GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

NETWORK PROGRAMMING LAB

INDEX
Page
SI.No. TITLE
- No.
1 System Requirements 3
2 Lab Objectives 4
3 Guidelines to Students 5
LIST OF PROGRAMS
1 Implement the following forms of IPC. 6
a) Pipes b) FIFO
2 Implement file transfer using Message Queue form of IPC. 14
3 Write a Program to create an integer variable using Shared Memory concept and
increment the variable simultaneously by two processes. Use Semaphores to avoid 18
Race conditions.
4 Design TCP iterative Client and Server application to reverse the given input sentence. | 23
5 Design TCP concurrent Client and Server application to reverse the given input 23
sentence.
6 Design TCP Client and Server application to transfer file. 29
7 Design a TCP concurrent Server to convert a given text into upper case using 34
multiplexing system call “select”.
8 Design a TCP concurrent Server to echo given set of sentences using Poll functions. 42
9 Design UDP Client and Server application to reverse the given input sentence. 49
10 Design UDP Client Server to transfer a file. 56
11 Design using Poll Client Server application to multiplex TCP and UDP requests for 60
converting a given text into upper case.
12 Design a RPC application to add and subtract a given pair of integers. 67

1 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

ADD ON PROGRAMS

1 Program to determine the host ByteOrder 75

2 Program to set and get socket options 77

Reference Books:
1.Advance Unix Programming Richard Stevens, Second Edition Pearson Education
2. Advance Unix Programming, N.B. Venkateswarlu, BS Publication

Signature of the Faculty Signature of the HOD

2 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

System Requirements

Recommended Systems/Software Requirements:

> Intel based desktop PC with minimum of 166 MHZ or faster processor with at least

64 MB RAM and 100 MB free disk space LAN Connected

> Any flavor of Unix / Linux

3 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

1)
2)
3)
4)

5)

Lab Objectives

To write, execute and debug c programs which use Socket API.

To understand the use of client/server architecture in application development
To understand how to use TCP and UDP based sockets and their differences.
To get acquainted with unix system internals like Socket files, IPC structures.

To Design reliable servers using both TCP and UDP sockets

4 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

GUIDELINES TO STUDENTS

» Equipment in the lab for the use of student community. Students need to
maintain a proper decorum in the computer lab. Students must use the

equipment with care. Any damage is caused is punishable.

» Students are required to carry their observation / programs book with

completed exercises while entering the lab.

» Students are supposed to occupy the machines allotted to them and are not
supposed to talk or make noise in the lab. The allocation is put up on the lab

notice board.

» Lab can be used in free time / lunch hours by the students who need to use

the systems should take prior permission from the lab in-charge.

> Lab records need to be submitted on or before date of submission.

» Students are not supposed to use cd’s and pen drives.

5 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK 1
AIM: Implement the following forms of IPC
a) Pipes b) FIFO

a) Pipes:
DESCRIPTION:

There is no form of IPC that is simpler than pipes, Implemented on every flavor of UNIX.

£d[1] £4[0]

Pipe

write () read ()

Basically, a call to the pipe() function returns a pair of file descriptors. One of these
descriptors is connected to the write end of the pipe, and the other is connected to the read
end. Anything can be written to the pipe, and read from the other end in the order it came
in. On many systems, pipes will fill up after you write about 10K to them without reading
anything out.

The following example shows how a pipe is created, reading and writing from pipe.
A pipe provides a one-way flow of data.
A pipe is created by the pipe system call. int pipe (int *filedes) ;

Two file descriptors are returned- filedes[0] which is open for reading , and filedes[1] which
is open for writing.

Parent process Child process
Read fd fork Read fd
Write fd (" | Write fd i
Kernel
Pipe

—Flowof data—=>

Fig: Pipe in a single process, immediately after fork

6 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Pipes are typically used to communicate between two different processes in the following
way. First, a process creates a pipe and then forks to create a copy of itself, as shown above
figure.

Next the parent process closes the read end of the pipe and the child process closes the
write end of the pipe.

The fork system call creates a copy of the process that was executing.

The process that executed the fork is called the parent process and the new process is called
the child process.

The fork system call is called once but it returns twice.

1) The first return value in the parent process is the process ID of the newly created
child process.

2) The second return value in the child process is zero.
If the fork system call is not successful, -1 is returned

Pseudo code:

START
Store any message in one character array (char *msg="Hello world”)
Declare another character array
Create a pipe by using pipe() system call
Create another process by executing fork() system call
In parent process use system call write() to write message from one process to
another process.
In child process display the message.
END
/* CREATION OF A ONEWAY PIPE IN A SINGLE PROCESS. */

PROGRAM

#include<stdio.h>

#include<stdlib.h>

main()

{
int pipefd[2],n;
char buff[100];
pipe(pipefd);
printf("\nreadfd=%d",pipefd[0]);
printf("\nwritefd=%d",pipefd[1]);

7 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

write(pipefd[1],"helloworld",12);

n=read(pipefd[1],buff,sizeof(buff));

printf("\n size of the data%d",n);

printf("\n data from pipe:%s",buff);
}

OUTPUT:

readfd=3
writefd=4
size of the data-1

/* CREATION OF A ONEWAY PIPE BETWEEN TWO PROCESS */
PROGRAM

#include<stdio.h>
#include<stdlib.h>
main()
{
int pipefd[2],n,pid;
char buff[100];
pipe(pipefd);
printf("\n readfd=%d",pipefd[0]);
printf("\n writefd=%d",pipefd[1]);
pid=fork();
if(pid==0)
{
close(pipefd[0]);
printf("\n CHILD PROCESS SENDING DATA\n");
write(pipefd[1],"hello world",12);

}
else
{
close(pipefd[1]);
printf("PARENT PROCESS RECEIVES DATA\n");
n=read(pipefd[0],buff,sizeof(buff));
printf("\n size of data%d",n);
printf("\n data received from child throughpipe:%s\n",buff);
}

8 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

OUTPUT

readfd=3
writefd=4

CHILD PROCESS SENDING DATA
writefd=4PARENT PROCESS RECEIVES DATA

/*CREATION OF A TWOWAY PIPE BETWEEN TWO PROCESS*/

PROGRAM

#include<stdio.h>
#include<stdlib.h>

main()

{

int p1[2],p2[2],n,pid;

char buf1[25],buf2[25];

pipe(pl);

pipe(p2);

printf("\n readfds=%d %d\n",p1[0],p2[0]);
printf("\n writefds=%d %d\n",p1[1],p2[1]);
pid=fork();

if(pid==0)

{

else

close(p1[0]);

printf("\n CHILD PROCESS SENDING DATA\n");
write(p1[1],"where is GEC",25);

close(p2[1]);

read(p2[0],bufl,25);

printf(" reply from parent:%s\n",bufl);
sleep(2);

close(p1[1]);

printf("\n parent process receiving data\n");
n=read(p1[0],buf2,sizeof(buf2));

printf("\n data received from child through pipe:%s\n",buf2);
sleep(3);

close(p2[0]);

write(p2[1]," in gudlavalleru",25);

printf("\n reply send\n");

NETWORK PROGRAMMING LAB MANUAL

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

OUTPUT:

readfds=3 5
writefds=4 6

CHILD PROCESS SENDING DATA

parent process receiving data
data received from child through pipe:where is GEC

reply send
reply from parent: in gudlavalleru

b) FIFO:
DESCRIPTION:

A FIFO (“First In, First Out”) is sometimes known as a named pipe. That is, it's like a pipe,
except that it has a name! In this case, the name is that of a file that multiple processes can
open() and read and write to.

This latter aspect of FIFOs is designed to let them get around one of the shortcomings of
normal pipes: you can't get one end of a normal pipe that was created by an unrelated
process. See, if | run two individual copies of a program, they can both call pipe() all they
want and still not be able to communicate to one another. (This is because you must pipe(),
then fork() to get a child process that can communicate to the parent via the pipe.) With
FIFOs, though, each unrelated process can simply open() the pipe and transfer data through
it.

Since the FIFO is actually a file on disk, we have to call mknod() with the proper arguments
create it.. Here is a mknod() call that creates a FIFO:

Int mknod (char *pathname, int mode, int dev) ;

Pathname = is the name of the fifo file . Mode = The mode argument specifies the file
mode access mode and is logically or’ ed with the S_IFIFO flag.

mknod() returns -1 if unsuccessful and 0 (zero) otherwise

mknod("myfifo", S_IFIFO | 0644, 0);

In the above example, the FIFO file will be called “myfifo”. The second argument is the
creation mode, which is used to tell mknod() to make a FIFO (the S_IFIFO part of the OR)
and sets access permissions to that file (octal 644, or rw-r--r--) which can also be set by

ORing together macros from sys/stat.h. Finally, a device number is passed. This is ignored

10 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

when creating a FIFO, so you can put anything you want in there. Once the FIFO has been
created, a process can start up and open it for reading or writing using the standard open()

system call.

Note: a FIFO can also be created from the command line using the Unixmknod command.

Here is a small example of FIFO. This is a simulation of Producers and Consumers Problem.

Two programs are presented Producer.c and Consumer.c where Producer writes into FIFO

and Consumer reads from FIFO.

Pseudo code for FIFO SERVER:

START

Create a fifo is created by the mknod system call.

Initialize a fifo and set its attributes.

wait for the client request, on request establish a connection using accept function.
fork a child process.

Read the message from the client through the connection.

Display the client | message.

send an acknowledgement message to the client .

Exit the child process.

END

Pseudo code for FIFO CLIENT:

START

Initialize the fifo and set its attributes.
sent message to the server.

