
1

softwAre ProJeCt BAsICs

IntrodUCtIon

Human endeavor, from its earliest hunter/gatherer roots, was carried out in
teams, each with a hierarchy of roles. As civilization progressed, the need for
structure and rules increased. A large farm is a team organization based on a
simple hierarchy of an owner, overseers, and employed laborers. The Industrial
Revolution created factories which required more complex hierarchies, both
within teams and between teams. Factories aggregated the production of goods
for consumption into concentrated units capable of greater productivity. To
achieve this great jump in productivity, rules were developed to effectively run
the factories. These developments were the genesis of the art and science of man-
aging production, which has been called production management.

Classification of organizations. The type of production can be used to
classify organizations based on the manner in which goods are produced. The
categories are:

•	 Mass	production:	continuously	produces	the	same	products
•	 Batch	production:	produces	goods	 in	batches;	each	batch	is	similar,	

but not identical
•	 Flow	process	production:	production	of	chemicals,	pharmaceuticals,	

and fertilizer products, generation of electricity, etc.
•	 Job	 order	 production:	 produces	 tailor-made	 goods	 (i.e.,	 goods	 are	

produced only when an order is received)

1J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

2 Mastering Software Project Management

Initially, management texts focused on mass production, batch production,
and flow process production systems (also known as “made to warehouse” produc-
tion systems). In made to warehouse production systems, goods are produced and
stored in warehouses for distribution. The significant feature of mass production
and flow process production is that the rate of consumption/demand equals or
exceeds the rate of production for the product. In batch production, the rate of
production exceeds the rate of consumption/demand for the product. The goal of
production management is to balance both rates.

Production management texts, however, did not address organizations such
as ship building, aircraft manufacturing, heavy equipment manufacturing, etc.
These organizations are known as job order production or made to order organi-
zations. In made to order organizations, items are produced only after an order
is received.

By leaving out job order “shops,” management texts also excluded organiza-
tions that constructed buildings, highways, and other infrastructure facilities.
These types of organizations are certainly not serial production organizations
even though they create wealth and employ people. Their work was classified as
projects. Some knowledge, however, was gathered and released under the title of
project management. Job order production system organizations latched onto this
concept and became project-based production systems.

Presently, management theory addresses organizations in two basic catego-
ries: production organizations and service organizations. The art and science of
managing these organizations has metamorphosed from production management
to operations management.

Similarly, we can categorize organizations by the nature of their operations:
•	 Continuous	operations:	organizations	with	 fixed	 facilities	 that	 carry	

out similar operations day after day continuously and produce prod-
ucts for stockpiling in warehouses (real or virtual)

•	 Project	operations:	organizations	with	fixed	but	flexible	facilities	that	
carry out dissimilar operations from day to day and produce only
against a customer order

More and more organizations are moving toward project operations due to mar-
ket forces, which put emphasis on individual preferences while reducing costs.
Gone are the days of the famous words of Henry Ford, Sr.: “You can have the car
of any color as long as it is black.”

The project operations category has seen significant development over the
past few years under the title “mass customization.” Mass customization blends
aspects of continuous and project operations.

Having put the concept of project operations in an historical perspective,
see Table 1.1 for a comparison of continuous operations with project operations.
Mass customization walks the line between the two extremes identified in Table

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

Software Project Basics 3

1.1, typically with most of the benefits of each, but with a greater reliance on self-
directed teams that make hierarchies and matrix organizations very nervous.

Description of a project. Let’s now examine what comprises a project: a proj-
ect is a temporary endeavor with the objective of manufacturing (producing or
developing) a product or delivering a service, while adhering to the specifications

Table 1.1. Comparisons of Continuous Operations with Project Operations

Item
Number Aspect Continuous Operations Project Operations

1 Product design Designed once: updated
as needed/dictated by
market forces

Designed for every order
received

2 Trigger for
commencement

Marketing asks for the
product

Customer’s order triggers
commencement

3 Planning Periodic: annual,
quarterly, monthly,
weekly, etc.

Order-wise as well as
periodic

4 Workstation design Low cost: to produce one
type of component

Potentially higher cost:
versatile workstations to
produce a wide variety of
components

