
Java Program
Design

Principles, Polymorphism, and Patterns
—
Edward Sciore

Java Program Design
Principles, Polymorphism,

and Patterns

Edward Sciore

Java Program Design: Principles, Polymorphism, and Patterns

ISBN-13 (pbk): 978-1-4842-4142-4 ISBN-13 (electronic): 978-1-4842-4143-1
https://doi.org/10.1007/978-1-4842-4143-1

Library of Congress Control Number: 2018965461

Copyright © 2019 by Edward Sciore

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484241424.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Edward Sciore
Newton, MA, USA

https://doi.org/10.1007/978-1-4842-4143-1

iii

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Introduction ��xv

Table of Contents

Chapter 1: Modular Software Design ��1

Designing for Change ��1

Object-Oriented Basics ���4

APIs and Dependencies ���4

Modularity ���5

Class Diagrams ��6

Static vs� Nonstatic ��8

A Banking Demo ���9

The Single Responsibility Rule ��13

Refactoring��19

Unit Testing ���20

Class Design ���23

Encapsulation ���29

Redistributing Responsibility ��31

Dependency Injection ��36

Mediation ��40

iv

Design Tradeoffs ���41

The Design of Java Maps ��43

Summary���45

Chapter 2: Polymorphism ���47

The Need for Polymorphism ��47

Interfaces ��50

Reference Types ��54

Type Safety ���58

Type Casting ��59

Transparency ���61

The Open-Closed Rule���63

The Comparable Interface ���64

Subtypes ���67

The Java Collection Library ���70

ArrayList ��73

LinkedList ��73

HashSet ���73

TreeSet ��73

The Liskov Substitution Principle ��73

Should SortedSet Extend List? ��75

Why Isn’t There an Interface SortedList? ���75

Should Queue Extend List? Should List Extend Queue? ��������������������������������76

Why Have the Interface Set if It Doesn’t Provide any Added Functionality? ����76

The Rule of Abstraction ���77

Adding Code to an Interface ��80

Summary���84

Table of ConTenTsTable of ConTenTs

https://doi.org/10.1007/978-1-4842-4143-1_2#Sec9525
https://doi.org/10.1007/978-1-4842-4143-1_2#Sec5689

v

Chapter 3: Class Hierarchies ��87

Subclasses ��87

Abstract Classes ���93

Writing Java Collection Classes ��103

Byte Streams���105

The Template Pattern ��118

Summary���126

Chapter 4: Strategies ��127

The Strategy Pattern ���127

Comparators ���136

Anonymous Inner Classes ���140

Explicit Anonymous Classes ��140

Lambda Expressions ���141

The Strategy Pattern as a Design Tool ��144

The Command Pattern ��150

Eliminating the Class Hierarchy ��156

Templates vs� Strategies ���160

Summary���162

Chapter 5: Encapsulating Object Creation ��163

Object Caching ��163

Singleton Classes ��169

Singleton Strategy Classes ���172

Static Factory Methods ���180

Factory Objects ���185

Cached Factory Objects ��188

Table of ConTenTsTable of ConTenTs

vi

The Factory Pattern���192

Factories for Customized Objects ���195

Summary���198

Chapter 6: Iterables and Iteration���201

Iterators���201

Writing an Iterator Class ���205

The Iterator Pattern ���210

Designing Iterable Classes ��212

External Iteration ���214

Internal Iteration ���217

The Visitor Pattern ���219

Predicates ���223

Collection Streams ��227

Summary���233

Chapter 7: Adapters ��237

Inheritance for Reuse ��237

Wrappers ���239

The Adapter Pattern ��240

Text Streams ���244

The Adapter OutputStreamWriter ��246

The Adapter InputStreamReader ���250

The Adapter StringReader ���254

Object Streams ���255

Saving State in the Banking Demo��260

Table of ConTenTsTable of ConTenTs

vii

Adapters for the Banking Demo ��263

Summary���269

Chapter 8: Decorators ���271

Decorator Classes ���271

The Decorator Pattern ���277

The Chain of Command Pattern ��283

Decorated Iterators ���288

Implementing Collection Streams ���294

Decorated Input Streams ��298

Buffered Input Streams ���299

Progress Monitoring ��302

Cipher Input Streams ���304

Decorator Transparency ��306

Summary���312

Chapter 9: Composites ���315

Predicates as Composites ���315

Composite Objects in JavaFX ��323

The Composite Pattern ��333

A Cookbook Example ��336

Traversing a Composite Object ���341

Summary���350

Chapter 10: Observers ��353

Observers and Observables ��353

The Observer Pattern ��358

Push vs� pull ��359

Managing the Observer List ��361

Table of ConTenTsTable of ConTenTs

viii

The Generic Observer Pattern in Java���365

Events ���369

Observers in JavaFX ���374

JavaFX Properties ���379

Properties as Wrappers ���379

Properties as Observables ���381

JavaFX Bindings ��384

Summary���388

Chapter 11: Model, View, and Controller ��389

The MVC Design Rule ��390

Multiple Views for a Model ��397

MVC in Excel ���403

JavaFX Views and Controllers ���405

Extending the MVC Architecture ���411

The MVC Pattern ���417

MVC and the Banking Demo ���422

The Class FxBankProgram ���424

The Create Account View ���426

The Account Information View ���428

The All Accounts View ��432

Observable List Views ���435

Observable Table Views ��438

Summary���441

Index ���445

Table of ConTenTsTable of ConTenTs

ix

About the Author

Edward Sciore is a recently retired Associate

Professor at Boston College, who gleefully

taught computer science to college students

for over 35 years. This book is the result of

his experiences teaching courses on Java

programming, object-oriented design, and

software engineering. Edward is author of

Understanding Oracle APEX 5 Application

Development (Apress, 2015) and Database

Design and Implementation (Wiley, 2008).

xi

About the Technical Reviewer

Alexandru Jecan is a senior software engineer,

consultant, author, trainer and speaker

currently residing in Munich, Germany.

He earned a degree in computer science from

the Technical University of Cluj-Napoca,

Romania. Alexandru is the author of the

“Java 9 Modularity Revealed” book and is

currently writing another book on Eclipse

MicroProfile - all for Apress. He speaks

at tech conferences and user groups, both in Europe and the United

States, on different topics related to software development and software

technologies. He is also involved in the Java community. In his spare

time, Alexandru likes to spend time with his wonderful wife. Whenever he

gets some free time, he likes to read and to develop tools for the GitHub

Marketplace. He also likes to play sports like soccer and tennis and to go

skiing in the mountains. You can follow Alexandru on Twitter at

@alexandrujecan, read his tech blog at www.alexandrujecan.com, or email

him at alexandrujecan@gmail.com. If you would like to join Alexandru in

his endeavor to build world class tools that enhance work productivity, feel

free to contact him. He’ll be glad to discuss with you.

https://www.alexandrujecan.com

xiii

Acknowledgments

My interest in object-oriented programming began in the mid-1980s,

and steadily increased over the years as the discipline developed and

matured. I am indebted to those who helped introduce the “big ideas”

along the way, as well as those who filled in the gaps. I view this book as

a consolidation of the current state of the discipline, and hope it will help

others appreciate the power and potential of the object-oriented approach

to programming.

My editor at Apress, Jonathan Gennick, has been unconditionally

supportive during the entire process. I think of him as a friend that I have

never met. Perhaps some day....

My daughter, Leah Schneider, wanted to know more about object

orientation for her job, so I had her preview an early draft of the book. Her

enthusiasm for each chapter was gratifying. I appreciate the time she put

in and the comments she made. She is wonderful. She is also a stickler

for good grammar and mercilessly hounded me about my inappropriate

overuse of commas. She was, of course, correct, and I did my best to

tighten things up, except perhaps for this sentence, where I couldn’t help

myself.

Finally, I need to acknowledge my wife, Amy Schneider, who supported

me far more than she realizes—through discussions, proofreading,

explaining comma usage, and by simply being there. Thanks for everything.

xv

Introduction

This book is concerned with the following topic: How to use the object-

oriented programming facilities of Java effectively. There are several reasons

why you might find this book useful.

Perhaps you are one of the many Java programmers who don’t know

a lot about object orientation. You can use classes and write simple ones,

and may even have written an interface or a subclass. But you don’t really

get the point of it. You don’t see (let alone appreciate) the power and

expressiveness of an object-oriented program design. This book will give

you that understanding and appreciation.

Or perhaps you are comfortable with object-oriented concepts

and appreciate the usefulness of polymorphism. You might have even

dabbled with design patterns. They seem like a good idea, and everyone

talks about them, but you don’t really understand how to use them in

your own programs. This book will show you the underlying intent of the

patterns, how their techniques can become a seamless addition to your

programming toolbox, and how you can adapt their solutions to fit the

needs of a given situation.

The Java library has a vast number of classes. You are probably

comfortable with some of these classes, such as String, ArrayList, and

HashMap, but you may have encountered other classes whose intent seems

obscure. For example, perhaps you were told that you should always combine

a BufferedReader with a FileReader when reading from a text file, but you

never understood why things have to be so complicated. And what about all

the other Reader subclasses—when should they be used? This book can help

you make sense of the Java library. Many of its classes are organized around

design patterns, and understanding the pattern helps to understand why the

classes are the way they are and how they should be used.

xvi

Design patterns were introduced by Gamma, Held, Johnson, and

Vlissides in their seminal 1994 book. The Java language has several

features that support the use of these patterns. For example, the Iterable

and Iterator interfaces support the iterator pattern, the Observable class

and Observer interface support the observer pattern, and the Stream and

Consumer interfaces support the visitor pattern. In addition, the availability

of lambda expressions in Java makes it possible to reformulate several

design patterns more simply and organically. I view this book as a modern

treatment of design patterns because it presents them from the standpoint

of modern Java. My goal is to show how design patterns arise naturally

from the principles of object-oriented design. Although this book does not

cover all design patterns, I am confident that it will give you the tools you

need to more deeply understand other patterns you may read about.

This book illustrates object-oriented concepts by taking examples from

the Java class library. Many of the library classes are well designed, and it

is instructive to examine their designs and implementations. Some library

classes have questionable designs, and it is equally instructive to examine

their defects and consider alternatives.

The book also has an extensive running example, which is the

design of a simplified banking program. The first version of the program

appears in Chapter 1, and consists of a single, non–object-oriented class.

New versions are created throughout the book, as each new concept is

introduced. By the end of Chapter 11, the example will have expanded

to encompass five programs, containing 53 classes and interfaces. I hope

that you will enjoy following its development as you read the book, and

appreciate how the different design concepts can interact to produce an

elegant, nontrivial architecture.

Needless to say, these examples constitute a lot of code. To save space

and enhance readability, not all of the code appears in the book. When

a class is being discussed, only the portion of the class relevant to the

discussion is shown. Import declarations are always omitted.

InTroduCTIonInTroduCTIon

xvii

A good way to examine the example code is to use a Java editor or

IDE. Complete working versions of all files mentioned in the text are

available from the Apress website, and I encourage you to download them.

Included with the files is a README file that explains the scope of the code

and how to install it. Each package also has a README file that explains the

purpose of its source files. While writing this book, I found it useful (and often

necessary) to have the code in an IDE on my computer so that I could consult

it and execute it. I expect that the source code files will be equally useful to

you as you read the book.

InTroduCTIonInTroduCTIon

1© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_1

CHAPTER 1

Modular Software
Design
When a beginning programmer writes a program, there is one goal: the

program must work correctly. However, correctness is only a part of

what makes a program good. Another, equally important part is that the

program be maintainable.

Perhaps you have experienced the frustration of installing a new

version of some software, only to discover that its performance has

degraded and one of the features you depend on no longer works. Such

situations occur when a new feature changes the existing software in ways

that other features did not expect.

Good software is intentionally designed so that these unexpected

interactions cannot occur. This chapter discusses the characteristics of

well-designed software and introduces several rules that facilitate its

development.

 Designing for Change
Software development typically follows an iterative approach. You create

a version, let users try it, and receive change requests to be addressed in

the next version. These change requests may include bug fixes, revisions

of misunderstandings of how the software should work, and feature

enhancements.

2

There are two common development methodologies. In the waterfall

methodology, you begin by creating a design for the program, iteratively

revising the design until users are happy. Then you write the entire

program, hoping that the first version will be satisfactory. It rarely is. Even

if you manage to implement the design perfectly, users will undoubtedly

discover new features that they hadn’t realized they wanted.