END

11 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

/* INTERPROCESS COMMUNICATION THROUGH FIFO BETWEEN CLIENT AND SERVER */
PROGRAM
SERVER Program

#include<stdio.h>

#include<ctype.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<fcntl.h>

#include<stdlib.h>

#include<string.h>

main()

{
int wrfd,rdfd,n,d,ret_val,count;
char buf[50];
/*create the first named pipe */
ret_val=mkfifo("np1",0666);
/*create the second named pipe */
ret_val=mkfifo("np2",0666);
/*open the first named pipe for reading*/
rdfd=open("np1",0_RDONLY);
/*open the second named pipe for writing*/
wrfd=open("np2",0_WRONLY);

/*read from the first pipe*/

n=read(rdfd,buf,50);

buf[n]="\0";//end of line

printf("full duplex server:read from the pipe:%s\n",buf);

/*convert the string to upper class*/
count=0;
while(count<n)
{
buf[count]=toupper(buf[count]);
count++;

}

/*write the convertor string back to second pipe*/

write(wrfd,buf,strlen(buf));

}
FIFO SERVER OUT PUT:

[cse09_a3@localhost ~]S cc server.c -o ser
[cse09_a3@localhost ~]S ./ser
full duplex server:read from the pipe: hello

12 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

CLIENT PROGRAM

#include<stdio.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<fentl.h>
#include<stdlib.h>
#include<string.h>
#include<ctype.h>
main()
{
int wrfd,rdfd,n;
char buf[50],line[50];
/*open the first named pipe for writing*/
wrfd=open("np1",0_WRONLY);
/*create the second named pipe for reading */
rdfd=open("np2",0_RDONLY);
/*write to the pipe*/
printf("enter line of text");
gets(line);
write(wrfd,line,strlen(line));
/*read from the pipe*/
n=read(rdfd,buf,50);
buf[n]="\0";//end of line
printf("full duplex client:read from the pipe:%s\n",buf);

}

FIFO CLIENT OUT PUT

[cse09 _a3@localhost ~]S ./cli
enter line of text hello
full duplex client:read from the pipe: HELLO

13

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK-2

AIM: Implement file transfer using Message Queue form of IPC

DESCRIPTION:
Char *path Key t key Msgget() Intid
— Ftok() > Semget() —
Char proj Shmget()

Fig:Generate IPC ids using ftok

#include <sys/types.h>
#include<sys/ipc.h>

Key_t ftok(char *pathname, char proj) ;

The file <sys/types.h> defines the key_t datatype, which is typically a 32-bit integer.

Ftok converts a pathname and a project identifier to a system V IPC key
v System V IPC keys are used to identify message queues, shared memory, and semaphores.
v If the pathname does not exist, or is not accessible to the calling process, ftok returns -1.

v" Once the pathname and proj are agreed on by the client and server, then both can call the
ftok function to convert these into the same IPC key.

Msgget Ssystem call:
A new message queue is created or an existing message Queueis accesed with the
msgget system call

Int msgget (key_t key, int msgflag);

The value returned by msgget is the message queue identifier, msqid, or -1 if an error
occurred.
msgsnd system call:

once a message queue is opended with msgget,we put a message otn the queue
using the msgsnd system call.

int msgsnd (int msqid , struct msgbuf *ptr, int length);

14 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

msgrcv system call:

NETWORK PROGRAMMING LAB MANUAL

A message is read from a message queue using the msgrcv system call.

int msgrev(int msqid,struct msgbuf *ptr, int length, long msgtype, int flag);

msgctl system call:

int msgctl(int msqid, int cmd, struct msqid_ds *buff);

Client 1 Client 1 Client 3
Pad=113 Pid=456 Fid=T80
| |1
Type=113 Type=338 Type=TH2
Tipel Typel Typel
1l | i ,
I I
I Meszage quene I
S =]
Type=l Type=113 or 456 ar TIQ
5BTVer
Fig: multiplening messaze between three chents and one server
siroct megid_ds
Alzg perm
SO mre
megd T
— (] Ek 4 bk NULL
e < [Tpen | | Tpew | || Tpem
Mg last
Lengti=] | | Lemg | || Lot
data data data
Msg ctime
Figmessage quens strociures in kernel.
15

the msgctl system call providea a variety of control operations on a message queue .

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Pseudo code:

START
Initialize character array with string.
Create a message Queue by using msgget() system call.
send a message with msgsnd() system call.
Receive the message by using msgrcv() system call.
Print the message.
kill the message queue using msgctl() system call.

END

Message queues are implemented as linked lists of data stored in shared memory. The
message queue itself contains a series of data structures, one for each message, each of
which identifies the address, type, and size of the message plus a pointer to the next
message in the queue.

To allocate a queue, a program uses the msgget() system call. Messages are placed in the
gueue by msgsnd() system calls and retrieved by msgrcv() . Other operations related to

managing a given message queue are performed by the msgctl() system call.

PROGRAM

SERVER Program

#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/msg.h>
#include<stdio.h>
#include<unistd.h>
#include<string.h>

main()
{
int msqid,|;
struct
{
long mtype;
char fname[20];
tmsgbuf;

msqid=msgget((key_t)10,IPC_CREAT|0666);
16 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

msgrcv(msqid,&msgbuf,sizeof(msgbuf),0,0);
printf("\n Received filename %s \n",msgbuf.fname);

}

CLIENT PROGRAM

#include<sys/types.h>
#include<sys/ipc.h>
#include<sys/msg.h>
#include<stdio.h>
#include<unistd.h>
#include<string.h>

main()
{
int msqid, |;
struct
{
long mtype;
char fname[20];
tmsgbuf;

msqid=msgget((key_t)10,IPC_CREAT|0666);

printf("Enter file name");

scanf("%s",msgbuf.fname);

msgsnd(msgid,&msgbuf,sizeof(msgbuf),0);
}

MESSAGE SENDER OUTPUT:

[student@localhost ~]$ cc msgsndQ.c -0 msgsndQ
[student@localhost ~]$./msgsndQ pipe.c
msgid=0

Send Msg Success : return 0

MESSAGE RECIEVER OUTPUT:

[student@localhost ~]$ cc msgrecvQ.c -o msgrecvQ
[student@localhost ~]$./msgrecv recvpipe.c
msgid=0

Rec Bytes : 415

17

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK-3

AIM: Write a program to create an integer variable using shared memory concept and
increment the variable simultaneously by two processes. Use semaphores to avoid
race conditions.

DECRIPTION:

Semaphores are synchronization primitive. If we have one resource say a file that is
shared ,then the valid semaphore values are zero and one. Semaphore is used to provide
resource synchronization between different processes the actual semaphore value must be
stored in the kernel.

Process A Process B

Semaphore: 0or 1

To obtained a resource that is controlled by a semaphore a process needs to test its
current value, and if the current value is greater than zero, decrement the value by one.
O=wait l=enter
If the current value is zero the processes must wait until the value it greater than
zero.

Ftok: It converts a pathname and a project identifier to a system V IPC key
Key_t ftok(char *pathname, char proj);

Pathname =name of a file, name of a server or name of a client.
Project identifier =name of the IPC channel.

Semget:a semaphore is created or an existing semaphore is accesed with the segment
system call.

Int semget(key_t key, int nsems, int semflag);

Semctl system call:

int semctl(int semid, int semnum, int cmd, union sem arg);
union semnum

{

int val;
struct semid_ds *buff;
ushort *array;

}

arg;

18 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Semop system call: operations are performed on one or more of the semaphore values in

the set using semop system call.

Int semop(int semid, struct sembuf *opstr, unsigned int nops):

The pointer opstr points to an array of the following structure.

Stroct sembuf

{
Ushort sem num;
Short sem_op;
Short sem_flg;

b
Char *path Kay t kev Imt id
1 Frok() Semgat) ——
Char prog
Fig-semaphore
semid
Struct zemid ds Semval [0]
eIl [
St e 0]
am pase
Sem pomt
[0
SEm_msems *
== 1]
Sem_otome e pid 1]
Sem_cime Sem ncat m
sem zomt 1]
Fizsimnciemid ds
19

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Shared memory concept using Semaphores

Shared memory is perhaps the most powerful of the SysV IPC methods, and it is the easiest

to implement. As the name implies, a block of memory is shared between processes. Listing

7 shows a program that calls fork(2) to split itself into a parent process and a child process,

communicating between the two using a shared memory segment.

Pseudo code:

START
Create a shared memory using mhmget().
store integer value in shared memory. (shmat())

create a child process using fork().

get a semaphore on shared memory using semget().

increase the value of shared variable
release the semaphore

repeat step 4,5,6 in child process also.
remove shared memory.

END

PROGRAM

#include<sys/stat.h>
#include<stdio.h>
#include<sys/types.h>
#include<sys/shm.h>
#include<sys/ipc.h>
#include<sys/sem.h>
#include<string.h>
#define SIZE 10

int *integer=0;

main()

{
int shmid;
key tkey 10;
char *shm;

int semid, pid;
shmid=shmget((key_t)10,SIZE,IPC_CREAT|0666);
shm=shmat(shmid,NULL,0);

semid = semget(0x20,1,IPC_CREAT|0666);
integer=(int *)shm;

20

Dept of CSE

GUDLAVALLERU ENGG COLLEGE

pid=fork();
if(pid==0)
{
int i=0;
while(i<10)
{
sleep(2);

printf("\n child process use shared memory");

NETWORK PROGRAMMING LAB MANUAL

accessmem(semid);

i++;

7

else

int j=0;
while(j<10)
{

sleep(j);

printf("\n parent versus shared memory");

accessmem(semid);

j+;
}

}
shmctl(semid,IPC_RMID,0);

}

int accessmem(int semid)

{
struct sembuf sop;
sop.sem_num=0;
sop.sem_op=-1;
sop.sem_flg=0;
semop(semid,&sop,1);
(*integer)++;

printf("\t integer variable=%d",(*integer));

sop.sem_num=0;
sop.sem_op=1;
sop.sem_flg=0;
semop(semid,&sop,1);

OUTPUT:

parent process uses shared memory Integer variable=631

parent process uses shared memory Integer variable=633

child process uses shared memory

Integer variable=632
21

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

parent process uses shared memory Integer variable=634
parent process uses shared memory Integer variable=636
parent process uses shared memory Integer variable=638
child process uses shared memory Integer variable=635
child process uses shared memory Integer variable=641
child process uses shared memory Integer variable=645

child process uses shared memory Integer variable=649

22 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK-4 &5

AIM: Design TCP iterative Client and server application to reverse the given input
sentence.