5 Required education
levels for staff

Low: needs to understand
instructions and can be
easily trained (leads to a
flatter training curve)

High: needs to be able
to interpret drawings/
instructions and may require
longer training (leads to a
steeper learning curve)

6 Products Batches of identical
products

Products range from similar
to (but never identical to) to
radically different

7 Types of workstation
operations

Mostly repetitive with little
variety

Mostly nonrepetitive with
wide variety

8 Specialization Highly feasible Limited specialization

9 Planning Planning utilization
of facilities becomes
more predominant and
important

Planning development
of the product becomes
predominant, while facility
utilization planning becomes
less important

10 Organizational
structure

Hierarchical mostly Mix of hierarchical and
matrix organization

11 Customers Repetitive customers
possible to a high degree

Normally one-off customers
with low probability of
repeat order for same
product

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

4 Mastering Software Project Management

of the customer (including functionality, quality, reliability, price, and schedule)
and conforming to international/national/customer/internal standards for per-
formance and reliability. Translation:

•	 A	project	is	a	temporary	endeavor.
•	 A	project	has	a	definite	beginning	and	a	definite	ending.
•	 No	two	projects	will	be	identical,	although	they	may	be	similar.
•	 Each	 project	 needs	 to	 be	 separately	 approved,	 planned,	 designed,	

engineered, constructed, tested, delivered, installed, and commis-
sioned.

•	 A	project	may	be	stand-alone	or	a	component	in	a	larger	program.
•	 A	project	 is	executed	in	phases,	with	an	initiation	phase	and	one	or	

more intermediate phases and a closing phase.
•	 Many	projects	have	a	transition	phase	(e.g.,	handover	to	customer).
•	 A	project	may	extend	through	a	maintenance	phase.
A software development project (often shortened to software project) has the

objective of developing a software product or maintaining an existing software
product. Software development projects have several general attributes, including:

•	 The	project	has	a	definite	beginning	and	a	definite	end.
•	 The	project	deliverable	is	functional	software	and	related	artifacts.
•	 Activities that may be included in a project are user and software

requirements, software design, software construction, software testing,
acceptance testing, and software delivery, deployment, and handover.

•	 Activities	not	included	in	a	project	are	the	activities	of	project	selec-
tion/acquisition and post-handover.

Some of the more unique attributes of software development projects include:
•	 The	primary	output	 is	not	physical	—	in	the	sense	that	 the	primary	

deliverable is functional software and no tangible components are
delivered — almost everything is inside a computer.

•	 Process	 inspection	 does	 not	 facilitate	 progress	 assessment	—	 func-
tional software or at least the code is the real measure of progress. In
a manufacturing organization, one can see semifinished goods. The
proof of work being performed is in the noise made by machines. In a
software development organization, visual assessment is not enough
to ensure that a person is performing. One needs to walk through the
code being developed to ensure that the person is working.

•	 Despite	 significant	 progress	 in	 software	 engineering	 tools	 and	 dia-
gramming techniques, they do not rise to the level of precision of the
engineering drawings used in other engineering disciplines.

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

Software Project Basics 5

•	 Professional	 associations	 in	 software	 development	 and	 standards	
organizations have not defined standards or practices for devel-
oping software as has occurred in other engineering practices.
The International Organization for Standardization (ISO) and the
Institute of Electrical and Electronic Engineers (IEEE) have defined a
number of standards, but these standards are not at the same level of
granularity as other engineering standards.

•	 Although significant improvements in software development method-
ologies have been made, these methodologies are still largely depen-
dent on human beings for productivity and quality. Tools are available
to help in development or testing, but they still have not been able
to rise to the level set by the standards and tools used in fabrication/
inspection/testing in other engineering disciplines. In other engineer-
ing disciplines, tools are available that shift the onus for productivity/
quality from human beings to the combination of tools and process.
Most would agree that an average-skilled person can achieve higher
productivity/quality with tools than a super-skilled person without
tools.