In the agile methodology, program design and implementation

occur in tandem. You start by implementing a bare-bones version of

the program. Each subsequent version implements a small number of

additional features. The idea is that each version contains “just enough”

code to make the chosen subset of features work.

Both methodologies have their own benefits. But regardless of which

methodology is used, a program will go through several versions during its

development. Waterfall development typically has fewer iterations, but the

scope of each version change is unpredictable. Agile development plans

for frequent iterations with small, predictable changes.

The bottom line is that programs always change. If a program doesn’t

work the way users expect then it will need to be fixed. If a program

does work the way users expect then they will want it to be enhanced. It

is therefore important to design your programs so that requested changes

can be made easily, with minimal modification to the existing code.

Suppose that you need to modify a line of code in a program. You

will also need to modify the other lines of code that are impacted by this

modification, then the lines that are impacted by those modifications,

and so on. As this proliferation increases, the modification becomes more

difficult, time-consuming, and error prone. Therefore, your goal should be

to design the program such that a change to any part of it will affect only a

small portion of the overall code.

This idea can be expressed in the following design principle. Because

this principle is the driving force behind nearly all the design techniques in

this book, I call it the fundamental design principle.

Chapter 1 Modular Software deSign

3

For a simple illustration of the fundamental design principle, consider

the concept of variable scope. The scope of a variable is the region of

the program where that variable can be legally referenced. In Java, a

variable’s scope is determined by where it is declared. If the variable is

declared outside of a class then it can be referenced from any of the class’s

methods. It is said to have global scope. If the variable is declared within a

method then it can be referenced only from within the code block where it

is declared, and is said to have local scope.

Consider the class ScopeDemo in Listing 1-1. There are four variables:

x, z, and two versions of y. These variables have different scopes.

Variable x has the largest scope; it can be referenced from anywhere in

the class. Variable y in method f can only be accessed from within that

method, and similarly for variable y in g. Variable z can only be accessed

from within f’s for-loop.

Listing 1-1. The ScopeDemo Class

public class ScopeDemo {

 private int x = 1;

 public void f() {

 int y = 2;

 for (int z=3; z<10; z++) {

 System.out.println(x+y+z);

 }

 ...

 }

The Fundamental Principle of Software Design

a program should be designed so that any change to it

will affect only a small, predictable portion of the code.

Chapter 1 Modular Software deSign

4

 public void g() {

 int y = 7;

 ...

 }

}

Why should a programmer care about variable scoping? Why not just

define all variables globally? The answer comes from the fundamental

design principle. Any change to the definition or intended use of a variable

could potentially impact each line of code within its scope. Suppose that

I decide to modify ScopeDemo so that the variable y in method f has a

different name. Because of y’s scope, I know that I only need to look at

method f, even though a variable named y is also mentioned in method g.

On the other hand, if I decide to rename variable x then I am forced to look

at the entire class.

In general, the smaller the scope of a variable, the fewer the lines of

code that can be affected by a change. Consequently, the fundamental

design principle implies that each variable should have the smallest

possible scope.

 Object-Oriented Basics
Objects are the fundamental building blocks of Java programs. Each

object belongs to a class, which defines the object’s capabilities in terms

of its public variables and methods. This section introduces some object-

oriented concepts and terminology necessary for the rest of the chapter.

 APIs and Dependencies
The public variables and methods of a class are called its Application

Program Interface (or API). The designer of a class is expected to document

the meaning of each item in its API. Java has the Javadoc tool specifically

Chapter 1 Modular Software deSign

5

for this purpose. The Java 9 class library has an extensive collection of

Javadoc pages, available at the URL https://docs.oracle.com/javase/9/

docs/api. If you want to learn how a class from the Java library works then

this is the first place to look.

Suppose the code for a class X holds an object of class Y and uses it to

call one of Y’s methods. Then X is called a client of Y. Listing 1-2 shows a

simple example, in which StringClient is a client of String.

Listing 1-2. The StringClient Class

public class StringClient {

 public static void main(String[] args) {

 String s = "abc";

 System.out.println(s.length());

 }

}

A class’s API is a contract between the class and its clients. The code

for StringClient implies that the class String must have a method

length that satisfies its documented behavior. However, the StringClient

code has no idea of or control over how String computes that length.

This is a good thing, because it allows the Java library to change the

implementation of the length method as long as the method continues to

satisfy the contract.

If X is a client of Y then Y is said to be a dependency of X. The idea is that

X depends on Y to not change the behavior of its methods. If the API for

class Y does change then the code for X may need to be changed as well.

 Modularity
Treating an API as a contract simplifies the way that large programs get

written. A large program is organized into multiple classes. Each class is

implemented independently of the other classes, under the assumption

Chapter 1 Modular Software deSign

https://docs.oracle.com/javase/9/docs/api
https://docs.oracle.com/javase/9/docs/api

6

that each method it calls will eventually be implemented and do what it

is expected to do. When all classes are written and debugged, they can be

combined to create the final program.

This design strategy has several benefits. Each class will have a limited

scope and thus will be easier to program and debug. Moreover, the classes

can be written simultaneously by multiple people, resulting in the program

getting completed more quickly.

We say that such programs are modular. Modularity is a necessity;

good programs are always modular. However, modularity is not enough.

There are also important issues related to the design of each class and the

connections between the classes. The design rules later in this chapter will

address these issues.

 Class Diagrams
A class diagram depicts the functionality of each class in a program and

the dependencies between these classes. A class diagram has a rectangle

for each class. The rectangles have three sections: the top section contains

the name of the class, the middle section contains variable declarations,

and the bottom section contains method declarations. If class Y is a

dependency of class X then the rectangle for X will have an arrow to the

rectangle for Y. The arrow can be read “uses,” as in “StringClient uses

String.” Figure 1-1 shows a class diagram for the code of Listing 1-2.

Figure 1-1. A class diagram for Listing 1-2

Chapter 1 Modular Software deSign

7

Class diagrams belong to a standard notational system known as UML

(for Universal Modeling Language). UML class diagrams can have many

more features than described here. Each variable and method can specify

its visibility (such as public or private) and variables can have default

values. In addition, the UML notion of dependency is broader and more

nuanced. The definition of dependency given here is actually a special

kind of UML dependency called an association. Although these additional

modeling features enable UML class diagrams to more accurately specify a

design, they add a complexity that will not be needed in this book and will

be ignored.

Class diagrams have different uses during the different phases

of a program’s development. During the implementation phase, a

class diagram documents the variables and methods used in the

implementation of each class. It is most useful when it is as detailed as

possible, showing all the public and private variables and methods of

each class.

During the design phase, a class diagram is a communication tool.

Designers use class diagrams to quickly convey the functionality of each

class and its role in the overall architecture of the program. Irrelevant

classes, variables, methods and arrows may be omitted in order to

highlight a critical design decision. Typically, only public variables and

methods are placed in these class diagrams. Figure 1-1 is an example of

a design-level class diagram: the private variable of type StringClient is

omitted, as are the unreferenced methods in String. Given that this book

is about design, it uses design-level class diagrams exclusively. Most of

the classes we model will have no public variables, which means that the

middle section of each class rectangle will usually be empty.

Chapter 1 Modular Software deSign

8

 Static vs. Nonstatic
A static variable is a variable that “belongs” to a class. It is shared among

all objects of the class. If one object changes the value of a static variable

then all objects see that change. On the other hand, a nonstatic variable

“belongs” to an object of the class. Each object has its own instance of the

variable, whose value is assigned independently of the other instances.

For example, consider the class StaticTest in Listing 1-3. A StaticTest

object has two variables: a static variable x and a nonstatic variable y. Each

time a new StaticTest object is created, it will create a new instance of y

and overwrite the previous value of x.

Listing 1-3. The StaticTest Class

public class StaticTest {

 private static int x;

 private int y;

 public StaticTest(int val) {

 x = val;

 y = val;

 }

 public void print() {

 System.out.println(x + " " + y);

 }

 public static int getX() {

 return x;

 }

 public static void main(String[] args) {

 StaticTest s1 = new StaticTest(1);

 s1.print(); //prints "1 1"

Chapter 1 Modular Software deSign

9

 StaticTest s2 = new StaticTest(2);

 s2.print(); //prints "2 2"

 s1.print(); //prints "2 1"

 }

}

Methods can also be static or nonstatic. A static method (such as getX

in StaticTest) is not associated with an object. A client can call a static

method by using the class name as a prefix. Alternatively, it can call a static

method the conventional way, prefixed by a variable of that class.

For example, the two calls to getX in the following code are equivalent.

To my mind, the first call to getX is to be preferred because it clearly

indicates to the reader that the method is static.

 StaticTest s1 = new StaticTest(1);

 int y = StaticTest.getX();

 int z = s1.getX();

Because a static method has no associated object, it is not allowed

to reference nonstatic variables. For example, the print method in

StaticTest would not make sense as a static method because there is no

unique variable y that it would be able to reference.

 A Banking Demo
Listing 1-4 gives the code for a simple program to manage a fictional bank.

This program will be used as a running example throughout the book. The

code in Listing 1-4 consists of a single class, named BankProgram, and is

version 1 of the demo.

The class BankProgram holds a map that stores the balances of several

accounts held by a bank. Each element in the map is a key-value pair.

The key is an integer that denotes the account number and its value is the

balance of that account, in cents.

Chapter 1 Modular Software deSign

10

Listing 1-4. Version 1 of the Banking Demo

public class BankProgram {

 private HashMap<Integer,Integer> accounts

 = new HashMap<>();

 private double rate = 0.01;

 private int nextacct = 0;

 private int current = -1;

 private Scanner scanner;

 private boolean done = false;

 public static void main(String[] args) {

 BankProgram program = new BankProgram();

 program.run();

 }

 public void run() {

 scanner = new Scanner(System.in);

 while (!done) {

 System.out.print("Enter command (0=quit, 1=new,

 2=select, 3=deposit, 4=loan,

 5=show, 6=interest): ");

 int cmd = scanner.nextInt();

 processCommand(cmd);

 }

 scanner.close();

 }

 private void processCommand(int cmd) {

 if (cmd == 0) quit();

 else if (cmd == 1) newAccount();

 else if (cmd == 2) select();

 else if (cmd == 3) deposit();

Chapter 1 Modular Software deSign

11

 else if (cmd == 4) authorizeLoan();

 else if (cmd == 5) showAll();

 else if (cmd == 6) addInterest();

 else

 System.out.println("illegal command");

 }

 ... //code for the seven command methods appears here

}

The program’s run method performs a loop that repeatedly reads

commands from the console and executes them. There are seven

commands, each of which has a corresponding method.

The quit method sets the global variable done to true, which causes

the loop to terminate.

 private void quit() {

 done = true;

 System.out.println("Goodbye!");

 }

The global variable current keeps track of the current account.

The newAccount method allocates a new account number, makes it

current, and assigns it to the map with an initial balance of 0.

 private void newAccount() {

 current = nextacct++;

 accounts.put(current, 0);

 System.out.println("Your new account number is "

 + current);

 }

The select method makes an existing account current. It also prints

the account balance.

Chapter 1 Modular Software deSign

12

 private void select() {

 System.out.print("Enter account#: ");

 current = scanner.nextInt();

 int balance = accounts.get(current);

 System.out.println("The balance of account " + current

 + " is " + balance);

 }

The deposit method increases the balance of the current account by a

specified number of cents.

 private void deposit() {

 System.out.print("Enter deposit amount: ");

 int amt = scanner.nextInt();

 int balance = accounts.get(current);

 accounts.put(current, balance+amt);

 }

The method authorizeLoan determines whether the current account

has enough money to be used as collateral for a loan. The criterion is that

the account must contain at least half of the loan amount.

 private void authorizeLoan() {

 System.out.print("Enter loan amount: ");

 int loanamt = scanner.nextInt();

 int balance = accounts.get(current);

 if (balance >= loanamt / 2)

 System.out.println("Your loan is approved");

 else

 System.out.println("Your loan is denied");

 }

The showAll method prints the balance of every account.

Chapter 1 Modular Software deSign

13

 private void showAll() {

 Set<Integer> accts = accounts.keySet();

 System.out.println("The bank has " + accts.size()

 + " accounts.");

 for (int i : accts)

 System.out.println("\tBank account " + i

 + ": balance=" + accounts.get(i));

 }

Finally, the addInterest method increases the balance of each

account by a fixed interest rate.

 private void addInterest() {

 Set<Integer> accts = accounts.keySet();

 for (int i : accts) {

 int balance = accounts.get(i);

 int newbalance = (int) (balance * (1 + rate));

 accounts.put(i, newbalance);

 }

 }

 The Single Responsibility Rule
The BankProgram code is correct. But is it any good? Note that the program

has multiple areas of responsibility—for example, one responsibility is to

handle I/O processing and another responsibility is to manage account

information—and both responsibilities are handled by a single class.

