or retrieve values.

As we will see in later sections, array access by index value is interpreted as an indirect access,

so we may simply use array indexing as indirect access.

We are now ready to implement the algorithm for main() using functions to read data into the

array and to print the array

145

146

The function calls in main() pass the name of the array, exam_scores, as an argument because the

name of an array in an expression evaluates to a pointer to the array. In other words, the

expression, exam_scores, is a pointer to (the first element of) the array, exam_scores[]. Its type

is, therefore, int *, and a called function uses this pointer (passed as an argument) to indirectly

access the elements of the array. As seen in the Figure, for both functions, the headers and the

prototypes show the first formal parameter as an integer array without specifying the size. In C,

this syntax is interpreted as a pointer variable; so scores is declared aa an int * variable.

11.6 Summary

At the end of this unit we have learnt basic of array such as definition of array, types of array. In

later section we have discussed about one dimensional and two dimension array in detail

covering about declaration and access. A suitable piece of code has been given as an

demonstration example. At the end of the unit we have focused on how arrays say two dimension

or higher dimension can be treated as a function argument. Readers are instructed to implement

the different programs to better understanding of array concepts.

11.7 Keywords

Array, single dimension array, multi dimension array, array as argument

11.8 Questions

1. What is array? Differentiate between single and multi dimension array?

2. How an array can be passed as an function argument?

3. List out the use of array structure in programming languages?

4. Write program to find the product of two matrices using arrays? Use array as an function

argument and find the product in function by receive argument?

11.9 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

147

Unit - 12

Structure

12.0 Objectives

12.1 Introduction

12.2 Declaration and Initialization of String

12.3 Reading String from Terminal

12.4 Writing String to screen

12.5 Arithmetic Operations on String

12.6 String Handling Function

12.7 Summary

12.8 Key words

12.9 Questions

12.10 References

12.0 Objectives

At the end of this unit you will be able to

 Understand the string concept

 Describe the string handling

 Explain string handling function

12.1 String

In C, array of character are called strings. A string is terminated by null character /0. For

example:

"c string unit"

148

Here, "c string unit" is a string. When, compiler encounters strings, it appends null character at

the end of string.

12.2 Declaration and Initialization of Strings

Strings is declared in C in similar manner as arrays. Only difference is that, strings are

of char type.

char s[5];

Strings can also be declared using pointer.

char *p

Initialization of strings

In C, string can be initialized in different number of ways.

char c[]="abcd";

 OR,

char c[5]="abcd";

 OR,

char c[]={'a','b','c','d','\0'};

 OR;

char c[5]={'a','b','c','d','\0'};

String can also be initialized using pointers

char *c="abcd";

149

12.3 Reading Strings from Terminal

Reading words from user

char name[20];

scanf("%s",name);

String variable, name can only take a word. It is because when white space is encountered,

the scanf() function terminates.

C program to illustrate how to read string from terminal.

#include <stdio.h>

int main(){

 char name[20];

 printf("Enter name: ");

 scanf("%s",name);

 printf("Your name is %s.",name);

 return 0;

}

Output

Enter name: Dennis Ritchie

Your name is Dennis.

Here, program will ignore Ritchie because, when the scanf() function takes only string before the

white space.

Reading a line of text

C program to read line of text manually.

#include <stdio.h>

int main(){

 char name[30],ch;

 int i=0;

 printf("Enter name: ");

 while(ch!='\n') //terminates if user hit enter

 {

150

 ch=getchar();

 name[i]=ch;

 i++;

 }

 name[i]='\0'; //inserting null character at end

 printf("Name: %s",name);

 return 0;

}

This process to take string is tedious. There are predefined functions gets() and puts in C

language to read and display string respectively.

#include<stdio.h>

int main(){

 char name[30];

 printf("Enter name: ");

 gets(name); //Function to read string from user.

 printf("Name: ");

 puts(name); //Function to display string.

 return 0;

}

Both, the above program have same output below:

Output

Enter name: Anil Ross

Name: Anil Ross

Passing Strings to Functions

String can be passed in similar manner as arrays as, string is also an array (of characters).

#include <stdio.h>

void Display(char ch[]);

int main(){

 char c[50];

 printf("Enter string: ");

 gets(c);

151

 Display(c); //Passing string c to function.

 return 0;

}

void Display(char ch[]){

 printf("String Output: ");

 puts(ch);

}

Here, string c is passed from main() function to user-defined function Display(). In function

declaration in line 10, ch[] is the formal argument. It is not necessary to give the size of array in

function declaration.

12.4 Writing Strings to the Screen

To write strings to the terminal, we use a file stream known as stdout. The most common

function to use for writing to stdout in C is the printf function, defined as follows:

Sample Code

 int printf(const char *format, ...);

To print out a prompt for the user you can:

Sample Code

 printf("Please type a name: \n");

The above statement prints the prompt in the quotes and moves the cursor to the next line.

If you wanted to print a string from a variable, such as our fname string above you can do this:

Sample Code

 printf("First Name: %s", fname);

You can insert more than one variable, hence the "..." in the prototype for printf but this is

sufficient. Use %s to insert a string and then list the variables that go to each %s in your string

you are printing. It goes in order of first to last. Let's use a first and last name printing example to

show this:

Sample Code

 printf("Full Name: %s %s", fname, lname);

152

The first name would be displayed first and the last name would be after the space between the

%s's.

12.5 Arithmetic Operations on Strings

Characters in C can be used just like integers when used with arithmetic operators. This is nice,

for example, in low memory applications because unsigned chars take up less memory than do

regular integers as long as your value does not exceed the rather limited range of an unsigned

char.

For example: consider the following piece of code

charmath.c:

 #include <stdio.h>

 void main() {

 unsigned char val1 = 20;

 unsigned char val2 = 30;

 int answer;

 printf("%d\n", val1);

 printf("%d\n", val2);

 answer = val1 + val2;

 printf("%d + %d = %d\n", val1, val2, answer);

 val1 = 'a';

 answer = val1 + val2;

 printf("%d + %d = %d\n", val1, val2, answer);

 }

First we make two unsigned character variables and give them number values. We then add them

together and put the answer into an integer variable. We can do this without a cast because

153

characters are an alphanumeric data type. Next we set var1 to an expected character value, the

letter lowercase a. Now this next addition adds 97 to 30.

This is because the ASCII value of lowercase a is 97. So it adds 97 to 30, the current value in

var2. Notice it did not require casting the characters to integers or having the compiler complain.

This is because the compiler knows when to automatically change between characters and

integers or other numeric types.

12.6 String handling functions

One can perform different type of string operations manually like: finding length of string,

concatenating (joining) two strings etc. But, this process is tedious. To perform these operations,

there are different library functions.

String Manipulations Using Library Functions

Strings are often needed to be manipulated according to the problem. All string manipulation can

be done manually by the programmer but, this makes programming complex and large. To solve

this, the C library supports a large number of string handling functions.

There are numerous functions defined in "string.h" header file. Few commonly used string

handling functions are discussed below:

Function Work Of Function

strlen() Calculates the length of string

strcpy() Copies a string to another string

strcat() Concatenates(joins) two strings

strcmp() Compares two string

strlwr() Converts string to lowercase

strupr() Converts string to uppercase

Strings handling functions are defined under "string.h" header file, i.e, you have to include the

code below to run string handling functions.

http://www.programiz.com/c-programming/library-function/strlen
http://www.programiz.com/c-programming/library-function/strcpy
http://www.programiz.com/c-programming/library-function/strcat
http://www.programiz.com/c-programming/library-function/strcmp
http://www.programiz.com/c-programming/library-function/strlwr
http://www.programiz.com/c-programming/library-function/strupr

154

#include <string.h>

Example to show how to "string.h" header file

#include <stdio.h>

#include <string.h>

int main(){

 char s[]="Programiz";

 int length;

 length=strlen(s); /* Compiler will show error if you use

this statement without using code #include <string.h>

in line number 2*/

 printf("%d",length);

 return 0;

}

gets() and puts()

Functions gets() and puts() are two string functions to take string input from user and display

string respectively as mentioned in previous chapter.

#include<stdio.h>

int main(){

 char name[30];

 printf("Enter name: ");

 gets(name); //Function to read string from user.

 printf("Name: ");

 puts(name); //Function to display string.

 return 0;

}

Though, gets() and puts() function handle string, both these functions are defined in "stdio.h"

header file.

155

12.7 Summary

In this unit we have introduced string operations which are supported in C programming. We

have seen how strings can be declared and initialized. Later we have seen an example how to

read and write the string from terminal and to screen respectively. At the end the section we have

list out some standard library function in support of string operations.

12.8 Keywords

String, char, strlen, strrev, gets(), puts(), string.h

12.10 Questions

1. Explain about string data type which is supported in C?

2. How can an arithmetic operations can be performed on string?

3. Write a C program to accept two strings and concatenate them?

4. Write a C program to reverse a string?

12.11 Reference

Programming In ANSI C by E Balagurusamy

The C Programming Language (Ansi C Version) by Brian W. Kernighan, Dennis M. Ritchie

Expert C Programming: Deep C Secrets by Peter Van, Der Linden

156

Programming Concepts and C

Module - 4

157

Unit - 13

Structure

13.0 Objectives

13.1 Introduction: Basics of Array

13.2 Pointer Declaration

13.3 The & and * Operators

13.4 Passing Pointers to a Function

13.5 Operations on Pointers

13.6 Pointer Arithmetic

13.7 Pointers & Array

13.7 Summary

13.8 Key words

13.9 Questions

13.10 References

13.0 Objectives

At the end of this unit you will be able to

 Understand the concepts of pointer

 Describe the functionality of pointer

 List out various operation on pointers

 Explain the arithmetic operation performed on pointers

158

13.1 Introduction

In c a pointer is a variable that points to or references a memory location in which data is stored.