DECRIPTION:

Socket function:

#include <sys/socket.h>

int socket int family, int type, int protocol);

The family specifies the protocol family

Family Description

AF_INET IPV4 protocol
AF_INET6 IPV6 protocol
AF_LOCAL unix domain protocol
AF_ROUTE routing sockets
AF_KEY key socket

Type Description
SOCK_STREAM Stream description
SOCK_DGRAM Datagram socket
SOCK_RAW Raw socket

The protocol argument to the socket function is set to zero except for raw sockets.

Connect function: The connect function is used by a TCP client to establish a connection
with a TCP server.
‘ int connect(int sockfd, const struct sockaddr *servaddr, socklen_t addrlen); |

Bind function: The bind function assigns a local protocol address to a socket.
‘ int bind(int sockfd, const struct sockaddr *myaddr, s ocklen_t addrlen); ‘

Bzero: It sets the specified number of bytes to 0(zero) in the destination. We often use this
function to initialize a socket address structure to 0O(zero).
#include<strings.h>
void bzer(void *dest,size_t nbytes);

Memset: It sets the specified number of bytes to the value c in the destination.

#include<string.h>
void *memset(void *dest, int c, size_t len);

23 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Close function: The normal UNIX close function is also used to close a socket and terminate a TCP

connection.

#tinclude<unistd.h>

int close(int sockfd);

Return 0if ok, -1 on error.

Listen function: The second argument to this function specifies the maximum number of

connection that the kernel should queue for this socket.

int listen(int sockfd, int backlog); ‘

Accept function: The cliaddr and addrlen argument are used to ret urn the protocol address of the

connected peer processes (client)

int accept(int sockfd, struct sockaddr *cliaaddr, socklen_t *addrlen); ‘

IPv4 Socket Address Structure:
An IPv4 socket address structure, commonly called an “ Internet socket address

structure, “ is named sockaddr_in and defined by including the <netinet/in.h> header.

struct in_addr
{
in_addr_t s_addr; /* network byte ordered */
b
struct sockaddr_in
{
uint8_t sin_len; /* length of structure(16) */
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* 16-bit TCP or UDP port number*/
/* network byte ordered */
struct in_addr sin_addr; /* 32-bit IPv4 address */
/*newtork byte ordered */
char sin_zero[8]; /* unused */
b
Address Conversion functions
#include<netinet/in.h>
Uintl6_t htons(uintl6_t hostl6bitvalue);
Uint32_t htonl(uint32_t host32bitvalue);
Uintl6_t ntohs(uintl6_t netl6bitvalue);
Uint32_t ntohl(uint32_t net32bitvalue);

24 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

NETWORK PROGRAMMING LAB MANUAL

Socket functions for elementary TCP client/server

TCP Client

socket ()

Y

connect (

-

TCP Server

socket (

Y

bind()

v

listen()

Y

accept (

v

blocks until connection
from client

well-known
port

connection establishment

|
Y

—p write()

Y

read()

[
y

close()

(ICP three-way handshake)

-

dam(m’w) write()
%’
read()

25

read() -

v

process request

v

Y

close()

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Pseudo code:

START
Client sends message to server using sent functions.
Server receives all the messages, server ignores all the consonants in the message.
All the vowels in the message are converted into upper case.
Server returns the entire message to clients (with toggled vowel cases).
END

For example: "This is a test and sample message." to server will be sent back to client as
"This Is A tEst And SAmplE mEssAgE."

When client closes the connection server should close the communication with that client
(socket). And once again wait for new clients to connect. Server program never exits.

Using fork function rewrite the programs, such that this server can handle multiple client
connections at one time. To test this you need to run simultaneously multiple copies of
client executions. Please log on server machine number of clients it is handled at this time.

PROGRAM
CLIENTPROGRAM

#include<string.h>
tinclude<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<sys/types.h>
#define MAXLINE 20
#define SERV_PORT 5777
main(int argc,char *argv)
{
char sendline[MAXLINE],revline[MAXLINE];
int sockfd;
struct sockaddr_in servaddr;

sockfd=socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=ntohs(SERV_PORT);

connect(sockfd,(struct sockaddr*)&servaddr,sizeof(servaddr));
printf("\n enter the data to be send");

26 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

while(fgets(sendline, MAXLINE,stdin)!=NULL)

{
write(sockfd,sendline,strlen(sendline));
printf("\n line send");
read(sockfd,revline, MAXLINE);
printf("\n reverse of the given sentence is : %s",revline);
printf("\n");
}
exit(0);

}

SERVER PROGRAM

#include<string.h>
#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<sys/types.h>
t#tdefine MAXLINE 20
#define SERV_PORT 5777
main(int argc,char *argv)
{
intij;
ssize_tn;
char line[MAXLINE],revline[MAXLINE];
int listenfd,connfd,clilen;
struct sockaddr_in servaddr,cliaddr;

listenfd=socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(SERV_PORT);

bind(listenfd,(struct sockaddr*)&servaddr,sizeof(servaddr));
listen(listenfd,1);

for(; ;)
{
clilen=sizeof(cliaddr);
connfd=accept(listenfd,(struct sockaddr*)&cliaddr,&clilen);
printf("connect to client");
while(1)
{
if((n=read(connfd,line, MAXLINE))==0)
break;

27 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

line[n-1]="\0";
j=0;

for(i=n-2;i>=0;i--)
revline[j++]=lineli];
revline[j]="\0";
write(connfd,revline,n);

OuUTPUT

Enter the data to be send: cse
Line send
Reverse of the given sentence: esc

28

NETWORK PROGRAMMING LAB MANUAL

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK-6
AIM: Design TCP client and server application to transfer file

DESCRIPTION:

Socket function:

#include <sys/socket.h>

int socket int family, int type, int protocol);

The family specifies the protocol family

Family Description

AF_INET IPV4 protocol
AF_INET6 IPV6 protocol
AF_LOCAL unix domain protocol
AF_ROUTE routing sockets
AF_KEY key socket

Type Description
SOCK_STREAM Stream description
SOCK_DGRAM Datagram socket
SOCK_RAW Raw socket

The protocol argument to the socket function is set to zero except for raw sockets.

Connect function: The connect function is used by a TCP client to establish a connection
with a TCP server.
\ int connect(int sockfd, const struct sockaddr *servaddr, socklen_t addrlen); |

Bind function: The bind function assigns a local protocol address to a socket.
‘ int bind(int sockfd, const struct sockaddr *myaddr, s ocklen_t addrlen); ‘

Bzero: It sets the specified number of bytes to 0(zero) in the destination. We often use this
function to initialize a socket address structure to 0O(zero).
#include<strings.h>
void bzer(void *dest,size_t nbytes);

Memset: It sets the specified number of bytes to the value c in the destination.

#include<string.h>
void *memset(void *dest, int c, size_t len);

29 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Close function: The normal UNIX close function is also used to close a socket and terminate a TCP

connection.

#tinclude<unistd.h>

int close(int sockfd);

Return 0if ok, -1 on error.

Listen function: The second argument to this function specifies the maximum number of

connection that the kernel should queue for this socket.

int listen(int sockfd, int backlog); ‘

Accept function: The cliaddr and addrlen argument are used to ret urn the protocol address of the

connected peer processes (client)

int accept(int sockfd, struct sockaddr *cliaaddr, socklen_t *addrlen); ‘

IPv4 Socket Address Structure:

An IPv4 socket address structure, commonly called an “ Internet socket address

structure, “is named sockaddr_in and defined by including the <netinet/in.h> header.

struct in_addr
{
in_addr_t s_addr; /* network byte ordered */
b
struct sockaddr_in
{
uint8_t sin_len; /* length of structure(16) */
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* 16-bit TCP or UDP port number*/
/* network byte ordered */
struct in_addr sin_addr; /* 32-bit IPv4 address */
/*newtork byte ordered */
char sin_zero[8]; /* unused */
b

Address Conversion functions

#include<netinet/in.h>

Uintl6_t htons(uintl6_t hostl6bitvalue);
Uint32_t htonl(uint32_t host32bitvalue);
Uintl6_t ntohs(uintl6_t netl6bitvalue);
Uint32_t ntohl(uint32_t net32bitvalue);

30 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

Pseudo code:
Server side Filer Transfer TCP Pseudo code:

START

END

Start the program.

Declare the variables and structure for the socket.
Create a socket using socket functions

The socket is binded at the specified port.

Using the object the port and address are declared.
After the binding is executed the file is specified.
Then the file is specified.

Execute the client program.

Client side File Transfer TCP Pseudo code:

START

END

Start the program.
Declare the variables and structure.
Socket is created and connects function is executed.

If the connection is successful then server sends the message.

The file name that is to be transferred is specified in the client side.

The contents of the file is verified from the server side.

31

NETWORK PROGRAMMING LAB MANUAL

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

SERVER PROGRAM

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<sys/types.h>
#define SERV_PORT 5576
main(int argc,char **argv)
{
int i,j;
ssize_tn;
FILE *fp;
char s[80],f[80];
struct sockaddr_in servaddr,cliaddr;
int listenfd,connfd,clilen;
listenfd=socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(SERV_PORT);
bind(listenfd,(struct sockaddr *)&servaddr,sizeof(servaddr));
listen(listenfd,1);
clilen=sizeof(cliaddr);
connfd=accept(listenfd,(struct sockaddr*)&cliaddr,&clilen);
printf("\n clinet connected");
read(connfd,f,80);
fp=fopen(f,"r");
printf("\n name of the file: %s",f);
while(fgets(s,80,fp)!=NULL)

{
printf("%s",s);
write(connfd,s,sizeof(s));
}
}
SERVER OUTPUT:

clinet connected

name of the file : samplehai
This is the argument file name
for the server

enjoy the np lab......