Therefore, the rigor of planning is all the more important in software devel-
opment than in other engineering projects — planning is a critical tool to keep a
project focused. In other engineering projects, a simple schedule based on PERT/
CPM (Program Evaluation and Review Technique/Critical Path Method) would
suffice, whereas in software development projects, increased rigor and more
planning documents are required (planning documents commonly required are
described in subsequent chapters).

tYPes of softwAre ProJeCts

Software development projects (SDPs) are not homogenous. They come in
various sizes and types. Some examples will help us gain an understanding of the
breadth of SDPs:

•	 An	organization	desires	to	shift	a	business	process	from	manual	infor-
mation processing to computer-based information processing. This
project will include studying the user requirements and carrying out
all of the activities necessary to implement the computer-based system

•	 An organization desires to shift a business process from manual infor-
mation processing to computer-based information processing. The
organization does not want the software be developed from “scratch.” It
wants to use a commercial off-the-shelf software (COTS) product. This

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

6 Mastering Software Project Management

project will include implementation and perhaps some customization
of the COTS product to make it appropriate for the organization.

•	 An	organization	has	a	computer-based	system	that	needs	to	be	shifted	
to another computer system because the existing system has become
obsolete and support to keep the obsolete system in working condi-
tion is no longer available. This project could include porting the
code, training users, and testing the new implementation.

•	 An	organization	has	a	computer-based	system	and	desires	to	shift	it	
from a flat file system to a RDBMS-based system (relational database
management system). Activities will include data conversion in addi-
tion to other activities.

•	 An	organization	has	a	computer-based	information	processing	system	
and needs to effect modifications in the software or add additional
functionality. Activities include adding functionality and making
required modifications in the software of a third party (if required).

•	 An	organization	has	 developed	 a	 computer-based	 information	pro-
cessing system and wants to get it thoroughly tested by an inde-
pendent organization. Activities will include testing and interfacing
between the organizations.

These examples barely scratch the surface of the breadth of software proj-
ects — and new project types keep coming in. In all cases, however, the projects
concern software, but the tasks, activities, and therefore the work in each of the
projects are vastly different.

CLAssIfICAtIons of softwAre ProJeCts

Software projects may be classified in multiple ways (Figure 1.1). For example,
software projects may be classified as:

■ Software development life cycle (SDLC) projects
•	 Full life cycle projects
•	 Partial	life	cycle	projects

■ Approach-driven software development projects
•	 “Fresh” development (creating the entire software from “scratch”)
•	 COTS	product	customization/implementation	
•	 Porting
•	 Migration
•	 Conversion of existing software to meet changed conditions such

as Y2K and Euro conversion

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

Software Project Basics 7

■ Maintenance projects
•	 Defect repair
•	 Functional	expansion
•	 Operational	support
•	 Fixing	odd	behavior
•	 Software	modification

■ Web application projects
■ Agile development projects

Let’s now discuss each type of software project in greater detail.

Based on software development Life Cycle
Full life cycle projects. A full life cycle project is a project that traverses the

entire arc of the methodology being used: starts at the beginning and ends at

Software Project Agile Development

Web Applicatio
ns

Co
nv

er
sio

n

Software Maintenance

Part Life Circle

Fu
ll

Li
fe

 C
irc

leFresh Development

M
igration

Porting

Customize a COTS Product and Implement

Figure 1.1. Software project types.

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

8 Mastering Software Project Management

the end. One problem when discussing a full life cycle project is that there is no
standardization concerning what constitutes a software development life cycle
(SDLC). Generally agreed is that user requirements analysis, software require-
ments analysis, software design, construction, and testing (regardless of what they
are called) are parts of a SDLC. Some of the components of an SDLC that remain
in question include:

•	 A	feasibility	study	determining	whether	the	project	is	worthwhile	
•	 Special	testing	that	is	beyond	unit	testing,	integration	testing,	system	

testing, and acceptance testing
•	 Implementation,	including	installation	of	hardware,	system	software,	

application software, etc.
•	 Software	 commissioning,	 including	 creating	 master	 data	 files,	 user	

training, pilot runs, parallel runs, etc.
In many instances, when the end product is used within the same organiza-

tion, these four components are considered part of an SDLC. Alternately, in other
circumstances, these components are excluded for organizations that specialize in
software development and/or develop software for use by a different organization
(unless contractually included or part of a software as a service architecture).