Each memory cell in the computer has an address that can be used to access that location so a

pointer variable points to a memory location we can access and change the contents of this

memory location via the pointer.

13.2 Pointer declaration

A pointer is a variable that contains the memory location of another variable. The syntax is as

shown below. We start by specifying the type of data stored in the location identified by the

pointer. The asterisk tells the compiler that we are creating a pointer variable. Finally we give the

name of the variable.

type * variable name;

Example:

int *ptr;

float *string;

13.3 The & and * Operators

Once we declare a pointer variable we must point it to something we can do this by assigning to

the pointer the address of the variable we want to point as in the following example:

ptr=#

This places the address where num is stores into the variable ptr. If num is stored in memory

21260 address then the variable ptr has the value 21260.

/* A program to illustrate pointer declaration*/

main()

{

int *ptr;

159

int sum;

sum=45;

ptr=sum;

printf (“\n Sum is %d\n”, sum);

printf (“\n The sum pointer is %d”, ptr);

}

We will get the same result by assigning the address of num to a regular (non-pointer) variable.

The benefit is that we can also refer to the pointer variable as *ptr the asterisk tells to the

computer that we are not interested in the value 21260 but in the value stored in that memory

location. While the value of pointer is 21260 the value of sum is 45 however we can assign a

value to the pointer * ptr as in *ptr=45.

This means place the value 45 in the memory address pointer by the variable ptr. Since the

pointer contains the address 21260 the value 45 is placed in that memory location. And since this

is the location of the variable num the value also becomes 45. this shows how we can change the

value of pointer directly using a pointer and the indirection pointer.

13.4 Passing Pointers to a Function

The pointers are very much used in a function declaration. Sometimes only with a pointer a

complex function can be easily represented and success. The usage of the pointers in a function

definition may be classified into two groups.

1. Call by reference

2. Call by value

Call by value

We have seen that a function is invoked there will be a link established between the formal and

actual parameters.

A temporary storage is created where the value of actual parameters is stored. The formal

parameters picks up its value from storage area the mechanism of data transfer between actual

and formal parameters allows the actual parameters mechanism of data transfer is referred as call

by value.

160

The corresponding formal parameter represents a local variable in the called function .

The current value of corresponding actual parameter becomes the initial value of formal

parameter.

The value of formal parameter may be changed in the body of the actual parameter.

The value of formal parameter may be changed in the body of the subprogram by assignment or

input statements. This will not change the value of actual parameters.

/* Include< stdio.h >

void main()

{

int x,y;

x=20;

y=30;

printf(“\n Value of a and b before function call =%d %d”,a,b);

fncn(x,y);

printf(“\n Value of a and b after function call =%d %d”,a,b);

}

fncn(p,q)

int p,q;

{

p=p+p;

q=q+q;

}

Call by Reference

When we pass address to a function the parameters receiving the address should be pointers. The

process of calling a function by using pointers to pass the address of the variable is known as call

by reference. The function which is called by reference can change the values of the variable

used in the call.

/* example of call by reference*/

/* Include< stdio.h >

void main()

{

int x,y;

161

x=20;

y=30;

printf(“\n Value of a and b before function call =%d %d”,a,b);

fncn(&x,&y);

printf(“\n Value of a and b after function call =%d %d”,a,b);

}

fncn(p,q)

int p,q;

{

*p=*p+*p;

*q=*q+*q;

}

13.5 Operations on Pointers

Pointer variables are not directly usable by many of the operators, functions, or procedures

provided by IDL. You cannot, for example, do arithmetic on them or plot them. You can, of

course, do these things with the heap variables referenced by such pointers, assuming that they

contain appropriate data for the task at hand. Pointers exist to allow the construction of dynamic

data structures that have lifetimes that are independent of the program scope they are created in.

There are 4 IDL operators that work with pointer variables: assignment, dereference, EQ, and

NE. The remaining operators (addition, subtraction, etc.) do not make any sense for pointer types

and are not defined.

Many non-computational functions and procedures in IDL do work with pointer variables.

Examples are SIZE, N_ELEMENTS, HELP, and PRINT. It is worth noting that the only I/O

allowed directly on pointer variables is default formatted output, where they are printed as a

symbolic description of the heap variable they point at. This is merely a debugging aid for the

IDL programmer—input/output of pointers does not make sense in general and is not allowed.

Please note that this does not imply that I/O on the contents of non-pointer data held in heap

variables is not allowed. Passing the contents of a heap variable that contains non-pointer data to

the PRINT command is a simple example of this type of I/O.

162

Assignment

Assignment works in the expected manner—assigning a pointer to a variable gives you another

variable with the same pointer. Hence, after executing the statements:

A = PTR_NEW(FINDGEN(10))

B = A

HELP, A, B

A and B both point at the same heap variable and we see the output:

A POINTER= <PtrHeapVar1>

B POINTER= <PtrHeapVar1>

Dereference

In order to get at the contents of a heap variable referenced by a pointer variable, you must use

the dereference operator, which is * (the asterisk). The dereference operator precedes the

variable dereferenced. For example, if you have entered the above assignments of the variables A

and B:

PRINT, *B

IDL prints:

0.00000 1.00000 2.00000 3.00000 4.00000 5.00000

6.00000 7.00000 8.00000 9.00000

That is, IDL prints the contents of the heap variable pointed at by the pointer variable B.

Dereferencing Pointer Arrays

Note that the dereference operator requires a scalar pointer operand. This means that if you are

dealing with a pointer array, you must specify which element to dereference. For example, create

a three-element pointer array, allocating a new heap variable for each element:

163

ptarr = PTRARR(3, /ALLOCATE_HEAP)

To initialize this array such that the heap variable pointed at by the first pointer contains the

integer zero, the second the integer one, and the third the integer two, you would use the

following statement:

for i = 0,2 do *ptarr[i] = i

Note: The dereference operator is dereferencing only element I of the array for each iteration.

Similarly, if you wanted to print the values of the heap variables pointed at by the pointers in

ptarr, you might be tempted to try the following:

PRINT, *ptarr

IDL prints:

% Expression must be a scalar in this context: PTARR.

% Execution halted at: $MAIN$

To print the contents of the heap variables, use the statement:

FOR I = 0, N_ELEMENTS(ptarr)-1 DO PRINT, *ptarr[I]

Dereferencing Pointers to Pointers

The dereference operator can be applied as many times as necessary to access data pointed at

indirectly via multiple pointers. For example, the statement:

A = PTR_NEW(PTR_NEW(47))

 Assigns to A a pointer to a pointer to a heap variable containing the value 47.

To print this value, use the following statement:

PRINT, **A

164

Dereferencing Pointers within Structures

If you have a structure field that contains a pointer, dereference the pointer by prepending the

dereference operator to the front of the structure name. For example, if you define the following

structure:

struct = {data:’10.0’, pointer:ptr_new(20.0)}

you would use the following command to print the value of the heap variable pointed at by the

pointer in the pointer field:

PRINT, *struct.pointer

Defining pointers to structures is another common practice. For example, if you define the

following pointer:

ptstruct = PTR_NEW(struct)

you would use the following command to print the value of the heap variable pointed at by the

pointer field of the struct structure, which is pointed at by ptstruct:

PRINT, *(*pstruct).pointer

Note that you must dereference both the pointer to the structure and the pointer within the

structure.

Dereferencing the Null Pointer

It is an error to dereference the NULL pointer, an invalid pointer, or a non-pointer. These cases

all generate errors that stop IDL execution. For example:

PRINT, *45

IDL prints:

% Pointer type required in this context: <INT(45)>.

165

% Execution halted at: $MAIN$

For example:

A = PTR_NEW() & PRINT, *A

IDL prints:

% Unable to dereference NULL pointer: A.

% Execution halted at: $MAIN$

For example:

A = PTR_NEW(23) & PTR_FREE, A & PRINT, *A

IDL prints:

% Invalid pointer: A.

% Execution halted at: $MAIN$

Equality and Inequality

The EQ and NE operators allow you to compare pointers to see if they point at the same heap

variable. For example:

Make A a pointer to a heap variable containing 23.

A = PTR_NEW(23);

//B points at the same heap variable as A.

B = A;

//C contains the null pointer.

C = PTR_NEW();

PRINT, 'A EQ B: ', A EQ B & $

PRINT, 'A NE B: ', A NE B & $

PRINT, 'A EQ C: ', A EQ C & $

PRINT, 'C EQ NULL: ', C EQ PTR_NEW() & $

PRINT, 'C NE NULL:', C NE PTR_NEW()

IDL prints:

A EQ B: 1

166

A NE B: 0

A EQ C: 0

C EQ NULL: 1

C NE NULL: 0

13.6 Pointer Arithmetic

C has the speed and efficiency of assembly language combined with readability of assembly

language. In other words, it's just a glorified assembly language.

It's perhaps too harsh a judgment of C, but certainly one of the reasons the language was

invented was to write operating systems. Writing such code requires the ability to access

addresses in memory in an efficient manner. This is why pointers are such an important part of

the C language. They're also a big reason programmers have bugs.

If you're going to master C, you need to understand pointer arithmetic, and in particular, the

relationship between arrays and pointers.

Arbitrary Pointer Casting

Because most ISAs use the same number of bits as integers, it's not so uncommon to cast

integers as pointers.

Here's an example.

// Casting 32 bit int, 0x0000ffff, to a pointer

char * ptr = reinterpret_cast<char *>(0x0000ffff) ;

char * ptr2 = reinterpret_cast<char *>(0x0000ffff) ;

In general, this is one of the pitfalls of C. Arbitrary pointer casting allows you to point anywhere

in memory.

167

Unfortunately, this is not good for safe programs. In a safe programming language (say, Java),

the goal is to access objects from pointers only when there's an object there. Furthermore, you

want to call the correct operations based on the object's type.

Arbitrary pointer casting allows you to access any memory location and do anything you want at

that location, regardless of whether you can access that memory location or whether the data is

valid at that memory location.