Multipurpose classes violate the fundamental design principle. The

issue is that each area of responsibility will have different reasons for

changing. If these responsibilities are implemented by a single class then

the entire class will have to be modified whenever a change occurs to

Chapter 1 Modular Software deSign

14

one aspect of it. On the other hand, if each responsibility is assigned to a

different class then fewer parts of the program need be modified when a

change occurs.

This observation leads to a design rule known as the Single

Responsibility rule.

A program that satisfies the Single Responsibility rule will be organized

into classes, with each class having its own unique responsibility.

Version 2 of the banking demo is an example of such a design. It

contains three classes: The class Bank is responsible for the banking

information; the class BankClient is responsible for I/O processing; and

the class BankProgram is responsible for putting everything together.

The class diagram for this design appears in Figure 1-2.

The Single Responsibility Rule

a class should have a single purpose, and

all its methods should be related to that purpose.

The code for Bank appears in Listing 1-5. It contains the three variables of

version 1 that are relevant to the bank, namely the map of accounts, the

interest rate, and the value of the next account number. The six methods in

its API correspond to the command methods of version 1 (except for quit).

Figure 1-2. Version 2 of the banking demo

Chapter 1 Modular Software deSign

15

Their code consists of the code of those methods, with the input/output

code stripped out. For example, the code for the newAccount method adds

a new account to the map but does not print its information to the console.

Instead, it returns the account number to BankClient, which is responsible

for printing the information.

Listing 1-5. The Version 2 Bank Class

public class Bank {

 private HashMap<Integer,Integer> accounts

 = new HashMap<>();

 private double rate = 0.01;

 private int nextacct = 0;

 public int newAccount() {

 int acctnum = nextacct++;

 accounts.put(acctnum, 0);

 return acctnum;

 }

 public int getBalance(int acctnum) {

 return accounts.get(acctnum);

 }

 public void deposit(int acctnum, int amt) {

 int balance = accounts.get(acctnum);

 accounts.put(acctnum, balance+amt);

 }

 public boolean authorizeLoan(int acctnum, int loanamt) {

 int balance = accounts.get(acctnum);

 return balance >= loanamt / 2;

 }

Chapter 1 Modular Software deSign

16

 public String toString() {

 Set<Integer> accts = accounts.keySet();

 String result = "The bank has " + accts.size()

 + " accounts.";

 for (int i : accts)

 result += "\n\tBank account " + i

 + ": balance=" + accounts.get(i);

 return result;

 }

 public void addInterest() {

 Set<Integer> accts = accounts.keySet();

 for (int i : accts) {

 int balance = accounts.get(i);

 int newbalance = (int) (balance * (1 + rate));

 accounts.put(i, newbalance);

 }

 }

}

Similarly, the deposit method is not responsible for asking the user

for the deposit amount. Instead, it expects the caller of the method (i.e.,

BankClient) to pass the amount as an argument.

The authorizeLoan method eliminates both input and output code

from the corresponding version 1 method. It expects the loan amount to be

passed in as an argument and it returns the decision as a boolean.

The getBalance method corresponds to the select method of version 1.

That method is primarily concerned with choosing a current account,

which is the responsibility of BankClient. Its only bank-specific code

involves obtaining the balance of the selected account. The Bank class

therefore has a getBalance method for select to call.

Chapter 1 Modular Software deSign

17

The showAll method in version 1 prints the information of each account.

The bank-specific portion of this method is to collect this information into a

string, which is the responsibility of Bank’s toString method.

The addInterest method in version 1 has no input/output component

whatsoever. Consequently, it is identical to the corresponding method in Bank.

The code for BankClient appears in Listing 1-6. It contains the three

global variables from version 1 that are related to input/output, namely

the current account, the scanner, and the am-I-done flag; it also has an

additional variable that holds a reference to the Bank object. BankClient

has the public method run and the private method processCommand;

these methods are the same as in version 1. The code for the individual

command methods is similar; the difference is that all bank-specific code

is replaced by a call to the appropriate method of Bank. These statements

are written in bold in the listing.

Listing 1-6. The Version 2 BankClient Class

public class BankClient {

 private int current = -1;

 private Scanner scanner = new Scanner(System.in);

 private boolean done = false;

 private Bank bank = new Bank();

 public void run() {

 ... // unchanged from version 1

 }

 private void processCommand(int cmd) {

 ... // unchanged from version 1

 }

 private void quit() {

 ... // unchanged from version 1

 }

Chapter 1 Modular Software deSign

18

 private void newAccount() {

 current = bank.newAccount();

 System.out.println("Your new account number is "

 + current);

 }

 private void select() {

 System.out.print("Enter acct#: ");

 current = scanner.nextInt();

 int balance = bank.getBalance(current);

 System.out.println("The balance of account "

 + current + " is " + balance);

 }

 private void deposit() {

 System.out.print("Enter deposit amt: ");

 int amt = scanner.nextInt();

 bank.deposit(current, amt);

 }

 private void authorizeLoan() {

 System.out.print("Enter loan amt: ");

 int loanamt = scanner.nextInt();

 if (bank.authorizeLoan(current, loanamt))

 System.out.println("Your loan is approved");

 else

 System.out.println("Your loan is denied");

 }

 private void showAll() {

 System.out.println(bank.toString());

 }

Chapter 1 Modular Software deSign

19

 private void addInterest() {

 bank.addInterest();

 }

}

The class BankProgram contains the main method, which parallels the

main method of version 1. Its code appears in Listing 1-7.

Listing 1-7. The Version 2 BankProgram Class

public class BankProgram {

 public static void main(String[] args) {

 BankClient client = new BankClient();

 client.run();

 }

}

Note that version 2 of the banking demo is more easily modifiable than

version 1. It is now possible to change the implementation of Bank without

worrying about breaking the code for BankClient. Similarly, it is also

possible to change the way that BankClient does its input/output, without

affecting Bank or BankProgram.

 Refactoring
One interesting feature of the version 2 demo is that it contains nearly

the same code as in version 1. In fact, when I wrote version 2 I began

by redistributing the existing code between its three classes. This is an

example of what is called refactoring.

In general, to refactor a program means to make syntactic changes

to it without changing the way it works. Examples of refactoring include:

renaming a class, method, or variable; changing the implementation of a

Chapter 1 Modular Software deSign

20

variable from one data type to another; and splitting a class into two. If you

use the Eclipse IDE then you will notice that it has a Refactor menu, which

can automatically perform some of the simpler forms of refactoring for you.

 Unit Testing
Earlier in this chapter I stated that one of the advantages to a modular program

is that each class can be implemented and tested separately. This begs the

question: How can you test a class separate from the rest of the program?

The answer is to write a driver program for each class. The driver

program calls the various methods of the class, passing them sample input

and checking that the return values are correct. The idea is that the driver

should test all possible ways that the methods can be used. Each way is

called a use case.

As an example, consider the class BankTest, which appears in Listing 1-8.

This class calls some of the Bank methods and tests whether they return

expected values. This code only tests a couple of use cases and is far less

comprehensive than it ought to be, but the point should be clear.

Listing 1-8. The BankTest Class

public class BankTest {

 private static Bank bank = new Bank();

 private static int acct = bank.newAccount();

 public static void main(String[] args) {

 verifyBalance("initial amount", 0);

 bank.deposit(acct, 10);

 verifyBalance("after deposit", 10);

 verifyLoan("authorize bad loan", 22, false);

 verifyLoan("authorize good loan", 20, true);

 }

Chapter 1 Modular Software deSign

21

 private static void verifyBalance(String msg,

 int expectedVal) {

 int bal = bank.getBalance(acct);

 boolean ok = (bal == expectedVal);

 String result = ok ? "Good! " : "Bad! ";

 System.out.println(msg + ": " + result);

 }

 private static void verifyLoan(String msg,

 int loanAmt, boolean expectedVal) {

 boolean answer = bank.authorizeLoan(acct, loanAmt);

 boolean ok = (answer == expectedVal);

 String result = ok ? "Good! " : "Bad! ";

 System.out.println(msg + ": " + result);

 }

}

Testing the BankClient class is more difficult, for two reasons. The

first is that the class calls a method from another class (namely, Bank). The

second is that the class reads input from the console. Let’s address each

issue in turn.

How can you test a class that calls methods from another class? If that

other class is also in development then the driver program will not able to

make use of it. In general, a driver program should not use another class

unless that class is known to be completely correct; otherwise if the test

fails, you don’t know which class caused the problem.

The standard approach is to write a trivial implementation of the

referenced class, called a mock class. Typically, the methods of the mock

class print useful diagnostics and return default values. For example,

Listing 1-9 shows part of a mock class for Bank.

Chapter 1 Modular Software deSign

22

Listing 1-9. A Mock Implementation of Bank

public class Bank {

 public int newAccount() {

 System.out.println("newAccount called, returning 10");

 return 10;

 }

 public int getBalance(int acctnum) {

 System.out.println("getBalance(" + acctnum

 + ") called, returning 50");

 return 50;

 }

 public void deposit(int acctnum, int amt) {

 System.out.println("deposit(" + acctnum + ", "

 + amt + ") called");

 }

 public boolean authorizeLoan(int acctnum,

 int loanamt) {

 System.out.println("authorizeLoan(" + acctnum

 + ", " + loanamt

 + ") called, returning true");

 return true;

 }

 ...

}

The best way to test a class that takes input from the console is to

redirect its input to come from a file. By placing a comprehensive set of

input values into a file, you can easily rerun the driver program with the

assurance that the input will be the same each time. You can specify this

Chapter 1 Modular Software deSign

23

redirection in several ways, depending on how you execute the program.

From Eclipse, for example, you specify redirection in the program’s Run

Configurations menu.

The class BankProgram makes a pretty good driver program for

BankClient. You simply need to create an input file that tests the various

commands sufficiently.

 Class Design
A program that satisfies the Single Responsibility rule will have a class for

each identified responsibility. But how do you know if you have identified

all the responsibilities?

The short answer is that you don’t. Sometimes, what seems to be a

single responsibility can be broken down further. The need for a separate

class may become apparent only when additional requirements are added

to the program.

For example, consider version 2 of the banking demo. The class

Bank stores its account information in a map, where the map’s key

holds the account numbers and its value holds the associated balances.

Suppose now that the bank also wants to store additional information

for each account. In particular, assume that the bank wants to know

whether the owner of each account is foreign or domestic. How should

the program change?

After some quiet reflection, you will realize that the program needs

an explicit concept of a bank account. This concept can be implemented

as a class; call it BankAccount. The bank’s map can then associate a

BankAccount object with each account number. These changes form

version 3 of the banking demo. Its class diagram appears in Figure 1-3,

with new methods in bold.

Chapter 1 Modular Software deSign

24

Listing 1-10 gives the code for the new BankAccount class. It has three

global variables, which hold the account number, the balance, and a

flag indicating whether the account is foreign. It has methods to retrieve

the values of the three variables and to set the value of the balance and

isforeign variables.

Listing 1-10. The Version 3 BankAccount Class

public class BankAccount {

 private int acctnum;

 private int balance = 0;

 private boolean isforeign = false;

 public BankAccount(int a) {

 acctnum = a;

 }

Figure 1-3. Version 3 of the banking demo

Chapter 1 Modular Software deSign

25

 public int getAcctNum() {

 return acctnum;

 }

 public int getBalance() {

 return balance;

 }

 public void setBalance(int amt) {

 balance = amt;

 }

 public boolean isForeign() {

 return isforeign;

 }

 public void setForeign(boolean b) {

 isforeign = b;

 }

}

Listing 1-11 gives the revised code for Bank. Changes are in bold. The

class now holds a map of BankAccount objects instead of a map of integers

and has code for the new method setForeign.