32 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

CLIENT PROGRAM

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<sys/types.h>
#define SERV_PORT 5576
main(int argc,char **argv)
{
int i,j;
ssize_tn;
char filename[80],recvline[80];
struct sockaddr_in servaddr;
int sockfd;
sockfd=socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(SERV_PORT);
inet_pton(AF_INET,argv[1],&servaddr.sin_addr);

NETWORK PROGRAMMING LAB MANUAL

connect(sockfd,(struct sockaddr*)&servaddr,sizeof(servaddr));

printf("enter the file name");
scanf("%s",filename);
write(sockfd,filename,sizeof(filename));
printf("\n data from server: \n");

while(read(sockfd,recvline,80)!=0)

{

fputs(recvline,stdout);

}
}

CLIENT OUTPUT

enter the file namesample
data from server:

hai

this is the argument file name
for the server

enjoy the np lab......

33

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK-7

AIM: Design a TCP concurrent server to convert a given text into upper case using

multiplexing system call “select”.

Description:

Client sends message to server using sent functions. Server receives all the messages.
The select function allows the process to instruct the kernel to wait for any one of multiple
events to occur and to wake up the process onlywhen one or more of these events occurs or

when a specified amount of time has passed.

The select () and poll () methods can be a powerful tool when you’re multiplexing network
sockets. Specifically, these methods will indicate when a procedure will be safe to execute
on an open file descriptor without any delays. For instance, a programmer can use these
calls to know when there is data to be read on a socket. By delegating responsibility to
select() and poll(), you don’t have to constantly check whether there is data to be read.
Instead, select() and poll() can be placed in the background by the operating system and

woken up when the event is satisfied or a specified timeout has elapsed.

This process can significantly increase execution efficiency of a program. (If you are more
concerned with performance than portability, we discuss some alternatives to select() and
poll()toward the end of the article.)

select() description The Single UNIX Specification, version 2 (SUSv2) defines select() as

follows:

int select(int nfds,fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct timeval
*timeout); 1t takes these parameters:

- int nfds - The highest file descriptor in all given sets plus one

- fd_set *readfds - File descriptors that will trigger a return when data is ready to be read

- fd_set *writefds - File descriptors that will trigger a return when data is ready to be written
to

- fd_set *errorfds - File descriptors that will trigger a return when an exception occurs

- struct timeval *timeout - The maximum period select() should wait for an event

34 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

The return value indicates the number of file descriptors (fds) whose request event has
been satisfied. You can’t modify the fd_set structure by changing its value directly. The only

portable way to either set or retrieve the value is by using the provided FD_* macros:

- FD_ZERO(fd_set *) - Initializes an fd_set to be empty

- FD_CLR(int fd, fd_set *) - Removes the associated fd from the fd_set

- FD_SET(int fd, fd_set *) - Adds the associated fd to the fd_set

- FD_ISSET(int fd, fd_set *) - Returns a nonzero value if the fd is in fd_set

Upon return from select(), FD_ISSET() can be called for each fd in a given set to identify
whether its condition has been met. With the timeout value, you can specify how long
select() will wait for an event. Iftimeout is NULL, select() will wait indefinitely for an event. If
timeout's timevalstructures are set to 0, select() will return immediately rather than wait for

any event to occur. Otherwise, timeout defines how long select() will wait.

Pseudo code for SERVER:

START

Declare sockfd,connfd as integer variables
Declare clint as integer array
Declare len newfd,maxfd,max and | as integer variables
Declare character arrays named as recv_bufand send_buf
Declare rset,allset ae fd_set type
Declare variables named server_addr and client_addr for sockaddr_in structure
Declare n as ssize_t type
If socket system call returns -1
then perror socket
Exit
Call memeset system call to set the no of bytes to the value in the destination
Set server_addr.sin_family=AF_INET
Set server_addr.sin_port=htons(50000)
Set server_addr.sin_addr.s_addr=htonl(INADDR_ANY)
Call bzero system call to set the specified no of bytes to 0
If bind system call returns -1
then
Perror unable to bind
Exit

35 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

End if
Call listen system call
Set maxfd = sockfd
Set maxi=-1
Loop
form 0O to less than fd_setsize
Set client[i]=-1
Call FD_ZERO(&all) to initialize the set all bits off
Call FD_SET(sockfd,&all) to turn on sockfd
Print tcp server waiting
While true
Set rset=allset
Call select system call tomonitor multiple file descriptors and assign it to nready
If FD_ISSET system call returns true
Then
Set len=sizeof(client_addr)
Call accept system call to accept the client request and assign it to the connfd
Print | got connection from client

Loop from O to less than FD_SETSIZE
If client[i] is less than zero
then
Set client[i]=connfd
Break
End if
If I is equal to FD_SETSIZE
Print too many clients
Exit
End if
Call FD_SET system call to set all bits on
If connfd is grater than maxfd
then
Set maxfd=connfd
If I is grater than maxi
then
Set maxi=i
If -nready <=0 then
Continue
End loop
Loop from 0 to less than or equal to maxi

36 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

If newfd =client[i] is grater than zero
then
Continue
If FD_ISSET returns true
then
If recv system call returns-1
then
Close newfd
Call FD_CLR system call toclear the bits
Set client[i]=-1
End if
Else
Print text from the client
Set j=string lenth of received buffer
Declare a integer variable k
Loop from O to less than j
Call toupper(recv_buff[k]) function and assign it to the send_buf[k]
End loop
Set send_buf to NULL
Print upper case text send_buf
Send the upper case text to client
End if

If —-nready is less than or equal to zero
then
Break
End if
End loop
End if
Return O
END

Pseudo code for CLIENT

START

Declare sock as integer variable

Declare character arryas named fname and op

Declare a file pointer variable named fp

Declare variables named server_addr for sockaddr_in structure

37 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

If socket system call returns -1
Then

Perror socket

Exit

NETWORK PROGRAMMING LAB MANUAL

Call memeset system call to set the no of bytes to the value cin the destination

Set server_addr.sin_family=AF_INET
Set server_addr.sin_port=htons(40000)

Set server_addr.sin_addr.s_addr=inet_addr(“127.0.0.1")
Call bzero system call to set the specified no of bytes to 0

If connect system call returns -1
Then
Perror connect
Exit
While true
Print enter file name
Read fname
Send file to socket
Receive file from the socket
Print the contents in the file
Open file in write mode
Write contents to file
Print file sent successfully
Close file
Break
Close socket
Return 0
END

PROGRAM
SERVER PROGRAM

#include<stdio.h>
#tinclude<netinet/in.h>
#include<sys/types.h>
#include<string.h>
#include<stdlib.h>
#include<sys/socket.h>
#include<sys/select.h>
#tinclude<unistd.h>

38

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

#define MAXLINE 20
#define SERV_PORT 7134
main(int argc,char **argv)
{
int i,j,maxi,maxfd,listenfd,connfd,sockfd;
int nread,client[FD_SETSIZE];
ssize_tn;
fd_set rset,allset;
char line[MAXLINE];
socklen_t clilen;
struct sockaddr_in cliaddr,servaddr;

listenfd=socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(SERV_PORT);

bind(listenfd,(struct sockaddr *)&servaddr,sizeof(servaddr));
listen(listenfd,1);

maxfd=listenfd;

maxi=-1;

for(i=0;i<FD_SETSIZE;i++)
client[i]=-1;
FD_ZERO(&allset);
FD_SET(listenfd,&allset);
for(; ;)
{
rset=allset;
nread=select(maxfd+1,&rset, NULL,NULL,NULL);
if(FD_ISSET(listenfd,&rset))
{
clilen=sizeof(cliaddr);
connfd=accept(listenfd,(struct sockaddr*)&cliaddr,&clilen);
for(i=0;i<FD_SETSIZE;i++)
if(client[i]<0)
{
client[i]=connfd;
break;
}
if(i==FD_SETSIZE)
{
printf("too many clients");
exit(0);
}
FD_SET(connfd,&allset);
if(connfd>maxfd)
maxfd=connfd;
if(i>maxi)
39 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

maxi=i;
if(--nread<=0)
continue;
}
for(i=0;i<=manxi;i++)
{
if((sockfd=client[i])<0)
continue;
if(FD_ISSET(sockfd,&rset))
{
if((n=read(sockfd,line, MAXLINE))==0)
{
close(sockfd);
FD_CLR(sockfd,&allset);
client[i]=-1;
}
else
{
printf("line recieved from the client :%s\n",line);
for(j=0;line[j]!="\0";j++)
line[j]=toupper(line[j]);
write(sockfd,line, MAXLINE);
}
if(--nread<=0)
break;
}
}
}
}
OUTPUT:

line recieved from the client: what is u r name?

40 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

CLIENT PROGRAM

#include<netinet/in.h>
#include<sys/types.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<sys/socket.h>
#include<sys/select.h>
#include<unistd.h>
#define MAXLINE 20
#define SERV_PORT 7134
main(int argc,char **argv)

{

int maxfdp1;
fd_set rset;
char sendline[MAXLINE],recvline[MAXLINE];
int sockfd;
struct sockaddr_in servaddr;
if(argcl=2)
{
printf("usage tcpcli <ipaddress>");
return;
}
sockfd=socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(SERV_PORT);
inet_pton(AF_INET,argv[1],&servaddr.sin_addr);

connect(sockfd,(struct sockaddr*)&servaddr,sizeof(servaddr));

printf("\n enter data to be send");
while(fgets(sendline, MAXLINE,stdin)!=NULL)

{
write(sockfd,sendline, MAXLINE);

printf("\n line send to server is %s",sendline);
read(sockfd,recvline, MAXLINE);
printf("line recieved from the server %s",recvline);

}
exit(0);
}

OUTPUT

Enter data to be send :what is u r name?
line send to server is : what is u r name?
line recieved from the server : WHAT IS U R NAME?