13.7 Pointers and Arrays

In C, arrays have a strong relationship to pointers.

Consider the following declaration.

int arr[10] ;

You might think from the above statement that arr is of type int. However, arr, by itself, without

any index subscripting, can be assigned to an integer pointer.

Do you know, however, that arr[i] is defined using pointer arithmetic?

In particular:

arr[i] == * (arr + i)

Let's take a closer look at arr + i. What does that mean? arr is a pointer to arr[0]. In fact, it is

defined to be & arr[0].

A pointer is an address in memory. arr contains an address in memory---the address where arr[0

] is located.

What is arr + i? If arr is a pointer to arr[0] then arr + i is a pointer to arr[i].

Perhaps this is easier shown in a diagram.

168

We assume that each int takes up 4 bytes of memory. If arr is at address 1000, then arr + 1 is

address 1004, arr + 2 is address 1008, and in general, arr + i is address 1000 + (i * 4).

Now that you see the diagram, something may strange. Why is arr + 1 at address 1004 and not

1001?

That's pointer arithmetic in action. arr + 1 points to one element past arr. arr + 3 is points to 3

elements past arr. Thus, arr + i points to i elements past arr.

The idea is to have arr + i point to i elements after arr regardless of what type of element the

array holds.

Suppose the array had contained short where a short is only 2 bytes. If arr is at address 1000,

then, arr + 1 is address 1002 (instead of 1004). arr + 2 is at address 1004 (instead of 1008), and

in general arr + i is at address 1000 + (2 * i).

169

Notice that arr + 1 is now 2 bytes after arr and arr + 2 is 4 bytes. When we had an int array, arr +

1 was 4 bytes after arr and arr + 2 was 8 bytes afterwards.

Why is there a difference? What's the difference between arr before and now?

The difference is in the type. Before, arr had (roughly) type int * and now arr has type short *.

In C, a pointer is not only an address, it tells you what (in principle) the data type at that address

is. Thus, int * is a pointer to an int. Not only does it tell you the data type, but you can also

determine the data type's size.

You can find out the data type's size with the sizeof() operator.

sizeof(int) ==> 4

sizeof(short) ==> 4

That's important, because that's how pointer arithmetic computes address. It uses the size of the

data type, which it knows from the pointer's type.

Here's the formula for computing the address of ptr + i where ptr has type T *. then the formula

for the address is:

addr(ptr + i) = addr(ptr) + [sizeof(T) * i]

T can be a pointer

How does pointer arithmetic work if you have an array of pointers, for example:

int * arr[10] ;

int ** ptr = arr ;

In this case, arr has type int **. Thus, T has type int *. All pointers have the same size, thus the

address of ptr + i is:

addr(ptr + i) = addr(ptr) + [sizeof(int *) * i]

= addr(ptr) + [4 * i]

Static arrays are constant

When you declare

170

int arr[10] ;

arr is a constant. It is defined to be the address, & arr[0].

You can't do the following:

int arr[10] ;

arr = arr + 1 ; // NO! Can't reassign to arr--it's constant

However, you can declare a pointer variable.

int arr[10] ;

int * ptr ;

ptr = arr + 1 ; // This is OK. ptr is a variable.

Parameter Passing an Array

If you pass an array to a function, it's type changes.

void foo(int arr[10], int size) {

// code here

}

The compiler translates arrays in a parameter list to:

void foo(int * arr, int size) {

// code here

}

Thus, it becomes arr becomes a pointer variable.

Why doesn't this cause problem? After all, won't we pass arr as an argument? Isn't arr a constant?

Yes, it is. However, we pass a copy of the address to arr the parameter. Thus, the copy can be

manipulated while the original pointer address that was passed during the function call is

unchanged.

171

Subtraction

We can also compute ptr - i. For example, suppose we have an int array called arr.

int arr[10] ;

int * p1, * p2 ;

p1 = arr + 3 ; // p1 == & arr[3]

p2 = p1 - 2 ; // p1 == & arr[1]

We can have a pointer point to the middle of the array (like p1). We

can then create a new pointer that is two elements back of p1.

As it turns out, we can even point way past the end of the array.

int arr[10];

int * p1, * p2;

p1 = arr + 100; // p1 == & arr[100]

p2 = arr - 100; // p1 == & arr[-100]

The compiler still computes an address, and does not core dump. For example, if arr is address

1000, then p1 is address 1400 and p2 is address 600. The compiler still uses the formula for

pointer arithmetic to compute the address.

Passing the Array Size

This is why it's usually important to keep track of the array size and pass it in as a parameter.

When you're in a function, you can't tell the size of the array. All you have is a pointer, and that's

it. No indication of how big that array is.

If you try to compute the array's size using sizeof, you just get 4.

// Compiler translates arr's type to int *

void foo (int arr[], int size) {

// Prints 4

cout << sizeof(arr) ;

int arr2[10] ;

172

// Prints 40

cout << sizeof(arr2) ;

}

If you declare a local array (not using dynamic memory allocation), you can get the size of the

array. However, once you pass that array, all that's passed is the address. There's no information

about the array size anymore.

Pointers on two dimensional Arrays

Suppose you declare:

int arr[10][12] ;

What type is arr? You may have been told that it's int **, but that's incorrect. Two dimensional

arrays (as declared above) are contiguous in memory. If you create an array of pointers to

dynamically allocated arrays, such as:

int * arr[10] ;

then, arr has type int ** (or at least has a type compatible with int **).

The type is rather complicated, and is due to the fact that arr[0] = & arr[0][0], arr[1] = &

arr[1][0], and in general, arr[i] = & arr[i][0].

Pointer arithmetic says that arr + i gives you & arr[i], yet this skips an entire row of 12

elements, i.e., skips 48 bytes times i. Thus, if arr is address 1000 then arr + 2 is address 1096.

If the array's type were truly int **, pointer arithmetic would say the address is 1008ten, so that

doesn't work.

Note: A two-dimensional array is not the same as an array of pointers to 1D array

The actual type for a two-dimensional array, is declared as:

int (*ptr)[10] ;

173

Which is a pointer to an array of 10 elements? Thus, when you do pointer arithmetic, it can

compute the size of the array and handle it correctly. The parentheses are NOT optional above.

Without the parentheses, ptr becomes an array of 10 pointers, not a pointer to an array of 10 int.

If you have a conventional two dimensional array, and you want to compute the address for arr[

row][col] and you have ROWS rows (where ROWS is some constant) and COLS columns,

then the formula for the address in memory is:

addr(& arr[row][col]) = addr(arr) + [sizeof(int) * COLS *

row]+ [sizeof(int) * col]

Two dimensional arrays are stored in row major order, that is, row by row. Each row

contains COLS elements, which is why you see COLS in the formula. In fact, you don't

see ROWS.

When you have a 2D array as a parameter to a function, there's no need to specify the number of

rows. You just need to specify the number of columns. The reason is the formula above. The

compiler can compute the address of an element in a 2D array just knowing the number of

columns.

Thus, the following is valid in C, i.e. it compiles:

void sumArr(int arr[][COLS], int numRows, int numCols) {

}

The following is also valid in C.

void sumArr(int arr[ROWS][COLS], int numRows, int numCols) {

}

The compiler ignores ROWS. Thus, any 2D array with the COLS columns and any number of

rows can be passed to this function.

The following, however, is NOT valid in C:

void sumArr(int arr[][], int numRows, int numCols) {

}

174

It's not syntactically valid to declare int arr[][] in C.

However, it's OK to write:

void sumArr(int **arr, int numRows, int numCols) {

}

Note that int **arr is an array of pointers (possibly to 1D arrays), while int arr[][COLS] is a 2D

array. They are not the same type, and are not interchangeable.

Pointer Subtraction

It turns out you can subtract two pointers of the same type. The result is the distance (in array

elements) between the two elements.

For example:

int arr[10] ;

int * p1 = arr + 2 ;

int * p2 = arr + 5 ;

cout << (p2 - p1) ; // Prints 3

cout << (p1 - p3) ; // Prints -3

The formula used is rather simple. Assume that p1 and p2 are both pointers of type T *. Then,

the value computed is:

(p2 - p1) == (addr(p2) - addr(p1)) / sizeof(T)

This can result in negative values if p2 has a smaller address than p1.

p2 and p1 need not point to valid elements in an array. The formula above still works even

when p2 and p1 contain invalid addresses (because they contain some address).

Pointer subtraction isn't used very much, but can be handy to determine the distances between

two array elements (i.e., the difference in the array indexes). You may not know exactly which

element you're pointing to using pointer subtraction, but you can tell relative distances.

175

13.8 Summary

At the end of this unit we have covered the topics such as basic terminology of pointer. It has

been clearly given about how the pointer variables can be declared and how it can visualized

with a suitable examples. In subsequent stages we have discussed about the role of & and *

operators. In the later stages we had list out various arithmetic operations which can be

performed using pointer. In the last section of the unit we have seen how exactly arrays can be

handled using pointer.

13.9 Keywords

Pointer, & and * operator, Sizeof(), Null

13.10 Questions

1. Briefly explain the role of pointers in C programming?

2. Discuss about the advantages and disadvantages using pointer in programming?

3. What is meaning of following declaration?

int(*ptr[5])();

4. Explain about various arithmetic operations on pointers?

5. Write a C program using pointer to find the memory address of all declared variables in a

program?