Listing 1-11. The Version 3 Bank Class

public class Bank {

 private HashMap<Integer,BankAccount> accounts

 = new HashMap<>();

 private double rate = 0.01;

 private int nextacct = 0;

Chapter 1 Modular Software deSign

26

 public int newAccount(boolean isforeign) {

 int acctnum = nextacct++;

 BankAccount ba = new BankAccount(acctnum);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

 return acctnum;

 }

 public int getBalance(int acctnum) {

 BankAccount ba = accounts.get(acctnum);

 return ba.getBalance();

 }

 public void deposit(int acctnum, int amt) {

 BankAccount ba = accounts.get(acctnum);

 int balance = ba.getBalance();

 ba.setBalance(balance+amt);

 }

 public void setForeign(int acctnum,

 boolean isforeign) {

 BankAccount ba = accounts.get(acctnum);

 ba.setForeign(isforeign);

 }

 public boolean authorizeLoan(int acctnum, int loanamt) {

 BankAccount ba = accounts.get(acctnum);

 int balance = ba.getBalance();

 return balance >= loanamt / 2;

 }

 public String toString() {

 String result = "The bank has " + accounts.size()

 + " accounts.";

Chapter 1 Modular Software deSign

27

 for (BankAccount ba : accounts.values())

 result += "\n\tBank account "

 + ba.getAcctNum() + ": balance="

 + ba.getBalance() + ", is "

 + (ba.isForeign() ? "foreign" : "domestic");

 return result;

 }

 public void addInterest() {

 for (BankAccount ba : accounts.values()) {

 int balance = ba.getBalance();

 balance += (int) (balance * rate);

 ba.setBalance(balance);

 }

 }

}

As a result of these changes, obtaining information from an account

has become a two-step process: A method first retrieves a BankAccount

object from the map; it then calls the desired method on that object.

Another difference is that the methods toString and addInterest no

longer get each account value individually from the map keys. They

instead use the map’s values method to retrieve the accounts into a list,

which can then be examined.

The BankClient class must be modified to take advantage of Bank’s

additional functionality. In particular, it now has a new command

(command 7) to allow the user to specify whether the account is foreign or

domestic, and it modifies the newAccount method to ask for the account’s

ownership status. The relevant code appears in Listing 1-12.

Chapter 1 Modular Software deSign

28

Listing 1-12. The Version 3 BankClient Class

public class BankClient {

 ...

 public void run() {

 while (!done) {

 System.out.print("Enter command (0=quit, 1=new,

 2=select, 3=deposit, 4=loan,

 5=show, 6=interest, 7=setforeign): ");
 int cmd = scanner.nextInt();

 processCommand(cmd);

 }

 }

 private void processCommand(int cmd) {

 if (cmd == 0) quit();

 else if (cmd == 1) newAccount();

 else if (cmd == 2) select();

 else if (cmd == 3) deposit();

 else if (cmd == 4) authorizeLoan();

 else if (cmd == 5) showAll();

 else if (cmd == 6) addInterest();

 else if (cmd == 7) setForeign();
 else

 System.out.println("illegal command");

 }

 private void newAccount() {

 boolean isforeign = requestForeign();
 current = bank.newAccount(isforeign);
 System.out.println("Your new account number is "

 + current);

 }

 ...

Chapter 1 Modular Software deSign

29

 private void setForeign() {

 bank.setForeign(current, requestForeign());

 }

 private boolean requestForeign() {

 System.out.print("Enter 1 for foreign,

 2 for domestic: ");

 int val = scanner.nextInt();

 return (val == 1);

 }

}

This relatively minor change to BankClient points out the advantage

of modularity. Even though the Bank class changed how it implemented

its methods, its contract with BankClient did not change. The only change

resulted from the added functionality.

 Encapsulation
Let’s look more closely at the code for BankAccount in Listing 1-10. Its

methods consist of accessors and mutators (otherwise known as “getters”

and “setters”). Why use methods? Why not just use public variables,

as shown in Listing 1-13? With this class, a client could simply access

BankAccount’s variables directly instead of having to call its methods.

Listing 1-13. An Alternative BankAccount Class

public class BankAccount {

 public int acctnum;

 public int balance = 0;

 public boolean isforeign = false;

Chapter 1 Modular Software deSign

30

 public BankAccount(int a) {

 acctnum = a;

 }

}

Although this alternative BankAccount class is far more compact, its

design is far less desirable. Here are three reasons to prefer methods over

public variables.

The first reason is that methods are able to limit the power of clients.

A public variable is equivalent to both an accessor and a mutator method,

and having both methods can often be inappropriate. For example, clients

of the alternative BankAccount class would have the power to change the

account number, which is not a good idea.

The second reason is that methods provide more flexibility than

variables. Suppose that at some point after deploying the program, the

bank detects the following problem: The interest it adds to the accounts

each month is calculated to a fraction of a penny, but that fractional

amount winds up getting deleted from the accounts because the balance is

stored in an integer variable.

The bank decides to rectify this mistake by changing the balance

variable to be a float instead of an integer. If the alternative BankAccount

class were used then that change would be a change to the API, which

means that all clients that referenced the variable would also need to be

modified. On the other hand, if the version 3 BankAccount class is used,

the change to the variable is private, and the bank can simply change the

implementation of the method getBalance as follows:

 public int getBalance() {

 return (int) balance;

 }

Chapter 1 Modular Software deSign

31

Note that getBalance no longer returns the actual balance of the

account. Instead, it returns the amount of money that can be withdrawn

from the account, which is consistent with the earlier API. Since the API of

BankAccount has not changed, the clients of the class are not aware of the

change to the implementation.

The third reason to prefer methods over public variables is that

methods can perform additional actions. For example, perhaps the bank

wants to log each change to an account’s balance. If BankAccount is

implemented using methods, then its setBalance method can be modified

so that it writes to a log file. If the balance can be accessed via a public

variable then no logging is possible.

The desirability of using public methods instead of public variables is

an example of a design rule known as the rule of Encapsulation.

In other words, the less that clients are aware of the implementation of

a class, the more easily that class can change without affecting its clients.

 Redistributing Responsibility
The classes of the version 3 banking demo are modular and encapsulated.

Nevertheless, there is something unsatisfactory about the design of their

methods. In particular, the BankAccount methods don’t do anything

interesting. All the work occurs in Bank.

The Rule of Encapsulation

a class’s implementation details should be hidden from its clients

as much as possible.

Chapter 1 Modular Software deSign

32

For example, consider the action of depositing money in an account.

The bank’s deposit method controls the processing. The BankAccount

object manages the getting and setting of the bank balance, but it does so

under the strict supervision of the Bank object.

This lack of balance between the two classes hints at a violation of

the Single Responsibility rule. The intention of the version 3 banking

demo was for the Bank class to manage the map of accounts and for the

BankAccount class to manage each individual account. However, that

didn’t occur—the Bank class is also performing activities related to bank

accounts. Consider what it would mean for the BankAccount object to have

responsibility for deposits. It would have its own deposit method:

 public void deposit(int amt) {

 balance += amt;

 }

And the Bank’s deposit method would be modified so that it called the

deposit method of BankAccount:

 public void deposit(int acctnum, int amt) {

 BankAccount ba = accounts.get(acctnum);

 ba.deposit(amt);

 }

In this version, Bank no longer knows how to do deposits. Instead, it

delegates the work to the appropriate BankAccount object.

Which version is a better design? The BankAccount object is a more

natural place to handle deposits because it holds the account balance.

Instead of having the Bank object tell the BankAccount object what to do,

it is better to just let the BankAccount object do the work itself. We express

this idea as the following design rule, called the Most Qualified Class rule.

Chapter 1 Modular Software deSign

33

Version 4 of the banking demo revises the classes Bank and

BankAccount to satisfy the Most Qualified Class rule. Of these classes, only

the API for BankAccount needs to change. Figure 1-4 shows the revised

class diagram for this class (with changes from version 3 in bold).

The BankAccount class now has methods that correspond to the

deposit, toString, and addInterest methods of Bank. The class also has

the method hasEnoughCollateral, which (as we shall see) corresponds to

Bank’s authorizeLoan method. In addition, the class no longer needs the

setBalance method.

The code for the classes BankAccount and Bank need to change. The

relevant revised code for Bank appears in Listing 1-14, with changes in

bold.

Figure 1-4. The version 4 BankAccount class

The Most Qualified Class Rule

work should be assigned to the class that knows best how to do it.

Chapter 1 Modular Software deSign

34

Listing 1-14. The Version 4 Bank Class

public class Bank {

 ...

 public void deposit(int acctnum, int amt) {

 BankAccount ba = accounts.get(acctnum);

 ba.deposit(amt);

 }

 public boolean authorizeLoan(int acctnum,

 int loanamt) {

 BankAccount ba = accounts.get(acctnum);

 return ba.hasEnoughCollateral(loanamt);

 }

 public String toString() {

 String result = "The bank has " + accounts.size()

 + " accounts.";

 for (BankAccount ba : accounts.values())

 result += "\n\t" + ba.toString();

 return result;

 }

 public void addInterest() {

 for (BankAccount ba : accounts.values())

 ba.addInterest();

 }

}

As previously discussed, the bank’s deposit method is no longer

responsible for updating the account balance. Instead, the method calls

the corresponding method in BankAccount to perform the update.

Chapter 1 Modular Software deSign

35

The bank’s toString method is responsible for creating a string

representation of all bank accounts. However, it is no longer responsible

for formatting each individual account; instead, it calls the toString

method of each account when needed. The bank’s addInterest method

is similar. The method calls the addInterest method of each account,

allowing each account to update its own balance.

The bank’s authorizeLoan method is implemented slightly differently

from the others. It calls the bank account’s hasEnoughCollateral method,

passing in the loan amount. The idea is that the decision to authorize a

loan should be shared between the Bank and BankAccount classes. The

bank account is responsible for comparing the loan amount against its

balance. The bank then uses that information as one of its criteria for

deciding whether to authorize the loan. In the version 4 code, the collateral

information is the only criterion, but in real life the bank would also use

criteria such as credit score, employment history, and so on, all of which

reside outside of BankAccount. The BankAccount class is responsible only

for the “has enough collateral” criterion because that is what it is most

qualified to assess.

The four methods added to the BankAccount class appear in

Listing 1-15.

Listing 1-15. The Version 4 BankAccount Class

public class BankAccount {

 private double rate = 0.01;

 ...

 public void deposit(int amt) {

 balance += amt;

 }

 public boolean hasEnoughCollateral(int amt) {

 return balance >= amt / 2;

 }

Chapter 1 Modular Software deSign

36

 public String toString() {

 return "Bank account " + acctnum + ": balance="

 + balance + ", is "

 + (isforeign ? "foreign" : "domestic");

 }

 public void addInterest() {

 balance += (int) (balance * rate);

 }

}

 Dependency Injection
The Most Qualified Class rule can also be applied to the question of

how to initialize the dependencies of a class. For example consider the

BankClient class, which has dependencies on Scanner and Bank. The

relevant code (taken from Listing 1-6) looks like this:

 public class BankClient {

 private Scanner scanner = new Scanner(System.in);

 private Bank bank = new Bank();

 ...

 }

When the class creates its Scanner object it uses System.in as the

source, indicating that input should come from the console. But why

choose System.in? There are other options. The class could read its input

from a file instead of the console or it could get its input from somewhere

over the Internet. Given that the rest of the BankClient code does not care

what input its scanner is connected to, restricting its use to System.in is

unnecessary and reduces the flexibility of the class.

Chapter 1 Modular Software deSign

37

A similar argument could be made for the bank variable. Suppose

that the program gets modified so that it can access multiple banks. The

BankClient code does not care which bank it accesses, so how does it

decide which bank to use?

The point is that BankClient is not especially qualified to make these

decisions and therefore should not be responsible for them. Instead,

some other, more qualified class should make the decisions and pass

the resulting object references to BankClient. This technique is called

dependency injection.

Typically, the class that creates an object is most qualified to initialize

its dependencies. In such cases an object receives its dependency values

via its constructor. This form of dependency injection is called constructor

injection. Listing 1-16 gives the relevant modifications to BankClient.

Listing 1-16. The Version 4 BankClient Class

public class BankClient {

 private int current = -1;

 private Scanner scanner;

 private boolean done = false;

 private Bank bank;

 public BankClient(Scanner scanner, Bank bank) {

 this.scanner = scanner;

 this.bank = bank;

 }

 ...

}

Chapter 1 Modular Software deSign

38

The class Bank can be improved similarly. It has one dependency, to its

account map, and it also decides the initial value for its nextacct variable.

The relevant code (taken from Listing 1-11) looks like this:

 public class Bank {

 private HashMap<Integer,BankAccount> accounts

 = new HashMap<>();

 private int nextacct = 0;

 ...

 }

The Bank object creates an empty account map, which is unrealistic. In

a real program the account map would be constructed by reading a file or

accessing a database. As with BankClient, the rest of the Bank code does

not care where the account map comes from, and so Bank is not the most

qualified class to make that decision. A better design is to use dependency

injection to pass the map and the initial value of nextacct to Bank, via its

constructor. Listing 1-17 gives the relevant code.