41

Dept of CSE

GUDLAVALLERU ENGG COLLEGE

WEEK-8

NETWORK PROGRAMMING LAB MANUAL

AIM: Design a TCP concurrent server to echo given set of sentences using poll functions

DESCRIPTION:

Poll provides functionality that is similar to select, but poll provides additional information when
dealing with streams devices.

#include<poll.h>

int poll (struct polifd *fdarray, unsigned

long nfds, int timeout);

returns : count of ready descriptors, 0 on timeout, -1 on error.

The return value from poll is -1 if an error occurred, 0 if no descriptors are ready before the
time expires, otherwise it is the number of descriptors that have a nonzero revents member.

The first argument is a pointer to the first element of an array of structures. Each element of
the array is a pollfd structure that specifies the condition to be tested for a given descriptor

fd.

Structure polifd
{
Int fd;
Short events;
Short revents;

The number of elements in the array of structures is specified by the nfds argument.

The conditions to be tested are specified by the events member, and the function returns the
status for that, descriptor in the corresponding revents member.

Constants Inputnto Result from description
events ? revents

POLLIN ° . Normal or priority band normal date
POLLRDNORM . . normal data can be read
POLLRDBAND ° . Priority band data can be read
POLLPRI ° ° High_ Priority data can be read
POLLOUT ° ° normal data can be written
POLLWRNORM . . normal data can be written
POLLWRBAND ° . Priority band data can be written
POLLERR ° An error has can occurred
POLLHUP ° An error has can occurred
POLLNVAL ° Descriptor is not an open file

Fig: input events and returned revents for poll

42

Dept of CSE

GUDLAVALLERU ENGG COLLEGE

The timeout argument specifies how long the function is to wait before returning.

A positive value specifies the number of milliseconds to wait.

Timeout value Description

INFTIM Wait forever

0 Return immediately, do not block

>0 Wait specified number of milliseconds
Fig: time out values for poll

Pseudo code for SERVER:

START

Declare structure variables for Server socket data
take character buffers to store data
create IPV4 socket by calling socket() system call

if socket system call returns -1
then
perror
exit
Initialize server socket
Bind server to an IP address
If bind system call returns -1
Then
Perror unable to bind
Exit
Listen for clients on port
While true
Poll for client descriptors
Accept connections from client
If recv less than zero
Print error no
else
Accept data from client and store in character buffers
Print received data
Send data received from client again to client
Close the connection

END

43

NETWORK PROGRAMMING LAB MANUAL

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Pseudo code for CLIENT

START
Declare sock as integer variable

Declare character arryas named fname and op
Declare a file pointer variable named fp
Declare variables named server_addr for sockaddr_in structure
If socket system call returns -1
Then
Perror socket
Exit
Call memeset system call to set the no of bytes to the value cin the destination
Set server_addr.sin_family=AF_INET
Set server_addr.sin_port=htons(40000)
Set server_addr.sin_addr.s_addr=inet_addr(“127.0.0.1")
Call bzero system call to set the specified no of bytes to 0
If connect system call returns -1

Then
Perror connect
Exit

While true

Print enter file name
Read fname
Send file to socket
Receive file from the socket
Print the contents in the file
Open file in write mode
Write contents to file
Print file sent successfully
Close file
Break
Close socket
Return O

END

44 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

PROGRAM

SERVER PROGRAM

#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<string.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<poll.h>
#include<errno.h>
#define MAXLINE 100
#define SERV_PORT 5939
t#tdefine POLLRDNORM 5
#define INFTIM 5

#define OPEN_MAX 5

int main(int argc,char **argv)

{

int k,i,maxi,listenfd,connfd,sockfd,nready;
ssize_tn;

char line[MAXLINE];

socklen_t clilen;

struct pollfd client[OPEN_MAX];

struct sockaddr_in cliaddr,servaddr;

listenfd=socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(SERV_PORT);
servaddr.sin_addr.s_addr=hton|(INADDR_ANY);
bind(listenfd,(struct sockaddr*)&servaddr,sizeof(servaddr));
listen(listenfd,5);

client[0].fd=listenfd;

client[0].events=POLLRDNORM;

for(i=1;i<kOPEN_MAX;i++)
{
nready=poll(client,maxi+1,INFTIM);
if(client[0].revents&POLLRDNORM)
{
clilen=sizeof(cliaddr);
connfd=accept(listenfd,(struct sockaddr*)&cliaddr,&clilen);
for(i=1;i<kOPEN_MAX;i++)
if(client[i].fd<0)
{

45

NETWORK PROGRAMMING LAB MANUAL

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

client[i].fd=connfd;

break;
}
if(i==OPEN_MAX)
{
printf("too many client requests");
exit(0);
}
client[i].events=POLLRDNORM;
if(i>maxi)
maxi=i;
if(--nready<=0)
continue;
}
for(i=1;i<=maxi;i++)
{
if((sockfd=client[i].fd)<0)
continue;
if(client[i].revents&(POLLRDNORM | POLLERR))
{
if((n=read(sockfd,line, MAXLINE))<0)
{
if(errno==ECONNRESET)
{
close(sockfd);
client[i].fd=-1;
}
else
printf("read line error");
}
else if(n==0)
{
close(sockfd);
client][i].fd=-1;
}
else
{
printf("\n data from the client is %s",line);
write(sockfd,line,n);
}
if(--nready<=0)
break;
}

46

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

}
}

CLIENT PROGRAM

#include<stdio.h>

#include<stdlib.h>

#include<unistd.h>

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

#include<poll.h>

#include<errno.h>

#define MAXLINE 100

#define SERV_PORT 5939

main(int argc,char **argv)

{
int sockfd,fd;
struct sockaddr_in servaddress;
char sendline[100],recvline[100];
int i=0;
sockfd=socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddress,sizeof(servaddress));
servaddress.sin_family=AF_INET;
servaddress.sin_port=htons(SERV_PORT);
servaddress.sin_addr.s_addr=inet_addr(argv([1]);
connect(sockfd,(struct sockaddr*)&servaddress,sizeof(servaddress));
printf("Enter sentence to send");
while(fgets(sendline, MAXLINE,stdin)!=NULL)
{

write(sockfd,sendline, MAXLINE);
printf("line send:%s",sendline);

read(sockfd,recvline, MAXLINE);
47

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

printf("echoed sentence%s",recvline);

}
close(sockfd);
return O;

}

OUTPUT:

Enter the sentence to send: cse
Line send:cse
Echoed sentence: cse

48 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK-9

AIM: Design UDP Client and server application to reverse the given input sentence
DESCRIPTION:

UDP provides a connectionless service as there need not be any long-term relationship
between a UDP client and server.

The User Datagram Protocol

The TCP/IP protocol suite provides two transport protocols, the User Datagram Protocol
(UDP) described in this chapter, and the Transmission Control Protocol (TCP).There are some
fundamental differences between applications written using TCP versus those that use UDP.
These are because of the differences in the two transport layers:

UDP is a connectionless, unreliable, datagram protocol, quite unlike the connection-
oriented, reliable byte stream provided by TCP. UDP is less complex and easier to
understand.

The characteristics of UDP are given below.

End-to-end: UDP can identify a specific process running on a computer.

Connectionless: UDP follows the connectionless paradigm (see below).

Message-oriented: Processes using UDP send and receive individual messages called
segments.

Best-effort: UDP offers the same best-effort delivery as IP.

Arbitrary interaction: UDP allows processes to send to and receive from as many other
processes as it chooses.

Operating system independent: UDP identifies processes independently of the local
operating system.

The Connectionless Paradigm

UDP uses a connectionless communication setup. A process using UDP does not need to
establish a connection before sending data and when two processes stop communicating
there are no additional, control messages. Communication consists only of the data
segments themselves.

Message-Oriented Interface

UDP provides a message-oriented interface. Each message is sent as a single UDP segment,
which means that data boundaries are preserved. However, this also means that the
maximum size of a UDP segment depends on the maximum size of an IP datagram. Allowing
large UDP segments can cause problems. Processes sending large segments can result in IP
fragmentation, quite often on the sending computer.

UDP offers the same best-effort delivery as IP, which means that segments can be lost,

duplicated, or corrupted in transit. This is why UDP is suitable for applications such as voice
or video that can tolerate delivery errors. See below for more on UDP problems.

49 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

UDP Datagram Format

UDP provides a way for applications to send encapsulated IP datagram without having to
establish a connection. UDP transmits segments consisting of an 8-byte header followed by
the payload. The format is shown in Figure

UDP header

The SOURCE PORT field identifies the UDP process which sent the datagram.

The DESTINATION PORT field identifies the UDP process that will handle the payload.

The MESSAGE LENGTH field includes the 8-byte header and the data, measured on octets.
The CHECKSUM field is optional and stored as zero if not computed (a computed zero is
stored as all ones).

Note that UDP does not provide flow control, error control, or retransmission on receipt of a
bad segment. All it provides is demultiplexing multiple processes using the port numbers.
The UDP Checksum

The 16-bit CHECKSUM field is optional. The sender can choose to compute a checksum or
set the field to zero. The receiver only verifies the checksum if the value is non-zero. Note
that UDP uses ones-complement arithmetic, so a computed zero value is stored as all-ones.

UDP Problems

Since UDP provides only a simple delivery service, almost all of the problems with UDP are
related to delivery problems.

UDP-based applications are prone to failures in a congested or loss-intensive network
because a lost UDP datagram has to be handled by the application.

As an extreme example, consider the Network File System (NFS) which uses UDP for remote
file system access, since it benefits from the low-overhead nature of UDP. NFS typically
writes data in large chunks (often 8 KB blocks), which are then split into IP fragments
depending on the MTU of the underlying topology.

Only when all the fragments have been received at the destination is the IP datagram
reassembled and passed via UDP to the NFS application. If the underlying network loses 10%
- 20% of its datagram’s, then NFS will encounter problems, resulting in retransmission of
data and thus providing a sluggish and poor performance.