13.11 Reference

"Common Pointer Pitfalls" by Dave Marshall

C Programming: A Modern Approach by K.N. King

C Programming in 12 Easy Lessons by Greg Perry

C for Dummies Vol. II by Dan Gookin

176

Unit - 14

Structure

14.0 Objectives

14.1 Pointer to Functions

14.2 Function returning Pointer

14.3 Static and Dynamic Memory Allocation

14.4 DMA Functions

14.5 Bitwise Operators

14.6 Preprocessor Directives

14.7 Summary

14.8 Key words

14.9 Questions

14.10 References

14.0 Objectives

At the end of this unit you will be able to

 Understand advance concept on pointers

 Sketch out the working principle of pointer to function as argument

 Explain various memory related function

 List out the various preprocess directives and bitwise operators

14.1 Pointer to Functions

177

A useful technique is the ability to have pointers to functions. Their declaration is easy: write the

declaration as it would be for the function, say

int func(int a, float b);

and simply put brackets around the name and a * in front of it: that declares the pointer. Because

of precedence, if we don't parenthesize the name, we declare a function returning a pointer:

/* function returning pointer to int */

int *func(int a, float b);

/* pointer to function returning int */

int (*func)(int a, float b);

Once we've got the pointer, we can assign the address of the right sort of function just by using

its name: like an array, a function name is turned into an address when it's used in an expression.

We can call the function using one of two forms:

(*func)(1,2);

/* or */

func(1,2);

The second form has been newly blessed by the Standard. Here's a

simple example.

#include <stdio.h>

#include <stdlib.h>

void func(int);

main()

{

void (*fp)(int);

fp = func;

(*fp)(1);

fp(2);

exit(EXIT_SUCCESS);

}

void

func(int arg)

{

178

printf("%d\n", arg);

}

14.2 Function Returning Pointers

It's possible to take the address of a function, too. And, similarly to arrays, functions decay to

pointers when their names are used. So if you wanted the address of, say, strcpy, you could say

either strcpy or &strcpy. (&strcpy[0] won't work for obvious reasons.)

When you call a function, you use an operator called the function call operator. The function call

operator takes a function pointer on its left side.

In this example, we pass dst and src as the arguments on the interior, and strcpy as the function

(that is, the function pointer) to be called:

enum { str_length = 18U }; Remember the NUL terminator!

char src[str_length] = "This is a string.", dst[str_length];

strcpy(dst, src);

The function call operator in action (notice the function pointer on the left side).

There's a special syntax for declaring variables whose type is a function pointer.

char *strcpy(char *dst, const char *src); An ordinary function

declaration, for reference

char *(*strcpy_ptr)(char *dst, const char *src);

//Pointer to strcpy-like function

strcpy_ptr = strcpy;

strcpy_ptr = &strcpy; //This works too

strcpy_ptr = &strcpy[0]; //But not this

Note the parentheses around *strcpy_ptr in the above declaration. These separate the asterisk

indicating return type (char *) from the asterisk indicating the pointer level of the variable

(*strcpy_ptr — one level, pointer to function).

179

Also, just like in a regular function declaration, the parameter names are optional:

char *(*strcpy_ptr_noparams)(char *, const char *) = strcpy_ptr;

//Parameter names removed — still the same type

The type of the pointer to strcpy is char *(*)(char *, const char *); you may notice that this is the

declaration from above, minus the variable name. You would use this in a cast. For example:

strcpy_ptr = (char *(*)(char *dst, const char *src))my_strcpy;

As you might expect, a pointer to a pointer to a function has two asterisks inside of the

parentheses:

char *(**strcpy_ptr_ptr)(char *, const char *) = &strcpy_ptr;

We can have an array of function-pointers:

char *(*strcpies[3])(char *, const char *) = { strcpy, strcpy, strcpy };

char *(*strcpies[])(char *, const char *) = { strcpy, strcpy, strcpy };

//Array size is optional, same as ever

strcpies[0](dst, src);

Here's a pathological declaration, taken from the C99 standard. ―[This declaration] declares a

function f with no parameters returning an int, a function fip with no parameter specification

returning a pointer to an int, and a pointerpfi to a function with no parameter specification

returning an int.‖

int f(void), *fip(), (*pfi)();

In other words, the above is equivalent to the following three declarations:

int f(void);

int *fip(); //Function returning int pointer

int (*pfi)(); //Pointer to function returning int

180

In order to explain this, We are going to summarize all the declaration syntax you've learned so

far. First, declaring a pointer variable:

char *ptr;

This declaration tells us the pointer type (char), pointer level (*), and variable name (ptr). And

the latter two can go into parentheses:

char (*ptr);

What happens if we replace the variable name in the first declaration with a name followed by a

set of parameters?

char *strcpy(char *dst, const char *src);

Huh. A function declaration.

But we also removed the * indicating pointer level — remember that the * in this function

declaration is part of the return type of the function. So if we add the pointer-level asterisk back

(using the parentheses):

char *(*strcpy_ptr)(char *dst, const char *src);

A function is pointer variable. If this is a variable, and the first declaration was also a variable,

can we not replace the variable name in THIS declaration with a name and a set of parameters?

Yes we can and the result is the declaration of a function that returns a function pointer:

char *(*get_strcpy_ptr(void))(char *dst, const char *src);

Remember that the type of a pointer to a function taking no arguments and returning int is int

(*)(void). So the type returned by this function is char *(*)(char *, const char *) (with, again, the

inner * indicating a pointer, and the outer * being part of the return type of the pointed-to

function). You may remember that that is also the type of strcpy_ptr.

So this function, which is called with no parameters, returns a pointer to a strcpy-like function:

181

strcpy_ptr = get_strcpy_ptr();

Because function pointer syntax is so mind-bending, most developers use typedefs to abstract

them:

typedef char *(*strcpy_funcptr)(char *, const char *);

strcpy_funcptr strcpy_ptr = strcpy;

strcpy_funcptr get_strcpy_ptr(void);

14.3 Static and Dynamic Memory Allocation

Static Allocation means, that the memory for your variables is automatically allocated, either on

the Stackor in other sections of your program. You do not have to reserve extra memory using

them, but on the other hand, have also no control over the lifetime of this memory. E.g: a

variable in a function, is only there until the function finishes.

void func() {

 int i; /* `i` only exists during `func` */

}

Dynamic memory allocation is a bit different. You now control the exact size and the lifetime of

these memory locations. If you don't free it, you'll run into memory leaks, which may cause your

application to crash, since it, at some point cannot allocate more memory.

int* func() {

 int* mem = malloc(1024);

 return mem;

}

int* mem = func(); /* still accessible */

182

In the upper example, the allocated memory is still valid and accessible, even though the

function terminated. When you are done with the memory, you have to free it:

free(mem);

Difference between Static and Dynamic Memory Allocation

14.4 DMA functions

Malloc Function

The malloc function takes one argument i.e. the number of bytes to be allocated. The

syntax of the function is

void * malloc (size_t size) ;

It returns a void pointer to the starting of the chunk of the memory allocated from the heap in

case of the availability of that memory. If the memory is not available or is fragmented (not in a

sequence), malloc will return a NULL pointer. While using malloc, we normally make use sizeof

operator and a call to malloc function is written in the following way.

malloc (1000 * sizeof(int)) ;

Here * is multiplication operator and not a dereference operator of a pointer.

183

In the above call, we request for 1000 spaces in the memory each of the size, which can

accommodate an integer. The `sizeof(int)' means the number of bytes, occupied by an integer in

the memory. Thus the above statement will allocate memory in bytes for 1000 integers. If on our

machine, an integer occupies 4 bytes. A 1000 * 4 (4000) bytes of memory will be allocated.

Similarly if we want memory for 1000 characters or 1000 floats, the malloc function will be

written as

malloc (1000 * sizeof(char)) ;

and malloc (1000 * sizeof(float)) ;

respectively for characters and floats.

So in general, the syntax of malloc will be.

malloc (n * sizeof (datatype)) ;

where `n' represents the numbers of required data type. The malloc function differs from calloc

in the way that the space allocated by malloc is not initialized and contains any values initially.

Let's say we have a problem that states `Calculate the average age of the students in your class.'

The program prompts the user to enter the number of students in the class and also allows the

user to enter the ages of the students. Afterwards, it calculates the average age.

Now in the program, we will use dynamic memory. At first, we will ask the user `How many

students are in the class? The user enters the number of students. Let's suppose, the number is 35.

This number is stored in a variable say `numStuds'. We will get the age of students in whole

numbers so the data type to store age will be int. Now we require a memory space where we can

store a number of integers equal to the value stored in numStuds. We will use a pointer to a

memory area instead of an array. So we declare a pointer to an integer. Suppose we call it iptr.

Now we make a call to calloc or malloc function. Both of them are valid. So we write the

following statement

iptr = (int *) malloc (numStuds * sizeof (int)) ;

Now we immediately check iptr whether it has NULL value. If the value of iptr is not NULL, it

will mean that we have allocated the memory successfully. Now we write a loop to get the ages

of the students and store these to the memory, got through malloc function. We write these

values of ages to the memory by using the pointer iptr with pointer arithmetic. A second pointer

184

say sptr can be used for pointer arithmetic so that the original pointer iptr should remain pointing

to the starting position of the memory. Now simply by incrementing the pointer sptr, we get the

ages of students and store them in the memory. Later, we perform other calculations and display

the average age on the screen. The advantage of this (using malloc) is that there is no memory

wastage as there is no need of declaring an array of 50 or 100 students first and keep the ages of

30 or 35 students in that array. By using dynamic memory, we accurately use the memory that is

required.

Calloc Function

The syntax of the calloc function is as follows.

void *calloc (size_t n, size_t el_size)

This function takes two arguments. The first argument is the required space in terms of numbers

while the second one is the size of the space. So we can say that we require n elements of type

int. We have read a function sizeof. This is useful in the cases where we want to write a code that

is independent of the particular machines that we are runningon. So if we write like

void calloc(1000, sizeof(int))

It will return a memory chunk from the heap of 1000 integers. By using sizeof (int) we are not

concerned with the size of the integer on our machine whether it is of 4 bytes or 8 bytes. We will

get automatically a chunk that can hold 1000 integers. The said memory will be returned if a

chunk of similar size is available on the heap. Secondly, this memory should be available on

heap in continuous space. It should not be in split blocks. The function returns a pointer to the

starting point of the allocated memory. It means that if starting point of the chunk is gotten, then

the remaining memory is available in a sequence from end to end. There cannot be gaps and

holes between them. It should be a single block. Now we have to see what happens when either

we ask for too much memory at a time of non-availability of enough memory on the heap or we

ask for memory that is available on the heap , but not available as a single chunk?. In this case,

the call to calloc will fail. When a call to memory allocation functions fails, it returns a NULL

pointer. It is important to understand that whenever we call a memory allocation function, it is

necessary to check whether the value of the pointer returned by the function is NULL or not. If it

is not NULL, we have the said memory. If it is NULL, it will mean that either we have asked for

too much memory or a single chunk of that size is not available on the heap.