Listing 1-17. The Version 4 Bank Class

public class Bank {

 private HashMap<Integer,BankAccount> accounts;

 private int nextacct;

 public Bank(HashMap<Integer,BankAccount> accounts,

 int n) {

 this.accounts = accounts;

 nextacct = n;

 }

 ...

}

Chapter 1 Modular Software deSign

39

The version 4 BankProgram class is responsible for creating the Bank

and BankClient classes, and thus is also responsible for initializing their

dependencies. Its code appears in Listing 1-18.

Listing 1-18. The Version 4 BankProgram Class

public class BankProgram {

 public static void main(String[] args) {

 HashMap<Integer,BankAccount> accounts = new HashMap<>();

 Bank bank = new Bank(accounts, 0);

 Scanner scanner = new Scanner(System.in);

 BankClient client = new BankClient(scanner, bank);

 client.run();

 }

}

It is interesting to compare versions 3 and 4 of the demo in terms of

when objects get created. In version 3 the BankClient object gets created

first, followed by its Scanner and Bank objects. The Bank object then

creates the account map. In version 4 the objects are created in the reverse

order: first the map, then the bank, the scanner, and finally the client. This

phenomenon is known as dependency inversion— each object is created

before the object that depends on it.

Note how BankProgram makes all the decisions about the initial state of

the program. Such a class is known as a configuration class. A configuration

class enables users to reconfigure the behavior of the program by simply

modifying the code for that class.

The idea of placing all dependency decisions within a single class is

powerful and convenient. In fact, many large programs take this idea one

step further. They place all configuration details (i.e., information about

the input stream, the name of the stored data file, etc.) into a configuration

file. The configuration class reads that file and uses it to create the

appropriate objects.

Chapter 1 Modular Software deSign

40

The advantage to using a configuration file is that the configuration

code never needs to change. Only the configuration file changes. This

feature is especially important when the program is being configured

by end users who may not know how to program. They modify

the configuration file and the program performs the appropriate

configurations.

 Mediation
The BankClient class in the version 4 banking demo does not know about

BankAccount objects. It interacts with accounts solely through methods of

the Bank class. The Bank class is called a mediator.

Mediation can enhance the modularity of a program. If the Bank class

is the only class that can access BankAccount objects then BankAccount is

essentially private to Bank. This feature was important when the version

3 BankAccount class was modified to produce version 4; it ensured that

the only other class that needed to be modified was Bank. This desirability

leads to the following rule, called the rule of Low Coupling.

This rule is often expressed less formally as “Don’t talk to strangers.”

The idea is that if a concept is strange to a client, or difficult to understand,

it is better to mediate access to it.

The Rule of Low Coupling

try to minimize the number of class dependencies.

Chapter 1 Modular Software deSign

41

Another advantage to mediation is that the mediator can keep track

of activity on the mediated objects. In the banking demo, Bank must of

course mediate the creation of BankAccount objects or its map of accounts

will become inaccurate. The Bank class can also use mediation to track the

activity of specific accounts. For example, the bank could track deposits

into foreign accounts by changing its deposit method to something like

this:

 public void deposit(int acctnum, int amt) {

 BankAccount ba = accounts.get(acctnum);

 if (ba.isForeign())

 writeToLog(acctnum, amt, new Date());

 ba.deposit(amt);

 }

 Design Tradeoffs
The Low Coupling and Single Responsibility rules often conflict with

each another. Mediation is a common way to provide low coupling. But

a mediator class tends to accumulate methods that are not central to its

purpose, which can violate the Single Responsibility rule.

The banking demo provides an example of this conflict. The Bank

class has methods getBalance, deposit, and setForeign, even though

those methods are the responsibility of BankAccount. But Bank needs to

have those methods because it is mediating between BankClient and

BankAccount.

Another design possibility is to forget about mediation and let

BankClient access BankAccount objects directly. A class diagram of the

resulting architecture appears in Figure 1-5. In this design, the variable

current in BankClient would be a BankAccount reference instead of an

account number. The code for its getBalance, deposit, and setForeign

commands can therefore call the corresponding methods of BankAccount

Chapter 1 Modular Software deSign

42

directly. Consequently, Bank does not need these methods and has a

simpler API. Moreover, the client can pass the reference of the desired

bank account to the bank’s authorizeLoan method instead of an account

number, which improves efficiency.

Would this new design be an improvement over the version 4 banking

demo? Neither design is obviously better than the other. Each involves

different tradeoffs: Version 4 has lower coupling, whereas the new design

has simpler APIs that satisfy the Single Responsibility rule better. For the

purposes of this book, I chose to go with version 4 because I felt that it was

important for Bank to be able to mediate access to the accounts.

The point is that design rules are only guidelines. Tradeoffs are almost

always necessary in any significant program. The best design will probably

violate at least one rule somehow. The role of a designer is to recognize the

possible designs for a given program and accurately analyze their tradeoffs.

Figure 1-5. Bank is no longer a mediator

Chapter 1 Modular Software deSign

43

 The Design of Java Maps
As a real-life example of some design tradeoffs, consider the Map classes

in the Java library. The typical way to implement a map is to store each key-

value pair as a node. The nodes are then inserted into a hash table (for a

HashMap object) or a search tree (for a TreeMap object). In Java, these nodes

have the type Map.Entry.

Clients of a map typically do not interact with Map.Entry objects.

Instead, clients call the Map methods get and put. Given a key, the get

method locates the entry having that key and returns its associated value;

the put method locates the entry having that key and changes its value. If

a client wants to examine all entries in the map then it can call the method

keySet to get all keys, and then repeatedly call get to find their associated

values. Listing 1-19 gives some example code. The first portion of the code

puts the entries ["a",1] and ["b",4] into the map and then retrieves the

value associated with the key "a". The second portion prints each entry in

the map.

Listing 1-19. Typical Uses of a HashMap

HashMap<String,Integer> m = new HashMap<>();

m.put("a", 1);

m.put("b", 4);

int x = m.get("a");

Set<String> keys = m.keySet();

for(String s: keys) {

 int y = m.get(s);

 System.out.println(s + " " + y);

}

Chapter 1 Modular Software deSign

44

This design of HashMap corresponds to the class diagram of Figure 1-6.

Note that each HashMap object is a mediator for its underlying Map.Entry

objects.

Unfortunately, this mediation can lead to inefficient code. The loop

in Listing 1-19 is such an example. The keySet method traverses the

entire data structure to acquire all the keys. The get method then has to

repeatedly access the data structure again to get the value of each key.

The code would be more efficient if the client code could access the

map entries directly. Then it could simply traverse the data structure

once, getting each entry and printing its contents. In fact, such a method

does exist in HashMap, and is called entrySet. The code in Listing 1-20 is

equivalent to Listing 1-19 but is more efficient.

Listing 1-20. Accessing Map Entries Directly

HashMap<String,Integer> m = new HashMap<>();

m.put("a", 1);

m.put("b", 4);

int x = m.get("a");

Set<Map.Entry<String,Integer>> entries = m.entrySet();

for (Map.Entry<String,Integer> e : entries) {

 String s = e.getKey();

 int y = e.getValue();

 System.out.println(s + " " + y);

}

Figure 1-6. HashMap as a mediator of Map.Entry

Chapter 1 Modular Software deSign

45

The existence of the method entrySet changes the class diagram of

Figure 1-6. The class HashMap is no longer a mediator of Map.Entry because

Map.Entry is now visible to the client. The new class diagram appears in

Figure 1-7.

Figure 1-7. HashMap is no longer a mediator of Map.Entry

Making the Map.Entry nodes visible to clients increases the complexity

of programs that use maps. Clients need to know about two classes

instead of just one. Moreover, the API of Map.Entry now cannot be

changed without impacting the clients of HashMap. On the other hand, the

complexity also makes it possible to write more efficient code.

The designers of HashMap had to take these conflicting needs into

consideration. Their solution was to keep the complexity for people who

need it but to make it possible to ignore the complex methods if desired.

 Summary
Software development must be guided by a concern for program

modifiability. The fundamental design principle is that a program should

be designed so that any change to it will affect only a small, predictable

portion of the code. There are several rules that can help a designer satisfy

the fundamental principle.

Chapter 1 Modular Software deSign

46

• The Single Responsibility rule states that a class should

have a single purpose, and its methods should all be

related to that purpose.

• The Encapsulation rule states that a class’s

implementation details should be hidden from its

clients as much as possible.

• The Most Qualified Class rule states that work should

be assigned to the class that knows best how to do it.

• The Low Coupling rule states that the number of class

dependencies should be minimized.

These rules are guidelines only. They suggest reasonable design

decisions for most situations. As you design your programs, you must

always understand the tradeoffs involved with following (or not following)

a particular rule.

Chapter 1 Modular Software deSign

47© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_2

CHAPTER 2

Polymorphism
Each class in a well-designed program denotes a distinct concept with its own

set of responsibilities. Nevertheless, it is possible for two (or more) classes to

share some common functionality. For example, the Java classes HashMap and

TreeMap are distinct implementations of the concept of a “map,” and both

support the methods get, put, keySet, and so on. The ability of a program to

take advantage of this commonality is known as polymorphism.

This chapter explores the use of polymorphism in Java. Java supports

polymorphism via the concept of an interface. All the techniques in this

chapter use interfaces. In fact, polymorphism is so useful that most of the

techniques in this book involve interfaces in some way.

It can be argued that polymorphism is the most important design

concept in object-oriented programming. A solid understanding of

polymorphism (and interfaces) is critical for any good Java programmer.

 The Need for Polymorphism
Suppose you have been asked to modify version 4 of the banking demo

to support two kinds of bank account: savings accounts and checking

accounts. Savings accounts correspond to the bank accounts of version 4.

Checking accounts differ from savings accounts in the following three ways:

• When authorizing a loan, a checking account needs a

balance of two thirds the loan amount, whereas savings

accounts require only one half the loan amount.

48

• The bank gives periodic interest to savings accounts but

not checking accounts.

• The toString method of an account will return

“Savings Account” or “Checking Account,” as

appropriate.

One straightforward (and somewhat naïve) way to implement these

two types of accounts would be to modify the code for BankAccount.

For example, BankAccount could have a variable that holds the type

of the account: a value of 1 denotes a savings account and a value of

2 denotes a checking account. The methods hasEnoughCollateral,

toString, and addInterest would use an if-statement to determine

which account type to handle. Listing 2-1 shows the basic idea, with

relevant code in bold.

Listing 2-1. Using a Variable to Hold the Type of an Account

public class BankAccount {

 ...

 private int type;

 public BankAccount(int acctnum, int type) {

 this.acctnum = acctnum;

 this.type = type;

 }

 ...

 public boolean hasEnoughCollateral(int loanamt) {

 if (type == 1)

 return balance >= loanamt / 2;

 else

 return balance >= 2 * loanamt / 3;

 }

Chapter 2 polymorphism

49

 public String toString() {

 String typename = (type == 1) ?

 "Savings" : "Checking";

 return typename + " Account " + acctnum

 + ": balance=" + balance + ", is "

 + (isforeign ? "foreign" : "domestic");

 }

 public void addInterest() {

 if (type == 1)

 balance += (int)(balance * rate);

 }

}

Although this code is a straightforward modification to BankAccount,

it has two significant problems. First, the if-statements are inefficient.

Every time one of the revised methods gets called, it must go through the

conditions in its if-statement to determine what code to execute. Moreover,

increasing the number of account types will cause these methods to

execute more and more slowly.

Second (and more importantly), the code is difficult to modify and

thus violates the fundamental design principle. Each time that another

account type is added, another condition must be added to each if-

statement. This is tedious, time-consuming, and error prone. If you forget

to update one of the methods correctly, the resulting bug might be difficult

to find.

The way to avoid this if-statement problem is to use a separate

class for each type of account. Call these classes SavingsAccount and

CheckingAccount. The advantage is that each class can have its own

implementation of the methods, so there is no need for an if-statement.

Moreover, whenever you need to add another type of bank account you

can simply create a new class.

Chapter 2 polymorphism

50

But how then does the Bank class deal with multiple account classes?

You don’t want the bank to hold a separate map for each type of account

because that will just introduce other modifiability problems. For example,

suppose that there are several account types that give interest, with each

account type having its own map. The code for the addInterest method

will need to loop through each map individually, which means that each

new account type will require you to add a new loop to the method.