In this book, we exclude these four components. We assume that a full life
cycle project is one that starts with user requirements and ends with the delivery
of software. Therefore, all post-delivery activities and pre-user requirement activi-
ties are not considered to be within the scope of this book.

Partial life cycle projects. Partial life cycle projects are those that include only
a portion of the SDLC. In partial life cycle projects, any number of permutations
could occur, including:

■ Testing projects in which the scope of the work involves conducting
the specified or necessary software tests on the software product to
certify the product (Unit testing and code walk-through are normally
not included in this type of project.)

■ Independent verification and validation (IV&V) projects in which
projects go beyond mere testing, including code walk-through and
other forms of validation to determine the efficiency of coding

■ A project divided between two or more vendors based on the specialty
to derive the advantages of best practices developed through special-
ization which can lead to defining the project by phase or by combina-
tion of phases, such as:
•	 Requirements	analysis	
•	 Design
•	 Software	construction
•	 Testing

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

Software Project Basics 9

Approach driven
Fresh or new software development projects. Fresh or new software devel-

opment projects are identical to full life cycle development projects previously
discussed.

COTS product customization/implementation projects. Numerous popular
COTS products are available in the marketplace. Examples include the implemen-
tation of ERP (enterprise resource planning software, e.g., by SAP and PeopleSoft),
CRM (customer relationship management), SCM (supply chain management),
EAI (enterprise applications integration), and data warehousing software. Typical
phases in these projects include:

 1. Current system study: a review of the present system
 2. Gap analysis: a comparison of the current system to the COTS prod-

uct
 3. Customization report: a discussion of the desired levels of custom-

ization of the system
 4. Statement of work: definition of the required customization of the

COTS product
 5. Design: how the software will accomplish the task
 6. Construction and integration
 7. Testing
 8. Custom code integration: integration of the code bases (in some

cases it can include building a layer over the COTS product and
integration of custom developed code into the source code of the
COTS product)

 9. COTS source code modification (rare)
 10. Implementation
 11. Training: instruction of users (all classes required) in usage of the sys-

tem, troubleshooting, and operations and maintenance of the system
 12. Transition of the system

Many variations of these phases are also possible for COTS projects.

Porting. Porting projects deal with moving software from one hardware plat-
form to another hardware platform. Porting projects can include:

•	 Changes	in	programming	language
•	 Differences	between	implementations	
•	 Manual	intervention	to	make	the	existing	software	work	on	new	hard-

ware without issues

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

10 Mastering Software Project Management

Project execution work in a porting project involves:

 1. Documenting the differences between the two versions of the pro-
gramming languages

 2. Developing a software tool to make corrections in the code based on
the details mentioned above (Sometimes, vendors of the program-
ming language supply this type of tool.)

 3. Execution of the software porting tool to make all possible corrections
 4. Manual correction to make any specific corrections needed
 5. Conducting the specified software tests
 6. Modifications to the software engineering documents required to

reflect the changes made in the software
 7. Conducting acceptance testing
 8. Delivery of the software

Migration. Oftentimes, new versions of programming languages and data-
bases are released. For example, Visual Basic has gone through many versions:
from version 1 to 6 and then the release of the next set as 2003, 2005, and 2008.
Similarly, Oracle has gone through upgrades: up to version 11. Operating sys-
tems have also been upgraded. For example, Microsoft has had many upgrades
including MS-DOS, Windows, 2 and 3, and then 95, 98, 2000, XP, Vista, and
now Windows 7. When upgrades are released, upgrading software may become
necessary:

•	 To	take	advantage	of	new	features	and	facilities	provided	in	the	newly	
released version

•	 Because	an	older	version	is	no	longer	available	when	additional	hard-
ware or system software is installed or the existing software does not
function well on the new software (In these days of multitier Web-
based software architectures, an upgrade of any tier may necessitate
migration!)