185

Suppose, we want to use the memory got through calloc function as an integer block We have to

cast it before using. It will be written as the following statement.

(int *) calloc (1000, sizeof (int)) ;

Another advantage of calloc is that whenever we allocate memory by using it. The memory is

automatically initialized to zeros. In other words it is set to zeros. For casting we normally

declare a pointer of type which we are going to use. For example, if we are going to use the

memory for integers. We declare an integer pointer like int *iptr; Then when we allocate

memory through calloc, we write it as

iptr = (int *) calloc (1000, sizeof(int)) ;

(int *) means cast the pointer returned by calloc to an integer pointer and we hold it in the

declared integer pointer iptr. Now iptr is a pointer to an integer that can be used to manipulate all

the integers in that memory space. You should keep in mind that after the above statement, a

NULL check of memory allocation is necessary. An `if statement' can be used to check the

success of the memory allocation. It can be written as under if (iptr == NULL)

any error message or code to handle error .

If a NULL is returned by the calloc, it should be treated according to the logic so that the

program can exit safely and it should not be crashed.

The next function used for allocating memory is malloc.

free ():

Whenever we get a benefit, there is always a cost. The dynamic memory allocation has also a

cost. Here the cost is incurred in terms of memory management. The programmer itself has to

manage the memory. It is the programmer's responsibility that when the memory allocated is no

longer in use, it should be freed to make it a part of heap again. This will help make it available

for the other programs. As long as the memory is allocated for a program, it is not available to

other programs for use. So it is programmer's responsibility to free the memory when the

program has done with it. To ensure it, we use a function free. This function returns the allocated

memory, got through calloc or malloc, back to the heap. The argument that is passed to this

function is the pointer through which we have allocated the memory earlier. In our program, we

write

free (iptr) ;

186

By this function, we call the memory allocated by malloc and pointed by the pointer iptr is freed.

It goes back to the heap and becomes available for use by other programs. It is very important to

note that whenever we allocate memory from the heap by using calloc or malloc, it is our

responsibility to free the memory when we have done with it.

Following is the code of the program discussed above.

//This program calculates the average age of a class of students

//using dynamic memory allocation

#include <iostream.h>

#include <stdlib.h>

#include <string.h>

int main()

{

int numStuds, i, totalAge, *iptr, *sptr;

cout <<"How many students are in the class ? " ;

cin >> numStuds;

// get the starting address of the allocated memory in pointer iptr

iptr = (int *) malloc(numStuds * sizeof(int));

//check for the success of memory allocation

if (iptr == NULL)

{

cout << "Unable to allocat space for " << numStuds << " students\n";

return 1;

// A nonzero return is usually used to indicate an error

}

sptr = iptr ; //sptr will be used for pointer arithmetic/manipulation

i=1;

totalAge = 0 ;

//use a loop to get the ages of students

for (i = 1 ; i <= numStuds ; i ++)

{

cout << "Enter the age of student " << i << " = " ;

cin >> *sptr ;

totalAge = totalAge + *sptr ;

sptr ++ ;

}

cout << "The average age of the class is " << totalAge / numStuds <<

endl;

//now free the allocated memory, that was pointed by iptr

free (iptr) ;

sptr = NULL ;

187

}

Following is a sample output of the program.

How many students are in the class ? 3

Enter the age of student 1 = 12

Enter the age of student 2 = 13

Enter the age of student 3 = 14

The average age of the class is 13

Realloc Function:

Sometimes, we have allocated a memory space for our use by malloc function. But we see later

that some additional memory is required. For example, in the previous example, where (for

example) after allocating a memory for 35 students, we wanted to add one more student. So we

need same type of memory to store the new entry. Now the question arises `Is there a way to

increase the size of already allocated memory chunk? Can the same chunk be increased or not?

The answer is yes. In such situations, we can reallocate the same memory with a new size

according to our requirement. The function that reallocates the memory is realloc. The syntax of

realloc is given below.

void realloc (void * ptr, size_t size) ;

This function enlarges the space allocated to ptr (in some previous call of calloc or malloc) to a

(new) size in bytes. This function receives two arguments. First is the pointer that is pointing to

the original memory allocated already by using calloc or malloc. The second is the size of the

memory which is a new size other than the previous size. Suppose we have allocated a memory

for 20 integers by the following call of malloc and a pointer iptr points to the allocated memory.

(iptr *) malloc (20 * sizeof(int)) ;

Now we want to reallocate the memory so that we can store 25 integers. We can reallocate the

same memory by the following call of realloc.

realloc (iptr, 25 * sizeof(int)) ;

There are two scenarios to ascertain the success of `realloc'. The first is that it extends the current

location if possible. It is possible only if there is a memory space available contiguous to the

previously allocated memory. In this way the value of the pointer iptr is the same that means it is

pointing to the same starting position, but now the memory is more than the previous one. The

second way is that if such contiguous memory is not available in the current location, realloc

goes back to the heap and looks for a contiguous block of memory for the requested size. Thus it

188

will allocate a new memory and copy the contents of the previous memory in this new allocated

memory. Moreover it will set the value of the pointer iptr to the starting position of this memory.

Thus iptr is now pointing to a new memory location. The original memory is returned to the

heap. In a way, we are handling dynamic arrays. The size of the array can be increased during

the execution. There is another side of the picture. It may happen that we have stored the original

value of iptr in some other pointer say sptr. Afterwards, we are manipulating the data through

both the pointers. Then ,we use realloc for the pointer iptr. The realloc does not find contiguous

memory with the original and allocates a new block of memory and points it by the pointer iptr.

The original memory no longer exists now. The pointer iptr is valid now as it is pointing to the

starting position of the new memory. But the other pointer sptr is no longer valid. It is pointing to

an invalid memory that has been freed and may be is being used some other program. If we

manipulate this pointer, very strange things can happen. The program may crash or the computer

may halt. We don't know what can happen. Now it becomes the programmer's responsibility

again to make it sure that after realloc, the pointer(s) that have the value of the original pointer

have been updated. It is also important to check the pointer returned by realloc for NULL value.

If realloc fails, that means that it cannot allocate the memory. In this case, it returns a NULL

value. After checking NULL value, (if realloc is successful), we should update the pointer that

was referencing the same area of the memory.

We have noticed while getting powers of dynamic memory allocation, we face some dangerous

things along with it. These are real problems. Now we will talk about the common errors that can

happen with the memory allocation.

Sizeof()

The sizeof operator gives the amount of storage, in bytes, required to store an object of the type

of the operand. This operator allows you to avoid specifying machine-dependent data sizes in

your programs.

sizeof unary-expression

sizeof (type-name

If an unsized array is the last element of a structure, the sizeof operator returns the size of the

structure without the array.

189

buffer = calloc(100, sizeof (int));

This example uses the sizeof operator to pass the size of an int, which varies among machines, as

an argument to a run-time function named calloc. The value returned by the function is stored in

buffer.

static char *strings[] ={

"this is string one",

"this is string two",

"this is string three",

};

const int string_no = (sizeof strings) / (sizeof strings[0]);

In this example, strings is an array of pointers to char. The number of pointers is the number of

elements in the array, but is not specified. It is easy to determine the number of pointers by using

the sizeof operator to calculate the number of elements in the array. The const integer value

string_no is initialized to this number. Because it is a const value, string_no cannot be modified.

14.5 Bitwise Operators

When you learn to program in a high-level language like C (although C is fairly low-level, as

high-level languages go), the idea is to avoid worrying too much about the hardware. You want

the ability to represent mathematical abstractions, such as sets, etc. and have high level language

features like threads, higher-order functions, exceptions.

High-level languages, for the most part, try to make you as unaware of the hardware as possible.

Clearly, this isn't entirely true, because efficiency is still a major consideration for some

programming languages.

C, in particular, was created to make it easier to write operating systems. Rather than write

UNIX in assembly, which is slow process (because assembly code is tedious to write), and not

very portable (because assembly is specific to an ISA), the goal was to have a language that

provided good control-flow, some abstractions (structures, function calls), and could be

efficiently compiled and run quickly.

190

Writing operating systems requires the manipulation of data at addresses, and this requires

manipulating individual bits or groups of bits.

That's where two sets of operators are useful: bitwise operators and bitshift operators.

You can find these operators in C, C++, and Java (and presumably C#, since it's basically Java).

Bitwise operators allow you to read and manipulate bits in variables of certain types.

Even though such features are available in C, they aren't often taught in an introductory level

programming course. That's because intro level courses prefer to emphasize abstraction. With

many departments using Java, there's a trend to increase what's abstract, and not get into the

representation.

For example, some languages have support for stacks, queues, hashtables, and so forth. These

"canned" data structures are meant to provide you, the programmer, with objects that perform

certain tasks, while relieving you of the tedium and detail of understanding how the data is

represented.

Nevertheless, if you intend to do some work in systems programming, or other forms of low-

level coding (operating systems, device drivers, socket programming, network programming),

knowing how to access and manipulate bits is important.

Generic Bitwise Operations

Bitwise operators only work on a limited number of types: int and char. This seems restrictive--

and it is restrictive, but it turns out we can gain some flexibility by doing some C "tricks".