The only good solution is for all account objects, regardless of their

class, to be in a single map. Such a map is called polymorphic. Java uses

interfaces to implement polymorphism. The idea is for version 5 of the

banking demo to replace the BankAccount class with a BankAccount

interface. That is, the account map will still be defined like this:

 private HashMap<Integer,BankAccount> accounts;

However, BankAccount is now an interface, whose objects can be from

either SavingsAccount or CheckingAccount. The next section explains how

to implement such a polymorphic map in Java.

 Interfaces
A Java interface is primarily a named set of method headers. (Interfaces

also have other features that will be discussed later in the chapter.) An

interface is similar to the API of a class. The difference is that a class’s API

is inferred from its public methods, whereas an interface specifies the API

explicitly without providing any code.

Listing 2-2 shows the code for the version 5 BankAccount interface.

It contains a method header for each public method of the version 4

BankAccount class except for addInterest.

Chapter 2 polymorphism

51

Listing 2-2. The Version 5 BankAccount Interface

public interface BankAccount {

 public abstract int getAcctNum();

 public abstract int getBalance();

 public abstract boolean isForeign();

 public abstract void setForeign(boolean isforeign);

 public abstract void deposit(int amt);

 public abstract boolean hasEnoughCollateral(int loanamt);

 public abstract String toString();

}

The keyword abstract indicates that the method declaration contains

only the method’s header and tells the compiler that its code will be

specified elsewhere. The abstract and public keywords are optional in an

interface declaration because interface methods are public and abstract by

default. In the rest of the book I will follow common convention and omit

the public abstract keywords from interface method headers.

The code for an interface’s methods is supplied by classes that

implement the interface. Suppose that I is an interface. A class indicates

its intent to implement I by adding the clause implements I to its header.

If a class implements an interface then it is obligated to implement all

methods declared by that interface. The compiler will generate an error if

the class does not contain those methods.

In version 5 of the banking demo, the classes CheckingAccount and

SavingsAccount both implement the BankAccount interface. Their code

appears in Listings 2-3 and 2-4. The code is nearly identical to the version

4 BankAccount class of Listing 1-15, so several of the unmodified methods

are omitted. Modifications are in bold.

Chapter 2 polymorphism

52

Listing 2-3. The Version 5 SavingsAccount Class

public class SavingsAccount implements BankAccount {

 private double rate = 0.01;

 private int acctnum;

 private int balance = 0;

 private boolean isforeign = false;

 public SavingsAccount(int acctnum) {

 this.acctnum = acctnum;

 }

 ...

 public boolean hasEnoughCollateral(int loanamt) {

 return balance >= loanamt / 2;

 }

 public String toString() {

 return "Savings account " + acctnum

 + ": balance=" + balance

 + ", is " + (isforeign ? "foreign" : "domestic");

 }

 public void addInterest() {

 balance += (int) (balance * rate);

 }

}

Listing 2-4. The Version 5 CheckingAccount Class

public class CheckingAccount implements BankAccount {

 // the rate variable is omitted

 private int acctnum;

 private int balance = 0;

 private boolean isforeign = false;

Chapter 2 polymorphism

53

 public CheckingAccount(int acctnum) {

 this.acctnum = acctnum;

 }

 ...

 public boolean hasEnoughCollateral(int loanamt) {

 return balance >= 2 * loanamt / 3;

 }

 public String toString() {

 return "Checking account " + acctnum + ": balance="

 + balance + ", is "

 + (isforeign ? "foreign" : "domestic");

 }

 // the addInterest method is omitted

}

In general, a class may implement any number of interfaces. Its

only obligation is to have code for each method of each interface that it

implements. A class is also free to have methods in addition to the ones

required by its implemented interfaces. For example, SavingsAccount has the

public method addInterest, which is not part of its BankAccount interface.

An interface is denoted in a class diagram by a rectangle, similarly to

a class. The name of the interface goes in the rectangle. To distinguish an

interface from a class, the annotation “<<interface>>” appears above its

name. The interface name and its methods are italicized to emphasize that

they are abstract.

When a class implements an interface, the relationship between the

class and its interface is represented by an arrow having an open head and

a dashed line. The rectangle for the class need not mention the methods

of the interface, because their presence is implied. The class diagram

for the version 5 code appears in Figure 2-1. This diagram asserts that

Chapter 2 polymorphism

54

CheckingAccount and SavingsAccount implement all the methods of

the BankAccount interface, and that SavingsAccount also implements

the method addInterest. Bank has dependencies to BankAccount,

SavingsAccount and CheckingAccount because its code uses variables of

all three types, as will be seen in the next section.

 Reference Types
This section examines how interfaces affect the typing of variables in a Java

program. Each Java variable has a declared type, and this type determines

the kind of value the variable can hold. If a variable holds a basic value

(such as an int or a float) then its type is said to be a primitive type. If the

variable holds an object reference then its type is said to be a reference type.

Figure 2-1. Version 5 of the banking demo

Chapter 2 polymorphism

55

Each class and each interface defines a reference type. If a variable

is class-typed then it can hold a reference to any object of that class. If a

variable is interface-typed then it can hold a reference to any object whose

class implements that interface. For example, consider the following two

statements:

 SavingsAccount sa = new SavingsAccount(1);

 BankAccount ba = new SavingsAccount(2);

The first statement stores a SavingsAccount reference in the class-

typed variable sa. This statement is legal because the class of the object

reference is the same as the type of the variable. The second statement

stores a SavingsAccount reference in the interface-typed variable ba.

This statement is also legal because the class of the object reference

implements the type of the variable.

The type of a variable determines which methods the program can

invoke on it. A class-typed variable can call only the public methods of

that class. An interface-typed variable can call only the methods defined

by that interface. Continuing the preceding example, consider these four

statements:

 sa.deposit(100);

 sa.addInterest();

 ba.deposit(100);

 ba.addInterest(); // Illegal!

The first two statements are legal because SavingsAccount has the

public methods deposit and addInterest. Similarly, the third statement

is legal because deposit is declared in BankAccount. The last statement is

not legal because addInterest is not part of the BankAccount interface.

This example points out that storing an object reference in an

interface-typed variable can “cripple” it. Variables sa and ba both hold

similar SavingsAccount references. However, sa can call addInterest

whereas ba cannot.

Chapter 2 polymorphism

56

So what is the point of having interface-typed variables? The primary

advantage of an interface-typed variable is that it can hold references to

objects from different classes. For example, consider the following code:

 BankAccount ba = new SavingsAccount(1);

 ba = new CheckingAccount(2);

In the first statement, variable ba holds a SavingsAccount reference.

In the second statement, it holds a CheckingAccount reference. Both

statements are legal because both classes implement BankAccount. This

feature is especially useful when a variable can hold more than one

element. For example, consider the following statements.

 BankAccount[] accts = new BankAccount[2];
 accts[0] = new SavingsAccount(1);

 accts[1] = new CheckingAccount(2);

The variable accts is an array whose elements have the type

BankAccount. It is polymorphic because it can store object references from

SavingsAccount and CheckingAccount. For example, the following loop

deposits 100 into every account of the accts array, regardless of its type.

 for (int i=0; i<accts.length; i++)

 accts[i].deposit(100);

It is now possible to examine the code for the version 5 Bank class. The

code appears in Listing 2-5, with changes from version 4 in bold.

Listing 2-5. The Version 5 Bank Class

public class Bank {
 private HashMap<Integer,BankAccount> accounts;
 private int nextacct;

 public Bank(HashMap<Integer,BankAccount> accounts) {
 this.accounts = accounts;

 nextacct = n;

 }

Chapter 2 polymorphism

57

 public int newAccount(int type, boolean isforeign) {

 int acctnum = nextacct++;

 BankAccount ba;

 if (type == 1)

 ba = new SavingsAccount(acctnum);

 else

 ba = new CheckingAccount(acctnum);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

 return acctnum;

 }

 public int getBalance(int acctnum) {

 BankAccount ba = accounts.get(acctnum);

 return ba.getBalance();

 }

 ...

 public void addInterest() {

 for (BankAccount ba : accounts.values())

 if (ba instanceof SavingsAccount) {

 SavingsAccount sa = (SavingsAccount) ba;

 sa.addInterest();

 }

 }

}

Consider the method newAccount. It now has an additional parameter,

which is an integer denoting the account type. The value 1 denotes a

savings account and 2 denotes a checking account. The method creates an

object of the specified class and stores a reference to it in the variable ba.

Because this variable has the type BankAccount, it can hold a reference to

either a SavingsAccount or a CheckingAccount object. Consequently, both

savings and checking accounts can be stored in the accounts map.

Chapter 2 polymorphism

58

Now consider the method getBalance. Since its variable ba is

interface-typed, the method does not know whether the account it gets

from the map is a savings account or a checking account. But it doesn’t

need to know. The method simply calls ba.getBalance, which will execute

the code of whichever object ba refers to. The omitted methods are

similarly polymorphic.

The method addInterest is more complex than the other methods. An

understanding of this method requires knowing about type safety, which

will be discussed next.

 Type Safety
The compiler is responsible for assuring that each variable holds a value of

the proper type. We say that the compiler assures that the program is type-

safe. If the compiler cannot guarantee that a value has the proper type then

it will refuse to compile that statement. For example, consider the code of

Listing 2-6.

Listing 2-6. Testing Type Safety

SavingsAccount sa1 = new SavingsAccount(1);

BankAccount ba1 = new CheckingAccount(2);

BankAccount ba2 = sa1;

BankAccount ba3 = new Bank(...); // Unsafe

SavingsAccount sa2 = ba2; // Unsafe

The first statement stores a reference to a SavingsAccount object in a

SavingsAccount variable. This is clearly type-safe. The second statement

stores a reference to a CheckingAccount object in a BankAccount variable.

This is type-safe because CheckingAccount implements BankAccount.

The third statement stores the reference held by sa1 into a BankAccount

Chapter 2 polymorphism

59

variable. Since sa1 has the type SavingsAccount, the compiler can infer

that its reference must be to a SavingsAccount object and thus can be

safely stored in ba2 (because SavingsAccount implements BankAccount).

The fourth statement is clearly not type-safe because Bank does not

implement BankAccount. The variable ba2 in the fifth statement has

the type BankAccount, so the compiler infers that its object reference

could be from either SavingsAccount or CheckingAccount. Since a

CheckingAccount reference cannot be stored in a SavingsAccount

variable, the statement is not type-safe. The fact that ba2 actually holds a

reference to a SavingsAccount object is irrelevant.

 Type Casting
The compiler is very conservative in its decisions. If there is any chance

whatsoever that a variable can hold a value of the wrong type then it will

generate a compiler error. For example, consider the following code:

 BankAccount ba = new SavingsAccount(1);

 SavingsAccount sa = ba;

It should be clear that the second statement is type-safe because

the two statements, taken together, imply that variable sa will hold a

SavingsAccount reference. However, the compiler does not look at the first

statement when compiling the second one. It knows only that variable ba is

of type BankAccount and thus could be holding a CheckingAccount value.

It therefore generates a compiler error.

In cases such as this, you can use a typecast to overrule the compiler.

For example, the preceding code can be rewritten as follows:

 BankAccount ba = new SavingsAccount(1);

 SavingsAccount sa = (SavingsAccount) ba;

Chapter 2 polymorphism

60

The typecast assures the compiler that the code really is type-safe, and

that you assume all responsibility for any incorrect behavior. The compiler

then obeys your request and compiles the statement. If you are wrong then

the program will throw a ClassCastException at runtime.

It is now possible to consider the addInterest method from Listing 2-5.

This method iterates through all the accounts but adds interest only to the

savings accounts. Since the elements of the variable accounts are of type

BankAccount, and BankAccount does not have an addInterest method,

some fancy footwork is needed to ensure type-safety.

The method calls the Java instanceof operator. This operator returns

true if the object reference on its left side can be cast to the type on its

right side. By calling instanceof on each BankAccount object, the method

determines which objects are of type SavingsAccount. It then uses

a typecast to create an object reference of type SavingsAccount, which can

then call the addInterest method.

Both the use of instanceof and the typecast are necessary. Suppose

that I omitted the call to instanceof, writing the method like this:

 public void addInterest() {

 for (BankAccount ba : accounts.values()) {

 SavingsAccount sa = (SavingsAccount) ba;

 sa.addInterest();

 }

 }

This code compiles correctly, and if the map contains only

savings accounts then this code will run correctly. However, if ba ever

refers to a CheckingAccount object then the typecast will throw a

ClassCastException at runtime.