•	 Because	 limitations	 existing	 in	 an	older	 version	 are	 removed	 in	 the	
new release and the existing software needs to be upgraded to remove
the limitations

Upgrades are typically due to the ever-changing environment and the
increasing needs of an organization. Of course, if the configuration of hardware
and software remains exactly same, and the existing software is meeting the user’s
needs, the software would not need to be upgraded. A new version, however,
could contain additional features and facilities that are totally absent in an older
version. Therefore, a software tool cannot be used to make the changes that are
necessary to port the software. To take advantage of new facilities and features
available in the newer version, manual changes are typically required and involve:

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

Software Project Basics 11

 1. Studying the new version
 2. Deciding which new features are desirable and need to be imple-

mented
 3. Developing a functional expansion design document detailing the

new features being implemented in the existing software
 4. Running and upgrading the software (if an upgrade tool is provided

by the vendor)
 5. Implementing the functional expansion design in the software cod-

ing and incorporating necessary software changes (may also include
correcting the existing code)

 6. Conducting all the tests necessary to ensure that the software deliv-
ers all the functionality it was supposed to before migration and all
the functionality that is designed for the new software

 7. Conducting acceptance testing and delivering the software
 8. Data migration involving (sometimes the project scope may include

data migration):
•	 Mapping	the	old	database	schema	to	the	new	database	schema
•	 Developing	software/locating	tools	provided	with	the	new	data-

base (if any) to migrate data from the old database to the new
database

•	 Running	the	tools	 to	migrate	data	 from	the	old	database	to	the	
new database

•	 Arranging	for	data	entry	in	the	new	database	for	those	fields	that	
are absent in the old database, but present in the new database

•	 Testing	 the	database	 for	known	cases	using	 the	 software,	 com-
paring the results with the desired results, and making necessary
changes so that the new database is correct

•	 Integrating	the	database	with	the	software

Specific migration projects may have different activities from the activities
described above.

Note: Porting and migration projects are similar. There is no strict distinction
between the two. Therefore, these two terms are sometimes used interchangeably.

Conversion. Year 2000 (Y2K) and Euro conversion projects are excellent
examples of conversion projects. Using a Y2K project as example, the work
includes verifying all programs for code limitations and then making any neces-
sary modifications. Typical activities in a conversion project include:

 1. Studying the existing software and specifications of the necessary
conversion

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

12 Mastering Software Project Management

 2. Preparing a conversion guidelines document detailing the procedure
for incorporating the required modifications in the software

 3. Developing a tool (if feasible) to automatically incorporate the modi-
fications in the software

 4. Running the tools or hand coding the changes
 5. Performing a manual walk-through of each program to locate the

remaining required modifications and implementing them
 6. Conducting unit testing (and other tests as specified or as necessary)
 7. Conducting acceptance testing
 8. Delivering the software

In Euro conversion projects, some countries that did not make use of decimals in
their financial software had to incorporate decimals as well as provide for the use
of the Euro symbol.

Maintenance
Software maintenance projects are major money makers for software develop-
ment organizations that are dependent on outsourcing. We need, however, to
relax the specific beginning and ending requirements to call software mainte-
nance a project. In a software maintenance project, generally there is a contract
between the parties to take care of a specific application for a given period of time,
e.g., 1 or 2 years, but a contract can be extended as long as both parties remain
satisfied with each other’s performance or as long as the application is in commis-
sion. An overall contract would specify:

•	 Billing	rates
•	 Mode	of	requesting	work
•	 Service	 level	 agreement	 (SLA)	 specifying	 the	 priorities	 and	 turn-

around times
•	 Persons	authorized	to	initiate/authorize	work	requests,	accept	deliver-

ies, give clarifications
•	 Escalation	mechanisms
•	 Billing	cycles	and	payment	schedules	

This list could go on forever, depending on the specific needs and the “pain” of
the organizations.

Normally, a maintenance work request (MWR) triggers software maintenance
work. An MWR can be known by other terms, depending on the organization:

•	 Program	modification	request	(PMR)
•	 Program	change	request	(PCR)
•	 Defect	report
•	 Software	change	request

Again, this list can also go on forever.
J. Ross Publishing; All Rights Reserved

Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

Software Project Basics 13

Contractually, an MWR is expected to have proper authorizations and to
have them in advance. However, for an immediate need, a telephone call, a fax,
or an email can also be used and later regularized through raising an MWR, i.e.,
post-facto (although frowned upon as potentially leading to loss of control).