50 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

NETWORK PROGRAMMING LAB MANUAL

This is
blocking
call and
waits

Till its
receives a
require
from the
client

UDP SERVER
UDP CLIENT
socket
socket
bind
) l
sendto » recvfrom
‘, l
recvfrom < sendto
l v
close close

Fig: socket programming with UDP

1)The client does not establish a connection with the server.

2)The client just sends a datagram to the server using the sendto function, which requires the

address of the destination as a parameter.

Similarly, the server does not accept a connection from a client.

3)Instead, the server just calls the recvfrom function, which waits until data arrives from some client.

4)recvfrom returns the protocol address of the client, along with the datagram, so the server can

send a response to the correct client.

| We can create UDP socket by specifying the second argument to socket function as SOCK_DGRAM.

51

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

sendto and recvfrom functions used to send and receive datagrams

include<sys/socket.h>
ssize_t recvfrom(int sockfd, void *buff, size_t nbytes, int flags,
struct sockaddr *form , socklen_t *addrlen);

ssize-t sendto(int sockfd const void *buff, size_t nbytes, int flags,
const structsockaddr *to, socklen_t addrlen);

Pseudo code for SERVER

START
Define LOCAL_SERVER_PORT 1500
Define MAX_MSG 3000
Declare structure variables for Server socket data
take character buffers to store data
create IPV4 socket by using socket system call
Initialize server socket
if socket system call return -1
then
perror socket
exit
Call memeset system call to set the no of bytes to the value cin the destination
Set server_addr.sin_family=AF _INET
Set server_addr.sin_port=htons(50000)
Set server_addr.sin_addr.s_addr=htonl(INADDR_ANY)
Call bzero system call to set the specified no of bytes to 0
If bind system call returns -1
Then
Perror unable to bind
Exit
End if
bind local server port
server infinite loop
receive message
reading file contents
reading data to msg
closing stream
print received message
Send data received from client again to client by reversing it
Close connection
end of server infinite loop
END

52 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Pseudo code for CLIENT

START

Declare sock as integer variable
Declare character arryas named fname and op
Declare a file pointer variable named fp
Declare variables named server_addr for sockaddr_in structure
If socket system call returns -1
then
Perror socket
Exit
Call memeset system call to set the no of bytes to the value cin the destination
Set server_addr.sin_family=AF_INET
Set server_addr.sin_port=htons(40000)
Set server_addr.sin_addr.s_addr=inet_addr(“127.0.0.1")
Call bzero system call to set the specified no of bytes to 0
If connect system call returns -1
then
Perror connect
Exit
While true
Print enter file name
Read fname
Send file to socket
Receive file from the socket
Print the contents in the file
Open file in write mode
Write contents to file
Print file sent successfully
Close file
Break
Close socket
Return O
END

PROGRAM
SERVER PROGRAM

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<sys/types.h>
#include<stdlib.h>
53 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

#define SERV_PORT 5839

#define MAXLINE 20

main(int argc,char **argv)

{
int i,j;
ssize_tn;
char line[MAXLINE],recvline[MAXLINE];
struct sockaddr_in servaddr,cliaddr;
int sockfd,clilen;
sockfd=socket(AF_INET,SOCK_DGRAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
servaddr.sin_port=htons(SERV_PORT);
bind(sockfd,(struct sockaddr*)&servaddr,sizeof(servaddr));

for(; ;)

{
clilen=sizeof(cliaddr);
while(1)
{

if((n=recvfrom(sockfd,line, MAXLINE,O,(struct
sockaddr*)&cliaddr,&clilen))==0)

break;
printf("\n line received successfully");
line[n-1]="\0";
i=0;
for(i=n-2;i>=0;i--)
{
recvline[j++]=linel[i];
}

recvline[j]="\0";
sendto(sockfd,recvline,n,0,(struct sockaddr*)&cliaddr,clilen);

}
CLIENT PROGRAM

#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include<sys/socket.h>
#tinclude<netinet/in.h>
#include<sys/types.h>
#include<stdlib.h>
#define SERV_PORT 5839

54 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

#define MAXLINE 20
main(int argc,char **argv)
{
ssize_tn;
struct sockaddr_in servaddr;
char sendline[MAXLINE],recvline[MAXLINE];
int sockfd;
if(argc!=2)
{
printf("usage:<IPADDRESS>");
exit(0);
}
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET,;
servaddr.sin_port=htons(SERV_PORT);
inet_pton(AF_INET,argv[1],&servaddr.sin_addr);
sockfd=socket(AF_INET,SOCK_DGRAM,0);
printf("enter the data to be send");
while(fgets(sendline, MAXLINE,stdin)!=NULL)
{
sendto(sockfd,sendline,strlen(sendline),0,(struct
sockaddr*)&servaddr,sizeof(servaddr));
printf("line sent");
n=recvfrom(sockfd,recvline, MAXLINE,O,NULL,NULL);
recvline[n]="\0";
fputs(recvline,stdout);
printf("\n reverse of the sentense is %s",recvline);
printf("\n");

}

exit(0);
}

OUTPUT
Enter the data to be send: cse
Line sent

Reverse of the sentence is:esc

55

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK-10
AIM: Design UDP Client server to transfer a file
DESCRIPTION:

UDP Client and Server

The UDP client and server are created with the help of DatagramSocket and
Datagram packet classes. If the UDP protocol is used at transport, then the unit of
data at the transport layer is called a datagram and and not a segment. In UDP, no
connection is established. It is the responsibility of an application to encapsulate data in
datagrams (using Datagram classes) before sending it. If TCP is used for sending data,
then the data is written directly to the socket (client or server) and reaches there as a
connection exists between them. The datagram sent by the application using UDP may

or may not reach the UDP receiver.

Pseudo code for SERVER

START
Declare structure variables for Server socket data
take character buffers to store data
create IPV4 socket by using socket system call

Initialize server socket
if socket system call return -1
then
perror socket
exit
Call memeset system call to set the no of bytes to the value cin the destination
Set server_addr.sin_family=AF_INET
Set server_addr.sin_port=htons(50000)
Set server_addr.sin_addr.s_addr=htonl|(INADDR_ANY)
Call bzero system call to set the specified no of bytes to 0
If bind system call returns -1
Then
Perror unable to bind
Exit
End if

bind local server port
server infinite loop
receive message

56 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

reading file contents

reading data to msg

closing stream

print received message

Send data received from client again to client by reversing it

Close connection

end of server infinite loop
END

Pseudo code for CLIENT

START

Declare sock as integer variable
Declare character arryas named fname and op
Declare a file pointer variable named fp
Declare variables named server_addr for sockaddr_in structure
If socket system call returns -1
Then
Perror socket
Exit
Call memeset system call to set the no of bytes to the value cin the destination
Set server_addr.sin_family=AF _INET
Set server_addr.sin_port=htons(40000)
Set server_addr.sin_addr.s_addr=inet_addr(“127.0.0.1")
Call bzero system call to set the specified no of bytes to 0
If connect system call returns -1

then
Perror connect
Exit
While true
Print enter file name
Read fname

Send file to socket
Receive file from the socket
Print the contents in the file
Open file in write mode
Write contents to file
Print file sent successfully
Close file
Break
Close socket
Return O

END

57 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

PROGRAM

CLIENT PROGRAM

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<netinet/in.h>
#include<unistd.h>
#define SERV_PORT 6349
main(int argc,char **argv)
{

char filename[80];

int sockfd;

struct sockaddr_in servaddr;

sockfd=socket(AF_INET,SOCK_DGRAM,0);

bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(SERV_PORT);

inet_pton(AF_INET,argv[1],&servaddr.sin_addr);

printf("enter the file name");
scanf("%s",filename);

NETWORK PROGRAMMING LAB MANUAL

sendto(sockfd,filename,strlen(filename),0,(structsockaddr*)&servaddr,sizeof(servad

dr))

OUTPUT OF CLIENT

Client:
enter the file name: npfile

58

Dept of CSE

GUDLAVALLERU ENGG COLLEGE

SERVER PROGRAM

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<sys/socket.h>
#include<sys/types.h>
#include<netinet/in.h>
#define SERV_PORT 6349
main(int argc,char **argv)

char filename[80],recvline[80];
FILE *fp;
struct sockaddr_in servaddr,cliaddr;
int clilen,sockfd;
sockfd=socket(AF_INET,SOCK_DGRAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(SERV_PORT);
bind(sockfd,(struct sockaddr*)&servaddr,sizeof(servaddr));
clilen=sizeof(cliaddr);
recvfrom(sockfd,filename,80,0,(struct sockaddr*)&cliaddr,&clilen);
printf("\n date in the file is \n ");
fp=fopen(filename,"r");
while(fgets(recvline,80,fp)!=NULL)
{

printf("\n %s\n ",recvline);

}
fclose(fp);

OUTPUT OF SERVER

Server:
date in the file is:
hai this is np lab

something intresting

59

NETWORK PROGRAMMING LAB MANUAL

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK: 11

Aim: Design using poll client server application to multiplex TCP and UDP requests
for converting a given text into upper case.

DESCRIPTION:

Poll is used for multiplexing tcp & udp requests

#include<poll.h>
int poll (struct pollfd *fdarray, unsigned long nfds, int timeout);

getsockopt and setsockopt Functions

#include <sys/socket.h>
Int getsockopt (int sockfd, int level, int optname, void *optval, socklen_t *optlen);

Int setsockopt (int sockfd, int level, int optname, void *optval, socklen_t *optlen);

Both return : 0 if ok, -1 on error.

1) Sockfd from socket descriptor.
2) The level specifies the code in the system to interpret the option.
3) The optval is a pointer to a variable, can be set true(non-zero) or false(zero).

4) Size of the third argument variable.