Chapter 2 polymorphism

61

Now suppose that I omitted the typecast, writing the method like this:

 public void addInterest() {

 for (BankAccount ba : accounts.values())

 if (ba instanceof SavingsAccount)

 ba.addInterest();

 }

This code will not compile because variable ba is of type BankAccount

and is therefore not allowed to call the addInterest method. The compiler

considers the method call to be unsafe even though it will only be called

when ba refers to a SavingsAccount object.

 Transparency
The technique of combining a call to instanceof with a typecast gives

correct results, but it violates the fundamental design principle. The

problem is that the code specifically mentions class names. If the bank

adds another account type that also gives interest (such as a “money

market account”) then you would need to modify the addInterest method

to deal with it.

The if-statement problem is rearing its ugly head again. Each time a

new kind of account is created, you will need to examine every relevant

portion of the program to decide whether that new class needs to be added

to the if-statement. For large programs, this is a daunting task that has

potential for the creation of many bugs.

The way to eliminate these problems is to add the addInterest

method to the BankAccount interface. Then the addInterest method of

Bank could call addInterest on each of its accounts without caring which

class they belonged to. Such a design is called transparent because the

class of an object reference is invisible (i.e., transparent) to a client. We

express these ideas in the following rule, called the rule of Transparency:

Chapter 2 polymorphism

62

The version 6 banking demo revises version 5 so that BankAccount

is transparent. This transparency requires changes to the code for

BankAccount, CheckingAccount, and Bank. The BankAccount interface

needs an additional method header for addInterest:

 public interface BankAccount {

 ...

 void addInterest();

 }

CheckingAccount must implement the additional method

addInterest. Doing so turns out to be very easy. The addInterest method

simply needs to do nothing:

 public class CheckingAccount implements BankAccount {

 ...

 public void addInterest() {

 // do nothing

 }

 }

And Bank has a new, transparent implementation of addInterest:

 public class Bank {

 ...

 public void addInterest() {

 for (BankAccount ba : accounts.values()) {

 ba.addInterest();

 }

 }

The Rule of Transparency

a client should be able to use an interface without needing

to know the classes that implement that interface.

Chapter 2 polymorphism

63

An important side effect of transparency is that it can reduce coupling

between classes. In particular, note that the addInterest method no

longer causes a dependency on SavingsAccount. The newAccount

method is now the only place in Bank that mentions SavingsAccount

and CheckingAccount. Eliminating these dependencies is a worthy goal,

but involves the ability to remove the calls to the constructors. Techniques

for doing so will be covered in Chapter 5.

 The Open-Closed Rule
The advantage of a transparent interface is that adding a new implementing

class requires very little modification to existing code. For example, suppose

that the bank decides to introduce a new money-market account. Consider

how you would have to change the version 6 banking demo:

• You would write a new class MoneyMarketAccount that

implemented the BankAccount interface.

• You would modify the newAccount method of

BankClient to display a different message to the user,

indicating the account type for MoneyMarketAccount.

• You would modify the newAccount method in Bank to

create new MoneyMarketAccount objects.

These changes fall into two categories: modification, in which existing

classes change; and extension, in which new classes are written. In general,

modification tends to be the source of bugs, whereas extension leads to

a relatively bug-free “plug and play” situation. This insight leads to the

following rule, called the Open/Closed rule:

Chapter 2 polymorphism

64

The Open/Closed rule is an ideal. Most changes to a program will

involve some form of modification; the goal is to limit this modification as

much as possible. For example, of the three tasks listed previously, the first

one requires the most work but can be implemented using extension. The

remaining two tasks require relatively small modifications. The techniques

of Chapter 5 will make it possible to further reduce the modifications

required for these two tasks.

 The Comparable Interface
Suppose that the bank has asked you to modify the banking demo so that

bank accounts can be compared according to their balances. That is, it

wants ba1 > ba2 if ba1 has more money than ba2.

The Java library has an interface especially for this purpose, called

Comparable<T>. Here is how the Java library declares the interface:

 public interface Comparable<T> {

 int compareTo(T t);

 }

The call x.compareTo(y) returns a number greater than 0 if x>y, a

value less than 0 if x<y, and 0 if x=y. Many classes from the Java library are

comparable.

One such class is String, which implements Comparable<String>.

Its compareTo method compares two strings by their lexicographic order.

For a simple example, consider the following code. After executing

it, the variable result will have a negative value because "abc" is

lexicographically smaller than "x".

The Open/Closed Rule

to the extent possible, a program should be open for extension

but closed for modification.

Chapter 2 polymorphism

65

 String s1 = "abc";

 String s2 = "x";

 int result = s1.compareTo(s2);

Version 6 of the banking demo modifies classes SavingsAccount and

CheckingAccount to implement Comparable<BankAccount>. Each class

now has a compareTo method and its header declares that it implements

Comparable<BankAccount>. Listing 2-7 gives the relevant code for

SavingsAccount. The code for CheckingAccount is similar.

Listing 2-7. The Version 6 SavingsAccount Class

public class SavingsAccount implements BankAccount,

 Comparable<BankAccount> {

 ...

 public int compareTo(BankAccount ba) {

 int bal1 = getBalance();

 int bal2 = ba.getBalance();

 if (bal1 == bal2)

 return getAcctNum() - ba.getAcctNum();

 else

 return bal1 - bal2;

 }

}

The compareTo method needs to return a positive number if bal1>bal2

and a negative number if bal2>bal1. Subtracting the two balances has the

desired effect. If the two balances are equal then the method uses their

account numbers to arbitrarily break the tie. Thus the method will return

0 only if the comparison is between objects corresponding to the same

account. This is the expected behavior of any compareTo method.

Chapter 2 polymorphism

66

Listing 2-8 gives code for the demo program CompareSavingsAccounts,

which illustrates the use of comparable objects. The program first calls

the method initAccts, which creates some SavingsAccount objects,

deposits money in them, and saves them in a list. The program then

demonstrates two ways to calculate the account having the largest

balance.

Listing 2-8. The CompareSavingsAccounts Class

public class CompareSavingsAccounts {

 public static void main(String[] args) {

 ArrayList<SavingsAccount> accts = initAccts();

 SavingsAccount maxacct1 = findMax(accts);

 SavingsAccount maxacct2 = Collections.max(accts);

 System.out.println("Acct with largest balance is "

 + maxacct1);

 System.out.println("Acct with largest balance is "

 + maxacct2);

 }

 private static ArrayList<SavingsAccount> initAccts() {

 ArrayList<SavingsAccount> accts =

 new ArrayList<>();

 accts.add(new SavingsAccount(0));

 accts.get(0).deposit(100);

 accts.add(new SavingsAccount(1));

 accts.get(1).deposit(200);

 accts.add(new SavingsAccount(2));

 accts.get(2).deposit(50);

 return accts;

 }

Chapter 2 polymorphism

67

 private static SavingsAccount

 findMax(ArrayList<SavingsAccount> a) {

 SavingsAccount max = a.get(0);

 for (int i=1; i<a.size(); i++) {

 if (a.get(i).compareTo(max) > 0)

 max = a.get(i);

 }

 return max;

 }

}

The first way to find the largest account is to call the local method

findMax, which performs a linear search of the list. It initializes the

current maximum to be the first element. The call to compareTo compares

each remaining element with the current maximum; if that element is

larger then it becomes the new current maximum.

The second way to find the largest account is to use the Java library

method Collections.max. That method implicitly calls compareTo for each

element of the list.

The main point of this example is that the program is able to find the

account having the largest balance without ever explicitly mentioning account

balances. All references to the balance occur in the compareTo method.

 Subtypes
Although the version 6 code declares both SavingsAccount and

CheckingAccount to be comparable, that is not the same as requiring that

all bank accounts be comparable. This is a serious problem. For example,

consider the following statements. The compiler will refuse to compile the

third statement because BankAccount variables are not required to have a

compareTo method.

Chapter 2 polymorphism

68

 BankAccount ba1 = new SavingsAccount(1);

 BankAccount ba2 = new SavingsAccount(2);

 int a = ba1.compareTo(ba2); // unsafe!

This problem also occurs in the class CompareBankAccounts,

which appears in Listing 2-9. The class is a rewritten version of

CompareSavingsAccounts in which the account list is of type

BankAccount instead of SavingsAccount. The differences from

CompareSavingsAccounts are in bold. Although the changes are

relatively minor, this code will no longer compile because the compiler

cannot guarantee that every BankAccount object implements the

compareTo method.

Listing 2-9. The CompareBankAccounts Class

public class CompareBankAccounts {

 public static void main(String[] args) {

 ArrayList<BankAccount> accts = initAccts();

 BankAccount maxacct1 = findMax(accts);

 BankAccount maxacct2 = Collections.max(accts);

 ...

 }

 private static BankAccount

 findMax(ArrayList<BankAccount> a) {

 BankAccount max = a.get(0);

 for (int i=1; i<a.size(); i++) {

 if (a.get(i).compareTo(max) > 0)

 max = a.get(i);

 }

 return max;

 }

Chapter 2 polymorphism

69

The solution to both examples is to assert that all classes that

implement BankAccount also implement Comparable<BankAccount>.

Formally speaking, we say that BankAccount needs to be a subtype of

Comparable<BankAccount>. You specify subtypes in Java by using the

keyword extends. Listing 2-10 shows the revised BankAccount interface.

Listing 2-10. The Version 6 BankAccount Interface

public interface BankAccount extends Comparable<BankAccount> {

 ...

}

The extends keyword indicates that if a class implements BankAccount

then it must also implement Comparable<BankAccount>. Consequently,

the classes SavingsAccount and CheckingAccount no longer need to

explicitly implement Comparable<BankAccount> in their headers because

they now implement the interface implicitly from BankAccount. With this

change, CompareBankAccounts compiles and executes correctly.

A subtype relationship is represented in a class diagram by an

open- headed arrow having a solid line. For example, the class diagram

of the version 6 banking demo appears in Figure 2-2.

Chapter 2 polymorphism

70

 The Java Collection Library
The banking demo has one example of a subtype relationship. In general, a

program might have several interfaces connected by subtype relationships.

A good example of subtyping can be found in the collection interfaces

from the Java library. These interfaces help manage objects that denote a

group of elements. Figure 2-3 depicts their class diagram and some of their

methods, together with four commonly used classes that implement them.

Not only are these interfaces worth knowing well, they also illustrate some

important design principles.

Figure 2-2. Version 6 of the banking demo

Chapter 2 polymorphism

71

Figure 2-3. The Java Collection interfaces

Chapter 2 polymorphism

72

These interfaces specify different capabilities that a group of elements

might have.

• An Iterable object has a method iterator, which

enables a client to iterate through the elements of the

group. Chapter 6 discusses iteration in detail.

• A Collection object is iterable, but it also has methods

to add, remove, and search for its elements.

• A List object is a collection whose elements have a

linear order, similar to an array. It has methods to add,

remove, and modify an element at a specified slot.

• A Queue object is a collection whose elements also

have a linear order. However, its methods only allow a

client to add an element at the rear, and to remove and

examine the element at the front.

• A Set object is a collection that cannot have duplicate

elements. It has the same methods as Collection

but the add method is responsible for checking for

duplicates.

• A SortedSet object is a set whose elements are in

sorted order. It has methods for finding the first and

last elements according to this order, and methods for

creating the subset of the elements earlier than a given

element or the elements after a given element.

The Java library also contains several classes that implement these

interfaces. Figure 2-3 shows the following four classes.

Chapter 2 polymorphism

73

 ArrayList
The class ArrayList implements List, and thus also Collection and

Iterable. Its code uses an underlying array to store the list elements,

which gets resized as the list expands. The class has the methods

trimToSize and ensureCapacity, which allow a client to manually adjust

the size of the underlying array.

 LinkedList
Like ArrayList, the class LinkedList implements List (and Collection

and Iterable). It uses an underlying chain of nodes to store the list

elements. Unlike ArrayList, it also implements Queue. The reason is that

its chain implementation allows for fast removal from the front of the list,

which is important for an efficient implementation of Queue.

 HashSet
The class HashSet implements Set (and Collection and Iterable). It uses

a hash table to avoid inserting duplicate elements.

 TreeSet
The class TreeSet implements SortedSet (as well as Set, Collection, and

Iterable). It uses a search tree to store elements in sorted order.

 The Liskov Substitution Principle
The type hierarchy of Figure 2-3 seems quite natural and perhaps even

obvious. However, significant effort went into the crafting of the hierarchy.