It turns out there's more than one kind of int. In particular, there's unsigned int, there's short int,

there's long int, and then unsigned versions of those ints.

The "C" language does not specify the difference between a short int, an int and a long int,

except to state that:

sizeof(short int) <= sizeof(int) <= sizeof(long)

191

You will find that these sizes vary from ISA to ISA, and possibly even compiler to compiler. The

sizes do not have to be distinct. That means all three sizes could be the same, or two of three

could be the same, provided that the above restrictions are held.

Bitwise operators fall into two categories: binary bitwise operators and unary bitwise operators.

Binary operators take two arguments, while unary operators only take one.

We're going to discuss binary operators first, and we'll do in the context of a fake binary operator

called @. Thus, we write x @ y to perform bitwise @ on x and y.

Bitwise operators, like arithmetic operators, do not change the value of the arguments. Instead, a

temporary value is created. This can then be assigned to a variable. For example, when you

write x + y, neither x nor y have their value changed.

Let's assume that we are doing bitwise @ on two unsigned int variables. Let's assume that

unsigned ints use 32 bits of memory. We define two variables X and Y where

X = x31x30....x0

Y = y31y30....y0

We want to be able to refer to each bit of X and Y, which we do so by writing out the bits by

writing the variable name in lowercase and adding the appropriate subscript for thie bit number.

The subscripts follow the convention we've used so far. The least significant bit has a subscript

of 0, and is the rightmost bit. The most significant bit has a subscript of N-1 (for N bits), and is

the leftmost bit. In this case N = 32 so the MSb has a subscript of 31.

Let's define @ to be the @ operation performed on two individual bits. @ is performed on all 32

bits simultaneously.

Furthermore, let's call the temporary value created, T. Normally, this temporary value does not

have a name. It is generated while the program is running, and used in other computations. Thus,

when you write c = a + b, a temporary value is created for the sum a + b, and this temporary

value then gets copied into c.

192

Of course, for efficiency, the temporary value might not be generated, and the value written

directly to c. For more complex statements, such as c = (a + b) - d, temporary values are often

created to store intermediate results. These temporary values are created by the runtime system,

and are not given variable names.

We define Z = X @ Y as:

zi = xi @
1
 yi, for 0 <= i <= N - 1

In words, to compute the i
th

 bit of Z, you should perform the operation on the i
th

 bit

of X and i
th

 bit of Y.

Bitwise AND:

This makes more sense if we apply this to a specific operator. In C/C++/Java, the & operator is

bitwise AND. The following is a chart that defines &
1
, defining AND on individual bits.

xi yi xi &
1
 yi

0 0 0

0 1 0

1 0 0

1 1 1

We can do an example of bitwise &. It's easiest to do this on 4 bit numbers, however.

Variable b3 b2 b1 b0

x 1 1 0 0

y 1 0 1 0

z = x & y 1 0 0 0

193

Bitwise OR

The | operator is bitwise OR (it's a single vertical bar). The following is a chart that defines |
1
,

defining OR on individual bits.

xi yi xi |
1
 yi

0 0 0

0 1 1

1 0 1

1 1 1

We can do an example of bitwise |. It's easiest to do this on 4 bit numbers, however.

Variable b3 b2 b1 b0

x 1 1 0 0

y 1 0 1 0

z = x | y 1 1 1 0

Bitwise XOR

The ^ operator is bitwise XOR. The usual bitwise OR operator is inclusive OR. XOR is true only

if exactly one of the two bits is true. The XOR operation is quite interesting, but we defer talking

about the interesting things you can do with XOR until the next set of notes.

The following is a chart that defines ^
1
, defining XOR on individual bits.

xi yi xi ^yi

0 0 0

0 1 1

194

1 0 1

1 1 0

We can do an example of bitwise ^. It's easiest to do this on 4 bit numbers, however.

Variable b3 b2 b1 b0

x 1 1 0 0

y 1 0 1 0

z = x ^ y 0 1 1 0

Bitwise NOT

There's only one unary bitwise operator, and that's bitwise NOT. Bitwise NOT flips all of the

bits.

There's not that much to say about it, other than it's not the same operation as unary minus.

The following is a chart that defines ~
1
, defining NOT on an individual bit.

xi ~
1
 xi

0 1

1 0

We can do an example of bitwise ~. It's easiest to do this on 4 bit numbers (although only 2 bits

are necessary to show the concept).

Variable b3 b2 b1 b0

x 1 1 0 0

z = ~x 0 0 1 1

195

14.6 Preprocessor Directives

Preprocessor directives, such as #define and #ifdef, are typically used to make source programs

easy to change and easy to compile in different execution environments. Directives in the source

file tell the preprocessor to perform specific actions. For example, the preprocessor can replace

tokens in the text, insert the contents of other files into the source file, or suppress compilation of

part of the file by removing sections of text. Preprocessor lines are recognized and carried out

before macro expansion. Therefore, if a macro expands into something that looks like a

preprocessor command, that command is not recognized by the preprocessor.

Preprocessor statements use the same character set as source file statements, with the exception

that escape sequences are not supported. The character set used in preprocessor statements is the

same as the execution character set. The preprocessor also recognizes negative character values.

The preprocessor recognizes the following directives:

#define #error #import #undef

#elif #if #include #using

#else #ifdef #line

#endif #ifndef #pragma

The number sign (#) must be the first nonwhite-space character on the line containing the

directive; white-space characters can appear between the number sign and the first letter of the

directive. Some directives include arguments or values. Any text that follows a directive (except

an argument or value that is part of the directive) must be preceded by the single-line comment

delimiter (//) or enclosed in comment delimiters (/* */). Lines containing preprocessor directives

can be continued by immediately preceding the end-of-line marker with a backslash (\).

Preprocessor directives can appear anywhere in a source file, but they apply only to the

remainder of the source file.

http://msdn.microsoft.com/en-us/library/6aw8xdf2(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/teas0593(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/c8tk0xsk(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/8etzzkb6(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ts4w8783(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ew2hz0yd(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ew2hz0yd(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/36k2cdd4(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/yab9swk4(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ew2hz0yd(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/2a1b21sf(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/b5w2czay(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/ew2hz0yd(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/2a1b21sf(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/d9x1s805(v=vs.80).aspx

196

14.7 Summary

At the end of this unit we have learnt pointer concept in depth, we dealt with advance concept on

pointers such as passing pointer to function and returning pointer from function. In the later stage

we focused on DMA functions covering malloc, calloc, sizeof()_ free functions with an syntax to

use them and we have seen many examples. In the last section of the unit we have list out various

preprocess directive which are available in C language and also we have seen the bitwise

operators and their operations.

14.8 Keywords

Pointer to function, DMA function, malloc, calloc, free. Sizeof(0, bitwise

14.9 Questions

1. How can pointers be used as arguments for function? Demonstrate the stages with

suitable code as an example?

2. What are DMA functions? Explain all available DMA function in C language?

3. Why we require memory related functions in programming? Give reason?

4. What are preprocess directives? Why we require them?

5. Explain bitwise operators available in C?

14.10 Reference

"Common Pointer Pitfalls" by Dave Marshall

C Programming: A Modern Approach by K.N. King

C Programming in 12 Easy Lessons by Greg Perry

C for Dummies Vol. II by Dan Gookin

197

Unit - 15

Structure

15.0 Objectives

15.1 Introduction

15.2 Structure Variable Declaration

15.3 Accessing Members of Structure

15.4 Nested Structure

15.5 Structure and Functions

15.6 Union-Defining Structure

15.7 Summary

15.8 Key words

15.9 Questions

15.10 References

15.0 Objectives

At the end of this unit you will be able to

 Understand advance concept on pointers

 Sketch out the working principle of pointer to function as argument

 Explain various memory related function

 List out the various preprocess directives and bitwise operators

198

15.1 Structure

Structure is the collection of variables of different types under a single name for better handling.

For example: You want to store the information about person about his/her name, citizenship

number and salary. You can create this information separately but, better approach will be

collection of this information under single name because all these information are related to

person.

Structure Definition in C

Keyword struct is used for creating a structure.

Syntax of structure

struct structure_name

{

 data_type member1;

 data_type member2;

 .

 .

 data_type memebern;

};

We can create the structure as mentioned in above example as:

struct person

{

 char name[50];

 int cit_no;

 float salary;

};

This declaration above creates the derived data type struct person, i.e, a user-defined type.

199

15.2 Structure Variable Declaration

When a structure is defined, it creates a user-defined type but, no storage is allocated. You can

use structure variable using tag name in any part of program. For example:

struct person

{

 char name[50];

 int cit_no;

 float salary;

};

struct person p1, p2, p[20];

Another way of creating sturcture variable is:

struct person

{

 char name[50];

 int cit_no;

 float salary;

}p1 ,p2 ,p[20];

In the above cases, 2 variables p1, p2 and array p having 20 elements of type struct person are

created.

15.3 Accessing members of a Structure

There are two types of operators used for accessing members of a structure.

 Member operator(.)

 Structure pointer operator(->) (will be discussed in respective chapter of structure and

pointers)

Any member of a structure can be accessed as: structure_variable_name.member_name

Suppose, if we want to access salary for variable p2. Then, it can be accessed as: p2.salary

Consider following Example of structure

200

#include <stdio.h>

struct Distance{

 int feet;

 float inch;

}d1,d2,sum;

int main(){

 printf("1st distance\n");

 printf("Enter feet: ");

 scanf("%d",&d1.feet); //input of feet structure for d1

 printf("Enter inch: ");

 scanf("%f",&d1.inch); //input of inch structure for d1

 printf("2nd distance\n");

 printf("Enter feet: ");

 scanf("%d",&d2.feet); //input of feet for structure variable d2

 printf("Enter inch: ");

 scanf("%f",&d2.inch); //input of inch for structure variable d2

 sum.feet=d1.feet+d2.feet;

 sum.inch=d1.inch+d2.inch;

 if (sum.inch>12){ //If inch is greater than 12, changing it to

feet.