Pseudo code for Server

Define LOCAL_SERVER_PORT 1500
Define MAX_MSG 100
START

Declare structure variables for Server socket data
take character buffers to store data
create IPV4 socket by using socket system call
Initialize server socket
if socket system call return -1
then

perror socket

exit

60 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

END

bind local server port
server infinite loop

while true

init buffer

receive message

end of server infinite loop

return 0

Pseudo code for TCP Client:

START

Declare sock as integer variable
Declare character arryas named fname and op
Declare a file pointer variable named fp
Declare variables named server_addr for sockaddr_in structure
If socket system call returns -1
then
Perror socket
Exit
Call memeset system call to set the no of bytes to the value cin the destination
Set server_addr.sin_family=AF_INET
Set server_addr.sin_port=htons(40000)
Set server_addr.sin_addr.s_addr=inet_addr(“127.0.0.1")
Call bzero system call to set the specified no of bytes to 0
If connect system call returns -1
then
Perror connect

Exit

While true

Print enter file name
Read fname
Send file to socket

Receive file from the socket

61

NETWORK PROGRAMMING LAB MANUAL

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

END

Print the contents in the file
Open file in write mode
Write contents to file

Print file sent successfully
Close file

Break

Close socket

Return O

Pseudo code for UDP Client

START

Declare sock as integer variable
Declare character arryas named fname and op
Declare a file pointer variable named fp
Declare variables named server_addr for sockaddr_in structure
If socket system call returns -1
Then
Perror socket
Exit
Call memeset system call to set the no of bytes to the value cin the destination
Set server_addr.sin_family=AF_INET
Set server_addr.sin_port=htons(40000)
Set server_addr.sin_addr.s_addr=inet_addr(“127.0.0.1")
Call bzero system call to set the specified no of bytes to 0
If connect system call returns -1
Then
Perror connect

Exit
62 Dept of CSE

GUDLAVALLERU ENGG COLLEGE

While true

Print enter file name
Read fname
Send file to socket
Receive file from the socket
Print the contents in the file
Open file in write mode
Write contents to file
Print file sent successfully
Close file
Break
Close socket
Return O

END

PROGRAM

CLIENT PROGRAM

tinclude<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<unistd.h>
#include<netinet/in.h>
#define MAXLINE 20
#define SERV_PORT 8114
main(int argc,char **argv)
{

int maxfdpl;

fd_set rset;

char sendline[MAXLINE],recvline[MAXLINE];

63

NETWORK PROGRAMMING LAB MANUAL

Dept of CSE

GUDLAVALLERU ENGG COLLEGE

int sockfd;

struct sockaddr_in servaddr;
if(argc!=2)

{

printf("usage tcpcli <ipaddress>");

return;

}

sockfd=socket(AF_INET,SOCK_STREAM,0);

bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_port=htons(SERV_PORT);

inet_pton(AF_INET,argv[1],&servaddr.sin_addr);

NETWORK PROGRAMMING LAB MANUAL

connect(sockfd,(struct sockaddr *)&servaddr,sizeof(servaddr));

printf("\nenter data to be send:");

while(fgets(sendline, MAXLINE,stdin)!=NULL)

{
write(sockfd,sendline, MAXLINE);

printf("\nline send to server :%s ",sendline);

read(sockfd,recvline, MAXLINE);

printf("line received from the server : %s",recvline);

}
exit(0);
}
OUTPUT of CLIENT
cc selcli.c-ocli

.Jcli localhost

Enter data to be send:gec-cse

line send to server :gec-cse

line received from the server : GEC-CSE

SERVER PROGRAM

#include<stdio.h>
#tinclude<netinet/in.h>
#include<sys/types.h>
#include<string.h>
#include<stdlib.h>
#include<sys/socket.h>
#include<sys/select.h>
#tinclude<unistd.h>
#define MAXLINE 20
#define SERV_PORT 8114

64

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

main(int argc,char **argv)

{
int i,j,maxi,maxfd,listenfd,connfd,sockfd;
int nready,client[FD_SETSIZE];
ssize_tn;
fd_set rset,allset;
char line[MAXLINE];
socklen_t clilen;
struct sockaddr_in cliaddr,servaddr;
listenfd=socket(AF_INET,SOCK_STREAM,0);
bzero(&servaddr,sizeof(servaddr));
servaddr.sin_family=AF_INET;
servaddr.sin_addr.s_addr=hton|(INADDR_ANY);
servaddr.sin_port=htons(SERV_PORT);

bind(listenfd,(struct sockaddr *)&servaddr,sizeof(servaddr));

listen(listenfd,1);
maxfd=listenfd;
maxi=-1;

for(i=0;i<FD_SETSIZE;i++)
client[i]=-1;
FD_ZERO(&allset);
FD_SET(listenfd,&allset);
for(;;)
{
rset=allset;
nready=select(maxfd+1,&rset,NULL,NULL,NULL);
if(FD_ISSET(listenfd,&rset))
{

clilen=sizeof(cliaddr);

connfd=accept(listenfd,(struct sockaddr *)&cliaddr,&clilen);

for(i=0;i<FD_SETSIZE;i++)
if(client[i]<0)
{
client[i]=connfd;
break;
}
if(i==FD_SETSIZE)
{
printf("too many clients");
exit(0);
}
FD_SET(connfd,&allset);
if(connfd>maxfd)
maxfd=connfd;
if(i>maxi)

65

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

maxi=i;
if(--nready<=0)
continue;
}
for(i=0;i<=maxi;i++)
{
if((sockfd=client[i])<0)
continue;
if(FD_ISSET(sockfd,&rset))
{
if((n=read(sockfd,line, MAXLINE))==0)
{
close(sockfd);
FD_CLR(sockfd,&allset);
client[i]=-1;
}
else
{
printf("line received from client:%s\n",line);
for(j=0;line[j]!="\0";j++)
line[jl=toupper(linel[j]);
write(sockfd,line, MAXLINE);
}
if(--nready<=0)
break;
}
}
}
}
OUTPUT OF SERVER:
cc selser.c -o ser
.Jser

line received from client:gec-cse

66 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

WEEK-12
Design a RPC application to add and subtract a given pair of integers

DESCRIPTION:

Client process Server process

Client
routines

Server
routines

Network
routines

Network
routines

Network

communication:

Local kernel Remote kernel

Remote Procedure Call model

The steps in the Figure Remote Procedure Call (RPC) Model are.

1) The client calls a local procedure, called the clients stub. It appears to the client
that the client stub is the actual server procedure that it wants to call. the purpose of
the stub is to package up the arguments to the remote procedure, possibly put them
into some standard format and then build one or more network messages. the
packaging of the clients arguments into a network message is termed marshaling.

2) These network messages are sent to the remote system by the client stub. This
requires a system call into the kernel.

3) The network messages are transferred to the remote system. Either a connection-
oriented or a connectionless protocol is used.

67 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

4) A Server stub procedure is waiting on the remote system for the client’s request. It
unmarshals the arguments from the network messages and possibly converts them.

5) The server stub executes a local procedure call to invoke the actual server function,
passing it the arguments that it received in the network messages from the client
stub.

6) When the server procedure is finished, it returns to the server stub, returning
whatever its return values are.

7) The server stub converts the return values, if necessary and marshals them into one
or more network messages to send back to the client stub.

8) To message get transferred back across the net work to client stub.
9) The client stub reads the network message from the local kernel.

10) After possibly converting the return values the client stub finally returns to the client
functions this appears to be a normal procedure returns to the client.

Pseudo code
START

First create RPC specification file with .x extension which defines the server procedure
along with their arguments and results. the following program shows the contents of
Filename simp.x

Specification file to define server procedure and arguments.

The definition of the data type that will be passed to both of the remote procedures
add() and sub().

#define VERSION_NUMBER 1
struct operands
{

int x

inty

Program, version and procedure definitions
Program SIMP_PROG

{
Version SIMP_VERSION

{
int ADD(operands)=1; // Procedure number 1

int SUB(operands)=2; // Procedure number 2
68 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

}=VERSION_NUMBER
}=0x28976543 // Program numbe

Program name simp_server.c, definition of the remote add and subtract procedure used
by simple RPC example, rpcgen will create a template for you that contains much of the
code, needed in this file is you give it the “-Ss” command line arg.

SERVER

#include<stdio.h>

#include<rpc/rpc.h> //always needed

#include “simp.h” //generated by rpcgen

Here is the actual remote procedure

The return value of this procedure must be a pointer to int.

We declare the variable result as static so we can return a pointer to it
int *add_|_svc(operands *argp, struct svc_req *rqgstp)

{
static int result
printf(“Got request: adding %d, %d\n”,grgp->x,argp->y)
result=argp->x + argp->y
return (&result)
}
int *sub_|_svc(operands *argp, struct svc_req *rgstp)
{
static int result
printf(“Got request: subtracting %d, %d\n”,grgp->x,argp->y)
result=argp->x + argp->y
return (&result)
}
CLIENT

Program name simp_client.c RPC client for simple addition and subtraction example.