Work included in a software maintenance project is classified into five types:
defect fixing, operational support, fixing odd behavior, software modification,
and functional enhancement.

Defect repair. Defect fixing work involves fixing a reported defect. A defect
may be classified as:

•	 Critical (a “show-stopper”)
•	 Major (hinders smooth functioning of work)
•	 Minor (mostly a nuisance; work is not affected)
Typically, defect fixing has an associated SLA in which the turnaround time

for each class of defect, based on priority, is defined (i.e., the time between when
a defect is reported until the time it is fixed, the regression test is completed, and
the software is handed over to production). Sometimes, the turnaround time can
be as little as hours or minutes, depending on the application and the needs of the
organization. Normally, the maximum turnaround time for fixing a defect would
be about 2 days. In a defect-fixing scenario, follow-up and progress reporting are
frequent and close together. Generally, the steps in fixing a defect include:

 1. Studying the defect report
 2. Replicating the defect scenario in a development environment
 3. Studying the code
 4. Locating the defect
 5. Fixing the defect, conforming to code change guidelines
 6. Arranging for peer review and implementing feedback (if any)
 7. Arranging for independent regression testing and implementing

feedback (if any)
 8. Delivering the fixed code to production for implementation in the

production system
 9. Closing the request

Functional expansion. When additional functionality is required in existing
software, functional enhancement is the tool to achieve it. Functional enhance-
ment work is generally of longer duration and may range from a calendar week
upward. Work included in functional enhancement includes:

•	 Adding	a	new	screen	or	report
•	 Adding	additional	processing	functionality	(e.g.,	quarterly/half	yearly/

yearly processing)

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

14 Mastering Software Project Management

•	 Adding	a	new	module	in	the	software
•	 Integrating	with	another	software
•	 Building	interfaces	with	other	software
•	 Adding	new	hardware	and	building	an	interface	to	the	new	hardware	

in the existing software
Functional expansion generally fits the full SDLC model in which the proj-

ect leverages the full software engineering process and the project management
process and can be treated as an independent project if the duration is sufficiently
long enough. The level of process rigor required is typically driven by risk. Each
organization has a different definition of a project that should be treated as a
functional enhancement project. For example, in one organization, a functional
enhancement project is defined as “work with the duration of one person-month
of effort or more,” while in another, the definition of a functional enhancement
project is “40 hours of effort.”

Operational support. Operational support is similar to defect fixing. Many
times, operational support requires immediate attention. Activities under opera-
tional support include:

•	 Running periodic jobs (end of day/week/month)
•	 Taking	backups	
•	 Restoring	from	backups	
•	 User	 management	 functionality	 (including	 creation,	 deletion,	 and	

suspending of user accounts and changing access privileges, etc.)
•	 Providing	“hand-holding”	assistance	at	a	specific	workstation	
•	 Extracting	data	and	producing	an	ad	hoc	report	on	an	urgent	basis
•	 Providing	a	temporary	patch	so	that	operations	may	continue
•	 Investigating	operational	complaints

Again, the list of activities is long and varied.

Fixing odd behavior. In large, complex software systems, and in systems that
have been in existence for many years and have undergone software maintenance
(e.g., defect fixes, software modifications, and functional expansions), random
defects may often crop up under some circumstances, but not in others. These
random defects are generally difficult to replicate in a development environment.
One reason is because the defect occurs in the field and the person witnessing the
defect does not note the chain of events that caused the defect. So until the defect
becomes chronic, it might have been handled as an operational support activity
and not have been recognized as defect. Such puzzling defects can be placed in
the odd behavior category of software maintenance. Odd behavior can be caused
by the application software or the system software, a client workstation or a virus,

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

Software Project Basics 15

network security, or a combination of all of these. Diagnosing and correcting odd
behavior issues may take longer than a week because correcting odd behavior is
similar to conducting research. General steps in fixing odd behavior include:

 1. Studying the odd behavior report
 2. Trying to replicate the behavior scenario in a development environ-

ment
 3. Studying the code
 4. Listing all possible alternative reasons for the reported behavior
 5. Reviewing the code for each alternative for possible opportunities

for improvement
 6. Iterating/eliminating all causes, one by one
 7. Fixing all possible opportunities for code improvement
 8. Arranging for peer review
 9. Arranging for independent regression testing
 10. Delivering the software to production for implementation of

improved code in the production system
 11. Waiting for another report of the identical odd behavior and repeat-

ing all the above steps.
 12. Keeping the request open through a period of observation

Software modification. Software modification work is the bulk of software
maintenance in most organizations. Modification of working software is neces-
sitated due to:

•	 Changes	in	requirements	mainly	due	to	changed	conditions	occurring	
over a period of time

•	 Changes	in	business	processing	logic
•	 Convenience	for	users
•	 Changes	in	statutory	requirements
Often, modifications include changes to reports, changes to screens by mov-

ing around data fields, adding or deleting a data field or two, or some other small
enhancement. Steps in the process of software modification include:

 1. Studying the software modification request
 2. Analyzing the existing software to identify components that require

modification
 3. Preparing a design modification document and obtaining approval

from appropriate executives
 4. Implementing the approved design modification in the code
 5. Arranging for peer review of the modified code

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

16 Mastering Software Project Management

 6. Arranging for independent functional testing of the modified func-
tionality — to ensure that it conforms to the approved design docu-
ment — and implementing feedback (if any)

 7. Arranging for independent regression testing and implementing
feedback (if any)

 8. Delivering the modified artifact to production for implementation in
the production system

 9. Closing the request

web Application
Web projects refer to Web-based application development projects. Web projects
differ from other projects because they have more than two tiers:

•	 Presentation	tier
•	 Database	server	tier
•	 Application	server	tier
•	 Web	server	tier
•	 Security	server

A Web application consists of:
•	 HTML	pages	that	include	graphics	to	enhance	the	“look	and	feel”	of	

the Web pages
•	 Backend	programs	for	data	manipulation
•	 Middleware	programs	for	application	server	or	rules	engines
•	 Middleware	programs	for	security	management
•	 Other	application-specific	programs
Another notable feature of Web applications is that backend programming

and middleware programming may be in different programming languages and
may require persons with different skill sets, even for the same project. Another
request is for independence from databases and Web browsers, which neces-
sitates coding routines that are not oriented toward functionality. Additionally,
a Web application needs to be developed so that it facilitates an easy change of
code. Environmental changes that have nothing to do with the organization, e.g.,
a new security threat, the release of a new browser, or the upgrade of an existing
browser, etc., can also trigger software maintenance in a Web application — even
though the functionality remains unaltered. Web-based and client server projects
have a very similar profile.

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

Software Project Basics 17

Agile development
Agile software development refers to a group of software development meth-
odologies based on iterative development, in which requirements and solutions
evolve through collaboration between self-organizing, cross-functional teams.
(Agile project management is discussed at length in Chapter 11.)

ConCLUsIon

Software projects are basically projects with a definite beginning and a definite
ending, except that the final end product delivered is not physical. Software
projects come in various types and sizes. Product maintenance in software is also
treated as a project — unlike physical product maintenance. This chapter defines
software projects as well as enumerates the different types of projects, laying
a foundation for better assimilation of the science and art of software project
management. Subsequent chapters will deal with the subject of software project
management, building on this foundation.

This book has free material available for download from the
Web Added Value™ resource center at www.jrosspub.com

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

J. Ross Publishing; All Rights Reserved
Chemuturi, Murali, and Thomas Cagley. Mastering Software Project Management : Best Practices, Tools and Techniques, J.
 Ross Publishing, 2010. ProQuest Ebook Central, http://ebookcentral.proquest.com/lib/inflibnet-ebooks/detail.action?docID=3319451.
Created from inflibnet-ebooks on 2018-07-12 21:45:53.

C
op

yr
ig

ht
 ©

 2
01

0.
 J

. R
os

s
P

ub
lis

hi
ng

. A
ll

rig
ht

s
re

se
rv

ed
.