 ++sum.feet;

 sum.inch=sum.inch-12;

 }

 printf("Sum of distances=%d\'-%.1f\"",sum.feet,sum.inch);

//printing sum of distance d1 and d2

 return 0;

}

Structure is the collection of variables of different types under a single name for better handling. For

example: You want to store the information about person about his/her name, citizenship number and

salary. You can create this information separately but, better approach will be collection of these

information under single name because all these information are related to person.

Keyword typedef while using structure

Programmers are generally use typedef while using structure in C language. For example:

typedef struct complex{

 int imag;

 float real;

201

}comp;

comp c1,c2;

Here, typedef keyword is used in creating a type comp(which is same type as struct complex).

Then, two structure variables c1 and c2 are created by this comp type.

15.4 Nested Structure

Structures within structures

Structures can be nested within other structures in C programming.

struct complex

{

 int imag_value;

 float real_value;

};

struct number{

 struct complex c1;

 int real;

}n1,n2;

Suppose you want to access imag_value for n2 structure variable then, structure

member n1.c1.imag_value is used.

typedef struct complex complex; complex_no c1,c2,c3;

Here, typdef is used to create a type complex. This type complex is then used in declaring

variables c1, c2 and c3.

15.5 Structure and Function

In C, structure can be passed to functions by two methods:

 Passing by value (passing actual value as argument)

 Passing by reference (passing address of an argument)

202

Passing structure by value

A structure variable can be passed to the function as an argument as normal variable. If structure

is passed by value, change made in structure variable in function definition does not reflect in

original structure variable in calling function.

For example consider the C program to create a structure student, containing name and roll. Ask

user the name and roll of a student in main function. Pass this structure to a function and display

the information in that function.

1

#include <stdio.h>

struct student{

 char name[50];

 int roll;

};

void Display(struct student stu);

/*function prototype should be below to the structure declaration

otherwise compiler shows error */

int main(){

 struct student s1;

 printf("Enter student's name: ");

 scanf("%s",&s1.name);

 printf("Enter roll number:");

 scanf("%d",&s1.roll);

 Display(s1); //passing structure variable s1 as argument

 return 0;

}

void Display(struct student stu){

 printf("Output\nName: %s",stu.name);

 printf("\nRoll: %d",stu.roll);

}

Output

Enter student's name: Kevin Amla

Enter roll number: 149

Output

Name: Kevin Amla

Roll: 149

203

Passing structure by reference

The address location of structure variable is passed to function while passing it by reference. If

structure is passed by reference, change made in structure variable in function definition reflects

in original structure variable in the calling function.

Write a C program to add two distances (feet-inch system) entered by user. To solve this

program, make a structure. Pass two structure variable (containing distance in feet and inch) to

add function by reference and display the result in main function without returning it.

#include <stdio.h>

struct distance{

 int feet;

 float inch;

};

void Add(struct distance d1,struct distance d2, struct distance *d3);

//function prototype

int main()

{

 struct distance dist1, dist2, dist3;

 printf("First distance\n");

 printf("Enter feet: ");

 scanf("%d",&dist1.feet);

 printf("Enter inch: ");

 scanf("%f",&dist1.inch);

 printf("Second distance\n");

 printf("Enter feet: ");

 scanf("%d",&dist2.feet);

 printf("Enter inch: ");

 scanf("%f",&dist2.inch);

 Add(dist1, dist2, &dist3);

/*passing structure variables dist1 and dist2 by value whereas

 passing structure variable dist3 by reference */

 printf("\nSum of distances = %d\'-%.1f\"",dist3.feet, dist3.inch);

 return 0;

}

void Add(struct distance d1,struct distance d2, struct distance *d3)

{

 //Adding distances d1 and d2 and storing it in d3

 d3->feet=d1.feet+d2.feet;

 d3->inch=d1.inch+d2.inch;

 if (d3->inch>=12) {

204

 //if inch is greater or equal to 12, converting it to feet.

 d3->inch-=12;

 ++d3->feet;

 }

}

Output

First distance

Enter feet: 12

Enter inch: 6.8

Second distance

Enter feet: 5

Enter inch: 7.5

Sum of distances = 18'-2.3"

In this program, structure variables dist1 and dist2 are passed by value (because value of dist1

and dist2 does not need to be displayed in main function) and dist3 is passed by reference, i.e,

address of dist3 (&dist3) is passed as an argument. Thus, the structure pointer variable d3 points

to the address of dist3. If any change is made in d3 variable, effect of it is seed in dist3 variable

in main function.

15.6 Union-Defining Structure

Unions are quite similar to the structures in C. Union is also a derived type as structure. Union

can be defined in same manner as structures just the keyword used in defining union

in union where keyword used in defining structure was struct.

union car{

 char name[50];

 int price;

};

Union variables can be created in similar manner as structure variable.

union car{

 char name[50];

 int price;

}c1, c2, *c3;

205

OR;

union car{

 char name[50];

 int price;

};

union car c1, c2, *c3;

In both cases union variables c1, c2 and union pointer variable c3 of type union car is created.

Accessing members of an union

Again, the member of unions can be accessed in similar manner as that structure. Suppose, we

you want to access price for union variable c1 in above example, it can be accessed as c1.price.

If you want to access price for union pointer variable c3, it can be accessed as (*c3).price or

as c3->price.

Difference between union and structure

Though unions are similar to structure in so many ways, the difference between them is crucial

to understand. This can be demonstrated by an example.

#include <stdio.h>

union job { //defining a union

 char name[32];

 float salary;

 int worker_no;

}u;

struct job1 {

 char name[32];

 float salary;

 int worker_no;

}s;

int main(){

 printf("size of union = %d",sizeof(u));

 printf("\nsize of structure = %d", sizeof(s));

206

 return 0;

}

Output

size of union = 32

size of structure = 40

There is difference of memory allocation between union and structure as suggested in above

example. The amount of memory required to store a structure variables is the sum of memory

size of all members.

But, the memory required to store a union variable is the memory of largest element of union.

Difference between structure and union

As you know, all members of structure can be accessed at any time. But, only one member of

union can be accessed at a time in case of union and other members will contain garbage value.

#include <stdio.h>

union job {

 char name[32];

 float salary;

 int worker_no;

}u;

int main(){

 printf("Enter name:\n");

 scanf("%s",&u.name);

 printf("Enter salary: \n");

 scanf("%f",&u.salary);

 printf("Displaying\nName :%s\n",u.name);

 printf("Salary: %.1f",u.salary);

 return 0;

}

Output

207

Enter name

Hillary

Enter salary

1234.23

Displaying

Name: f%Bary

Salary: 1234.2

Note: You may get different garbage value of name.

When code in line no. 9 is executed, Hillary will be stored in u.name and other members of

union will contain garbage value. When code all will executed, 1234.23 will be stored in u.salary

and other members will contain garbage value. Thus in output, salary is printed accurately but,

name displays some random string.

15.7 Summary

At the end this unit we have learnt the concepts about structure and unions. We have introduced

structure through basic thing such as declaring a structure, accessing structure members. A

suitable piece of code as an example taken and demonstrated how exactly the structure concepts

works. In later sections we have touch upon advanced concepts on structure such as passing

structure as a function argument and returning the value. In the last section of this unit we have

introduced union defining function.

15.8 Keywords

struct, typedef, passing by reference

15.9 Questions

1. What is structure? How this is useful in programming?

2. How can structure be treated as a function argument?

3. Explain the concept of union defined functions?

208

4. Do survey and prepare report on how exactly the structure is different from class in

object orient programming?

15.10 Reference

 C Programming: A Modern Approach by K.N. King

C Programming in 12 Easy Lessons by Greg Perry

C for Dummies Vol. II by Dan Gookin

209

Unit 16

Structure

16.0 Objectives

16.1 Array of Structure

16.2 Structure Assignment

16.3 Structure as Function Argument

16.4 Pointers to Structure

16.5 Typedef

16.6 Unions

16.7 Bit fields

16.8 Summary

16.9 Key words

16.10 Questions

16.11 References

16.0 Objectives

At the end of this unit you will be able to

 Explain the use of structure

 Understand the pointers to structure

 Understand typedef, bitfields and unions in detial

210

16.1 Array of structure

It is possible to define a array of structures for example if we are maintaining information of all

the students in the college and if 100 students are studying in the college. We need to use an

array than single variables. We can define an array of structures as shown in the following

example:

structure information

{

int id_no;

char name[20];

char address[20];

char combination[3];

int age;

}

student[100];

An array of structures can be assigned initial values just as any other array can.

Each element is a structure that must be assigned corresponding initial values as

illustrated below.

#include< stdio.h >

{

struct info

{

int id_no;

char name[20];

char address[20];

char combination[3];

int age;

}

struct info std[100];

int I,n;

printf(“Enter the number of students”);

scanf(“%d”,&n);

printf(“ Enter Id_no,name address combination age\m”);

211

for(I=0;I < n;I++)

scanf(%d%s%s%s

%d”,&std[I].id_no,std[I].name,std[I].address,std[I].combinatio

n,&std[I].age);

printf(“\n Student information”);

for (I=0;I< n;I++)

printf(“%d%s%s%s%d\n”,”,std[I].id_no,std[I].name,std[I].address,std[I]

.combination,std[I].age);

}

16.2 Structure Assignment

The following assignment of a struct to another struct does what one might expect. It is not

necessary to use memcpy() to make a duplicate of a struct type. The memory is already given

and zeroed by just declaring a variable of that type regardless of member initialization. This

should not be confused with the requirement of memory management when dealing with a

pointer to a struct.

#include <stdio.h>

/* Define a type point to be a struct with integer members x, y */

typedef struct {

int x;

int y;

} point;

int main(int argc, char * argv[]) {

/* Define a variable p of type point, and initialize all its members inline!