#include<stdio.h>
#include<rpc/rpc.h> // always needed
#include “simp.h” // created for us by rpcgen — has everything we need
Wrapper function takes care of calling the RPC procedure
int add(CLIENT *clInt, int x, int y)
{
operands ops
int *result
Gather everything into a single data structure to send to the server
0pS.X=X
ops.y=y
Call the client stub created by rpcgen

69 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

result=add_I(&ops, cint)

if(result==NULL)

{
fprintf(stderr,”Trouble calling remote procedure\n”);
exit(0)

}

return(*result)

}

Wrapper function takes care of calling the RPC procedure

int sub(CLIENT *cInt, int x, int y)
{
operands ops
int *result
Gather everything into a single data structure to send to the server
0pS.X=X
ops.y=y
Call the client stub created by rpcgen
result=sub_|(&ops, cint)
if(result==NULL)
{
fprintf(stderr,”Trouble calling remote procedure\n”);
exit(0)
}
return(*result)
}
int main(int argc, char *argv{})
{
CLIENT *clnt
int x,y
if(argc!=4)
{
fprintf(stderr,”Usage: %s hostname num1 num \n”,argv[0])
exit(0)
}
Create a CLIENT data structure that reference the RPC procedure SIMP_PROG, version
SIMP_VERSION running on the host specified by the 1st command line arg.
cInt=cInt_create(argv[1], SIMP_PROG, SIMP_VERSION, “udp”)

Make sure the create worked
if(cInt==(CLIENT*)NULL)

{

cInt_pcreateerror(argv[1])
exit(1)

70 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

get the 2 numbers that should be added

x = atoi(argv[2])

y=atoi(argv[3])

printf(“add = %d + %d = %d \n”,x,y,add(cInt,x,y))
printf(“sub = %d — %d = %d \n”,x,y,sub(cInt,x,y))
return(0)

}
END

SERVER PROGRAM

#include "rpctime.h"

#include <stdio.h>

#include <stdlib.h>

#include <rpc/pmap_cint.h>

#include <string.h>

#include <memory.h>

#include <sys/socket.h>

#include <netinet/in.h>

#ifndef SIG_PF

#define SIG_PF void(*)(int)

#endif

static void

rpctime_1(struct svc_req *rgstp, register SVCXPRT *transp)
{

union {

int fill;

}argument;

char *result;

xdrproc_t _xdr_argument, _xdr_result;
char *(*local)(char *, struct svc_req *);
switch (rgstp->rq_proc) {

case NULLPROC:

(void) svc_sendreply (transp, (xdrproc_t) xdr_void, (char *)NULL);
return;

case GETTIME:

_xdr_argument = (xdrproc_t) xdr_void;
_xdr_result = (xdrproc_t) xdr_long;
local = (char *(*)(char *, struct svc_req *)) gettime_1_svc;
break;

default:

svcerr_noproc (transp);

return;

}

memset ((char *)&argument, 0, sizeof (argument));

71

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

52

if (Isvc_getargs (transp, (xdrproc_t) xdr_argument, (caddr_t) &argument)) {
svcerr_decode (transp);

return;

}

result = (*local)((char *)&argument, rgstp);

if (result 1= NULL && Isvc_sendreply(transp, (xdrproc_t) xdr_result, result)) {
svcerr_systemerr (transp);

}

if (Isvc_freeargs (transp, (xdrproc_t) xdr_argument, (caddr_t) &argument)) {
fprintf (stderr, "%s", "unable to free arguments");

exit (1);

}

return;

}

int

main (int argc, char **argv)

{

register SVCXPRT *transp;

pmap_unset (RPCTIME, RPCTIMEVERSION);

transp = svcudp_create(RPC_ANYSOCK);

if (transp == NULL) {

fprintf (stderr, "%s", "cannot create udp service.");

exit(1);

}

if (Isvc_register(transp, RPCTIME, RPCTIMEVERSION, rpctime_1, IPPROTO_UDP)) {
fprintf (stderr, "%s", "unable to register (RPCTIME, RPCTIMEVERSION,
udp).");

exit(1);

}

transp = svctcp_create(RPC_ANYSOCK, 0, 0);

if (transp == NULL) {

fprintf (stderr, "%s", "cannot create tcp service.");

exit(1);

}

if (Isvc_register(transp, RPCTIME, RPCTIMEVERSION, rpctime_1, IPPROTO_TCP)) {
fprintf (stderr, "%s", "unable to register (RPCTIME, RPCTIMEVERSION, tcp).");
exit(1);

}

svc_run ();

fprintf (stderr, "%s", "svc_run returned");

53

exit (1);

}

72

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

CLIENT PROGRAM

#include "rpctime.h"

void

rpctime_1(char *host)

{

CLIENT *clnt;

47

long *result_1;

char *gettime_1_arg;

tifndef DEBUG

cInt = cInt_create (host, RPCTIME, RPCTIMEVERSION, "udp");
if (cInt == NULL) {

cInt_pcreateerror (host);

exit (1);

}

#endif /* DEBUG */

result_1 = gettime_1((void*)&gettime_1_arg, cint);
if (result_1 == (long *) NULL) {

cInt_perror (cInt, "call failed");

}

else

printf("%d | %s", *result_1, ctime(result_1));
#ifndef DEBUG

cInt_destroy (cInt);

#endif /* DEBUG */

}

int

main (int argc, char *argv[])

{

char *host;

if (argc < 2) {

printf ("usage: %s server_host\n", argv[0]);
exit (1);

}

host = argv[1];

rpctime_1 (host);

exit (0);

}

rpctime_cntl.c

#include <memory.h> /* for memset */

48

#include "rpctime.h"

/* Default timeout can be changed using cInt_control() */
static struct timeval TIMEOUT ={ 25,0 };

long *

73 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

gettime_1(void *argp, CLIENT *cint)

{

static long cInt_res;

memset((char *)&clnt_res, 0, sizeof(cInt_res));
if (cInt_call (cInt, GETTIME,

(xdrproc_t) xdr_void, (caddr_t) argp,
(xdrproc_t) xdr_long, (caddr_t) &cInt_res,
TIMEOUT) I= RPC_SUCCESS) {

return (NULL);

}

return (&clnt_res);

}

49
Execution procedure and Result:

Step 1: Srpcgen —C —a simp.x

//This creates simp.h, simp_clInt.c, simp_svc.c simp_xdr.c files in the folder //
Step 2: Scc —o client simp_client.c simp_clnt.c simp_xdr.c —Irpcsve —Ins|

Step 3: § cc—o server simp_server.c simp_svc.c simp_xdr.c —lrpcsvc —Insl
Step 4: S ./server &

S./client 10.0.0.1 10 5

Add=10+5=15

Sub=10-5=5

74 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

ADDITIONAL PROGRAMS

Aim: Program to determine the host ByteOrder

DESCRIPTION:

BYTE ORDERING

Consider a 16-bit integer that is made up of 2 bytes. There are two ways to store the two
bytes in memory: with the low-order byte at the starting address, known as little-endian
byte order, or with the high-order byte at the starting address, known as big-endian byte
order. We show these two formats in

Figure 3.9. Little-endian byte order and big-endian byte order for a 16-bit integer.

increasing memory

—-

addresses

address A+ 1 address A
little-endian byvte order: [high-order byte I low-order byte ‘
II\ISB 16-bit value LSB |
big-endian byte order [high-order byte l low-order byte J
address A address A+1

increasing memory
addresses

-

In this figure, we show increasing memory addresses going from right to left in the top, and
from left to right in the bottom. We also show the most significant bit (MSB) as the leftmost
bit of the 16-bit value and the least significant bit (LSB) as the rightmost bit.

The terms "little-endian" and "big-endian" indicate which end of the multibyte value, the
little end or the big end, is stored at the starting address of the value.

Unfortunately, there is no standard between these two byte orderings and we encounter

systems that use both formats. We refer to the byte ordering used by a given system as the
host byte order. The program prints the host byte order.

75 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

PROGRAM

#include "unp.h"
int
main(int argc, char **argv)

{
union
short s;
char c[sizeof(short)];

tun;

un.s = 0x0102;
printf("%s: ", CPU_VENDOR_QS);

if (sizeof(short) == 2)

{
if (un.c[0] == 1 && un.c[1] == 2)
printf("Host follows big-endian Byte order\n");
else if (un.c[0] == 2 && un.c[1] == 1)
printf("Host follows little-endian Byte order\n");
else
printf("unknown\n");
}
else
printf("sizeof(short) = %d\n", sizeof(short));
exit(0);

}

We store the two-byte value 0x0102 in the short integer and then look at the two consecutive bytes,
c[0] (the address A in Figure) and c[1] (the address A+1 in Figure), to determine the byte order.

The string CPU_VENDOR_OS is determined by the GNU autoconf program when the software in this
book is configured, and it identifies the CPU type, vendor, and OS release. We show some examples

here in the output from this program when run on the various systems.
freebsd4 % byteorder
i386-unknown-freebsd4.8: little-endian

macosx % byteorder
powerpc-apple-darwin6.6: big-endian

OUTPUT:

Host follows little endian Byte order

76

Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

Aim: Program to set and get socket options

DESCRIPTION:
getsockopt and setsockopt Functions

These two functions apply only to sockets.

#include <sys/socket.h>
int getsockopt(int sockfd, int level, int optname, void *optval, socklen_t *optlen);
int setsockopt(int sockfd, int level, int optname, const void *optval socklen_t optlen);

Both return: 0 if OK,—1 on error

sockfd must refer to an open socket descriptor. level specifies the code in the system that interprets
the option: the general socket code or some protocol-specific code (e.g., IPv4, IPv6, TCP, or SCTP).

optval is a pointer to a variable from which the new value of the option is fetched by setsockopt, or
into which the current value of the option is stored by getsockopt. The size of this variable is specified
by the final argument, as a value for setsockopt and as a value-result for getsockopt.

Pseudo code
START
Create socket using socket function
Get the TCP maximum segment size using getsockopt function
Print the TCP maximum segment size
Set the socket sendbuffer size using setsockopt function
Get the socket sendbuffer size using getsockopt function
Print the socket sendbuffer size

END

77 Dept of CSE

GUDLAVALLERU ENGG COLLEGE NETWORK PROGRAMMING LAB MANUAL

PROGRAM

#include<stdio.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<string.h>
#include<netinet/in.h>
#include<netinet/tcp.h>
main()
{
int sockfd,maxseg,sendbuff,optlen;
sockfd=socket(AF_INET,SOCK_STREAM,0);
optlen=sizeof(maxseg);
if(getsockopt(sockfd,IPPROTO_TCP,TCP_MAXSEG,(char *)&maxseg,&optlen)<0)
printf("Max seg error");
else
printf("TCP max seg=%d\n",maxseg);
sendbuff=2500;

if(setsockopt(sockfd,SOL_SOCKET,SO_SNDBUF,(char*)&sendbuff,sizeof(sendbuff))<0)
printf("set error");
optlen=sizeof(sendbuff);
getsockopt(sockfd,SOL_SOCKET,SO_SNDBUF,(char *)&sendbuff,&optlen);
printf("send buff size=%d\n",sendbuff);

}
OUTPUT
TCP max seg=512

Send buff size=5000

78 Dept of CSE