*/

point p = {1,2};

/* Define a variable q of type point. Members are initialized with the

defaults for their derivative types such as 0. */

point q;

/* Assign the value of p to q, copies the member values from p into q. */

q = p;

/* Change the member x of q to have the value of 2 */

q.x = 2;

212

/* Demonstrate we have a copy and that they are now different. */

if (p.x != q.x) printf("The members are not equal! %d != %d", p.x, q.x);

}

16.3 Structures as Function Arguments

A structure can be passed as a function argument just like any other variable. This raises a few

practical issues. Where we wish to modify the value of members of the structure, we must pass a

pointer to that structure. This is just like passing a pointer to an int type argument whose value

we wish to change.

If we are only interested in one member of a structure, it is probably simpler to just pass that

member. This will make for a simpler function, which is easier to re-use. Of course if we wish to

change the value of that member, we should pass a pointer to it.

When a structure is passed as an argument, each member of the structure is copied. This can

prove expensive where structures are large or functions are called frequently. Passing and

working with pointers to large structures may be more efficient in such cases.

#include <stdio.h>

void input (dob_st *);

int main ()

{

 typedef struct

 {

 int year;

 int month;

 int day;

 }

 dob_st;

 dob_st date;

 dob_st *p;

 p=&date;

213

 input (*p);

 printf("%02i.",p->day);

 printf("%02i.",p->month);

 printf("%i.",p->year);

 return 0;

}

void upis (dob_st *p)

{

 printf ("Date of birth:\nDay?\n");

 scanf ("%i",&(p->day));

 printf ("Month?\n");

 scanf ("%i",&(p->month));

 printf ("Year?\n");

 scanf ("%i",&(p->year));

}

16.4 Pointers to Structures

Pointers can be used to refer to a struct by its address. This is particularly useful for

passing structs to a function by reference. The pointer can be dereferenced just like any

other pointer in C — using the *operator. There is also a -> operator in C which

dereferences the pointer to struct (left operand) and then accesses the value of a member

of the struct (right operand).

struct point {

int x;

int y;

} my_point;

struct point *p = &my_point; /* To declare p as a pointer of type

struct point */

214

(*p).x = 8; /* To access the first member of the

struct */

p->x = 8; /* Another way to access the first

member of the struct */

16.5 Typedefs

Typedef is a keyword. The more theoretical information about the typedef is given in last unit.

Readers are directed to refer theoretical aspects from last unit. In this section we will see

programmatic aspects using typedef.

typedef struct {

int account_number;

char *first_name;

char *last_name;

float balance;

} account;

Different users have differing preferences; proponents usually claim:

 shorter to write

 can simplify more complex type definitions

As an example, consider a type that defines a pointer to a function

that accepts pointers to struct types and returns a pointer to struct:

Without typedef:

struct point {

int x;

int y;

};

typedef struct point *(*point_compare_t) (struct point *a, struct

point *b);

With typedef:

struct point {

int x;

int y;

};

215

typedef struct point point_t;

typedef point_t *(*point_compare_t) (point_t *a, point_t *b);

If neither typedef were used in defining a function that takes a pointer to a type of the above

function pointer, the following code would have to be used. Although valid, it becomes

increasingly hard to read quickly.

/* Using the struct point type from before */

/* Define a function that returns a pointer to the biggest point,

using a function to do the comparison. */

struct point * biggest_point (size_t size, struct point *points,

struct point *(*point_compare) (struct point *a, struct point *b))

{

int i;

struct point *biggest = NULL;

for (i=0; i < size; i++) {

biggest = point_compare(biggest, points + i);

}

return biggest;

}

Now with all of the typedefs being used you should see that the complexity of the function signature is

drastically reduced.

/* Using the struct point type from before and all of the typedefs */

/* Define a function that returns a pointer to the biggest point,

using a function to do the comparison. */

point_t * biggest_point(size_t size, point_t * points, point_compare_t

point_compare)

{

int i;

216

point_t * biggest = NULL;

for (i=0; i < size; i++) {

biggest = point_compare(biggest, points + i);

}

return biggest;

}

However, there are a handful of disadvantages in using them:

 They pollute the main namespace (see below), however this is easily overcome with

prefixing a library name to the type name.

 Harder to figure out the aliased type (having to scan/grep through code), though most IDEs

provide this lookup automatically.

 Typedefs do not really "hide" anything in a struct or union — members are still accessible

(account.balance) (To really hide struct members, one needs to use 'incompletely-declared'

structs.)

16.6 Unions

In computer science, a union is a value that may have any of several representations or formats;

or a data structure that consists of a variable which may hold such a value. Some programming

languages support special data types, called union types, to describe such values and variables. In

other words, a union type definition will specify which of a number of permitted primitive types

may be stored in its instances, e.g. "float or long integer". Contrast with a record, which could be

defined to contain a float and an integer; whereas, in a union, there is only one value at a time.

In type theory, a union has a sum type.

Depending on the language and type, a union value may be used in some operations, such

as assignment and comparison for equality, without knowing its specific type. Other operations

may require that knowledge, either by some external information, or by the use of a tagged

union.

217

Because of the limitations of their use, untagged unions are generally only provided in untyped

languages or in an unsafe way (as in C). They have the advantage over simple tagged unions of

not requiring space to store the tag.

The name "union" stems from the type's formal definition. If one sees a type as the set of all

values that that type can take on, a union type is simply the mathematical union of its

constituting types, since it can take on any value any of its fields can. Also, because a

mathematical union discards duplicates, if more than one field of the union can take on a single

common value, it is impossible to tell from the value alone which field was last written.

However, one useful programming function of unions is to map smaller data elements to larger

ones for easier manipulation. A data structure, consisting for example of 4 bytes and a 32-bit

integer, can form a union (in this case with an unsigned 64-bit integer) and thus be more readily

accessed for purposes of comparison etc.

Like a structure, all of the members of a union are by default public. The keywords private,

public, and protected may be used inside a struct or a union in exactly the same way they are

used inside a class for defining private, public, and protected members.

16.7 Bit fields

A bit field is a common idiom used in computer programming to compactly store multiple

logical values as a short series of bits where each of the single bits can be addressed separately.

A bit field is most commonly used to represent integral types of known, fixed bit-width. A well-

known usage of bit-fields is to represent single bit flags with each flag stored in a separate bit.

A bit field is distinguished from a bit array in that the latter is used to store a large set of bits

indexed by integers and is often wider than any integral type supported by the language. Bit

fields, on the other hand, typically fit within a machine word, and the denotation of bits is

independent of their numerical index.

http://en.wikipedia.org/wiki/Computer_programming

218

16.8 Summary

In this unit we have learnt some advance concepts on structure and unions such as passing to

function, pointers to structure. We have given programmatic approach to demonstrate use of

typedef. In later section we covered topic on unions and bitfields.

16.9 Keywords

Typedef, bitfield, unions, pointer to structure, structure as function argument

16.10 Questions

1. Explain the concept of structure as function arguments and pointer to structure with

suitable program?

2. Explain the terms unions, bitfield, typedef

16.11 Reference

C Programming: A Modern Approach by K.N. King

C Programming in 12 Easy Lessons by Greg Perry

C for Dummies Vol. II by Dan Gookin

	tex2html60
	SECTION00010000000000000000
	SECTION00010100000000000000
	SECTION00010200000000000000
	SECTION00010210000000000000
	SECTION00010220000000000000
	SECTION00010300000000000000
	SECTION00010310000000000000
	SECTION00010320000000000000
	SECTION00010400000000000000
	SECTION00010410000000000000
	SECTION00010420000000000000
	stdio.h
	BUFSIZ
	EOF
	L_tmpnam
	stdio.NULL
	SEEK_CUR
	SEEK_END
	SEEK_SET
	TMP_MAX
	stdin
	stdout
	stderr
	FILE
	fpos_t
	stdio.size_t
	fopen
	fflush
	fclose
	remove
	rename
	tmpfile
	tmpnam
	setvbuf
	setbuf
	fprintf
	printf
	sprintf
	vfprintf
	vprintf
	fscanf
	scanf
	fgetc
	fgets
	fputc
	fputs
	getc
	getchar
	gets
	putc
	putchar
	puts
	ungetc
	fread
	fwrite
	fseek
	ftell
	rewind
	fgetpos
	fsetpos
	clearerr
	feof
	ferror
	perror
	math.h
	HUGE_VAL
	ctype.h
	tex2html37
	SECTION0007000000000000000
	SECTION0007200000000000000
	SECTION0007300000000000000
	SECTION0007400000000000000
	SECTION0007500000000000000
	SECTION0007600000000000000
	SECTION0014100000000000000
	622
	tablepreasoc
	SECTION001700000000000000000
	SECTION001710000000000000000
	SECTION0008000000000000000
	tex2html44
	tex2html45
	tex2html46
	tex2html47
	tex2html48
	tex2html49
	tex2html50
	tex2html51
	tex2html52
	tex2html53
	SECTION0008100000000000000
	SECTION0008200000000000000
	SECTION0008300000000000000
	SECTION0008400000000000000
	SECTION0008500000000000000
	SECTION0008600000000000000
	SECTION0008700000000000000
	SECTION0008800000000000000
	SECTION0008900000000000000
	example-2
	example-8
	wp998266
	wp998267
	wp998394
	wp998264
	wp998272
	wp998277
	wp998213
	wp998214
	wp998223
	wp998227
	wp998294
	wp998326
	wp998299
	wp1018571
	wp998297
	wp998327
	wp998310
	wp998322
	wp998229
	wp1001133
	wp998231
	wp998441
	wp998444
	wp998446
	wp998448
	wp998452
	wp998440
	wp998325
	wp998233
	wp1009779
	wp998363
	wp1009780
	wp998365
	wp998239
	wp998240
	wp998241
	wp998366
	wp998246
	SECTION00012200000000000000
	SECTION00012300000000000000