An interesting discussion of some of the subtler design issues appears in

Chapter 2 polymorphism

74

the Java Collections API Design FAQ, which is available at the URL

https://docs.oracle.com/javase/8/docs/technotes/guides/

collections/designfaq.html.

In general, how does one go about designing a type hierarchy?

The guiding principle is called the Liskov Substitution Principle (often

abbreviated as LSP). This rule is named for Barbara Liskov, who first

formulated it.

For example, consider the fact that List extends Collection. The

LSP implies that List objects can substitute for Collection objects. In

other words, if someone asks you for a collection then you can reasonably

give them a list because the list has all the methods it needs to behave

as a collection. Conversely, the LSP implies that Collection should not

extend List. If someone asks you for a list then you could not give them a

collection, because collections are not necessarily sequential and do not

support the corresponding list methods.

Another way to understand the LSP is to examine the intended

relationship between an interface and an interface it extends. For example,

consider my initial description of the collection interfaces. I said that “a set

is a collection that ...,” “a sorted set is a set that ...,” and so on.

In other words, each interface “is” the type that it extends, with added

functionality. Such a relationship is called an IS-A relationship, and we say

“Set IS-A Collection,” “SortedSet IS-A Set,” and so on. A good rule of thumb

is that if you can understand a type hierarchy in terms of IS-A relationships

then it satisfies the LSP.

The Liskov Substitution Principle

if type X extends type y then an object of type X can always be used

wherever an object of type y is expected.

Chapter 2 polymorphism

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html

75

A useful way to test your understanding of the LSP is to try to answer

the following questions:

• Should SortedSet extend List?

• Why isn’t there an interface SortedList?

• Should Queue extend List? Should List extend Queue?

• Why have the interface Set if it doesn’t provide any

added functionality?

Here are the answers.

 Should SortedSet Extend List?
At first glance it seems like a sorted set is fairly similar to a list. After all,

its sort order determines a sequentiality: given a value n, there is a well-

defined nth element. The list’s get method could be useful for accessing

any element by its current slot.

The problem is that a sorted set’s modification methods would have

undesirable side effects. For example, if you use the set method to change

the value of the nth element then that element might change its position in

the sort order (possibly along with several other elements). And it doesn’t

make sense to use the add method to insert a new element into a specific

slot because the slot of each new element is determined by its sort order.

Thus, a sorted set cannot do everything that a list can, which means that

SortedSet cannot extend List without violating the LSP.

 Why Isn’t There an Interface SortedList?
Such an interface seems reasonable. The only question is where it would

go in the hierarchy. If SortedList extends List then you run into the same

problem that occurred with SortedSet—namely, there is no good way

for SortedList to implement the set and add methods of List. The best

Chapter 2 polymorphism

76

option is to have SortedList extend Collection, and provide additional

list-like methods for accessing elements according to their slot. This would

satisfy the LSP.

So why doesn’t the Java library have the interface SortedList? Most

likely, the designers of the library decided that such an interface would not

be that useful, and omitting it resulted in a more streamlined hierarchy.

Should Queue Extend List? Should List
Extend Queue?
Queue cannot extend List because a list can access all its elements directly

and insert anywhere, whereas a queue can only access the element at the

front and insert at the rear.

A more interesting question is whether List should extend Queue. List

methods can do everything that Queue methods can do, and more. Thus

one can argue that lists are more general than queues; that is, List IS-A

Queue. Declaring that List implements Queue would not violate the LSP.

The designers, on the other hand, felt that this functional relationship

between lists and queues is somewhat coincidental and not very useful

in practice. Conceptually, lists and queues are different beasts; nobody

thinks of a list as being a more functional queue. Thus there is no such IS-A

relationship and no such subtype declaration in Java.

 Why Have the Interface Set if It Doesn’t Provide
any Added Functionality?
This question is related to the List IS-A Queue question. Conceptually, Set

and Collection are two distinct types with a clear IS-A relationship: Set

IS-A Collection. Although Set does not introduce any new methods, it

does alter the meaning of the add method, and that is significant enough

(and useful enough) to warrant a distinct type.

Chapter 2 polymorphism

77

 The Rule of Abstraction
Listing 2-11 gives code for a class named DataManager1. This class manages

an ArrayList of data values. The list is passed into its constructor and its

methods calculate some simple statistical properties of the list.

Listing 2-11. The DataManager1 Class

public class DataManager1 {

 private ArrayList<Double> data;

 public DataManager1(ArrayList<Double> d) {

 data = d;

 }

 public double max() {

 return Collections.max(data);

 }

 public double mean() {

 double sum = 0.0;

 for (int i=0; i<data.size(); i++)

 sum += data.get(i);

 return sum / data.size();

 }

}

Although this class executes correctly, it is poorly designed. Its

problem is that it works only for data stored in ArrayList objects. This

restriction is unnecessary because there is nothing in the code that applies

only to array lists.

It is easy to rewrite the class so that it works for arbitrary lists of values.

That code appears in Listing 2-12.

Chapter 2 polymorphism

78

Listing 2-12. The Class DataManager2 Class

public class DataManager2 {

 private List<Double> data;

 public DataManager2(List<Double> d) {

 data = d;

 }

 ...

}

The code for DataManager1 and DataManager2 are identical, except

for the two places where ArrayList has been replaced by List. These two

classes and their dependencies can be expressed in the class diagram of

Figure 2-4.

The added flexibility of class DataManager2 results from the fact that

it is dependent on the interface List, which is more abstract than the

DataManager1 dependency on ArrayList. This insight is true in general,

and can be expressed as the following rule of Abstraction.

Figure 2-4. DataManager1 vs. DataManager2

Chapter 2 polymorphism

79

This rule suggests that a designer should examine each dependency in

a design to see if it can be made more abstract. A special case of this rule is

known as “Program to Interfaces,” which asserts that it is always better to

depend on an interface than a class.

Although DataManager2 is better than DataManager1, could it be

made even better by changing its dependency on List to something

more abstract, such as Collection? At first glance you would have

to say “no” because the implementation of the mean method uses the

List- based method get. If you want the class to work for any collection

then you would need to write mean so that it uses only methods available

to collections. Fortunately, such a rewrite is possible. Listing 2-13 gives the

code for the even better class DataManager3.

Listing 2-13. The DataManager3 Class

public class DataManager3 {

 private Collection<Double> data;

 public DataManager3(Collection<Double> d) {

 data = d;

 }

 public double max() {

 return Collections.max(data);

 }

The Rule of Abstraction

a class’s dependencies should be as abstract as possible.

Chapter 2 polymorphism

80

 public double mean() {

 double sum = 0.0;

 for (double d : data)

 sum += d;

 return sum / data.size();

 }

}

The rule of Abstraction can also be applied to the banking demo.

Consider for example the dependency between Bank and HashMap. A

Bank object has the variable accounts, which maps an account number

to the corresponding BankAccount object. The type of the variable is

HashMap<Integer,BankAccount>. The rule of Abstraction suggests that the

variable should have the type Map<Integer,BankAccount> instead. That

statement is changed in the version 6 code.

 Adding Code to an Interface
At the beginning of this chapter I defined an interface to be a set of

method headers, similar to an API. Under this definition, an interface

cannot contain code. The Java 8 release loosened this restriction so that

an interface can define methods, although it still cannot declare variables.

This section examines the consequences of this new ability.

As an example, Listing 2-14 shows the version 6 modification to the

BankAccount interface that adds the methods createSavingsWithDeposit

and isEmpty.

Chapter 2 polymorphism

81

Listing 2-14. The Version 6 BankAccount Interface

public interface BankAccount extends Comparable<BankAccount> {

 ...

 static BankAccount createSavingsWithDeposit(

 int acctnum, int n) {

 BankAccount ba = new SavingsAccount(acctnum);

 ba.deposit(n);

 return ba;

 }

 default boolean isEmpty() {

 return getBalance() == 0;

 }

}

Both methods are examples of convenience methods. A convenience

method does not introduce any new functionality. Instead, it leverages

existing functionality for the convenience of clients. The method

createSavingsWithDeposit creates a savings account having a specified

initial balance. The method isEmpty returns true if the account’s balance is

zero, and false otherwise.

Interface methods are either static or default. A static method has the

keyword static, which means the same as it does in a class. A default

method is nonstatic. The keyword default indicates that an implementing

class may override the code if it wishes. The idea is that the interface

provides a generic implementation of the method that is guaranteed to

work for all implementing classes. But a specific class may be able to

provide a better, more efficient implementation. For example, suppose that

a money-market savings account requires a minimum balance of $100.

Then it knows that the account will never be empty, and so it can overwrite

the default isEmpty method to one that immediately returns false without

having to examine the balance.

Chapter 2 polymorphism

82

For a more interesting example of a default method, consider the

question of how to sort a list. The Java library class Collections has the

static method sort. You pass two arguments to the sort method—a list

and a comparator— and it sorts the list for you. (A comparator is an object

that specifies a sort order, and will be discussed in Chapter 4. It suffices

here to know that passing null as the comparator causes the sort method

to compare the list elements using their compareTo method.) For example,

the code of Listing 2-15 reads ten words from standard input into a list and

then sorts the list.

Listing 2-15. The Old Way to Sort a List

Scanner scanner = new Scanner(System.in);

List<String> words = new ArrayList<>();

for (int i=0; i<10; i++)

 words.add(scanner.next());

Collections.sort(words, null);

The problem with this sort method is that there is no good way to

sort a list without knowing how it is implemented. The solution used by

the Collections class is to copy the elements of the list into an array, sort

the array, and then copy the sorted elements back to the list. Listing 2-16

gives the basic idea. Note that the method toArray returns an array of type

Object because Java’s restrictions on generic arrays make it impossible to

return an array of type T. After sorting the array, the for-loop stores each

array element back into L. The two typecasts are necessary to override the

compiler’s concern for type safety.

Listing 2-16. Code for the Sort Method

public class Collections {

 ...

 static <T> void sort(List<T> L, Comparator<T> comp) {

Chapter 2 polymorphism

83

 Object[] a = L.toArray();

 Arrays.sort(a, (Comparator)comp);

 for (int i=0; i<L.size(); i++)

 L.set(i, (T)a[i]);

 }

}

Although this code will work for any list, it has the overhead of copying

the list elements to an array and back. This overhead is wasted time for

some list implementations. An array list, for example, saves its list elements

in an array, so it would be more efficient to sort that array directly. This

situation means that a truly efficient list sorting method cannot be

transparent. It would need to determine how the list is implemented and

then use a sorting algorithm specific to that implementation.

Java 8 addresses this problem by making sort be a default method

of the List interface. The code for List.sort is a refactoring of the

Collections.sort code; the basic idea appears in Listing 2-17.

Listing 2-17. A Default Sort Method for List

public interface List<T> extends Collection<T> {

 ...

 default void sort(Comparator<T> comp) {

 Object[] a = toArray();

 Arrays.sort(a, (Comparator)comp);

 for (int i=0; i<size(); i++)

 set(i, (T)a[i]);

 }

}

Chapter 2 polymorphism

84

This default sort method has two benefits. The first is elegance: It

is now possible to sort a list directly, instead of via a static method in

Collections. That is, the following two statements are now equivalent:

 Collections.sort(L, null);

 L.sort(null);

The second, and more important benefit is that lists can be handled

transparently. The default implementation of sort works for all

implementations of List. However, any particular List implementation

(such as ArrayList) can choose to override this method with a more

efficient implementation of its own.

 Summary
Polymorphism is the ability of a program to leverage the common

functionality of classes. Java uses interfaces to support polymorphism—the

methods of an interface specify some common functionality, and classes

that support those methods can choose to implement that interface. For

example, suppose classes C1 and C2 implement interface I:

 public interface I {...}

 public class C1 implements I {...}

 public class C2 implements I {...}

A program can now declare variables of type I, which can then hold

references to either C1 or C2 objects without caring which class they

actually refer to.

Chapter 2 polymorphism

85

This chapter examined the power of polymorphism and gave some

basic examples of its use. It also introduced four design rules for using

polymorphism appropriately:

• The rule of Transparency states that a client should be

able to use an interface without needing to know the

classes that implement that interface.

• The Open/Closed rule states that programs should be

structured so that they can be revised by creating new

classes instead of modifying existing ones.

• The Liskov Substitution Principle (LSP) specifies when

it is meaningful for one interface to be a subtype of

another. In particular, X should be a subtype of Y only

if an object of type X can always be used wherever an

object of type Y is expected.

• The rule of Abstraction states that a class’s

dependencies should be as abstract as possible.

Chapter 2 polymorphism

87© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_3

CHAPTER 3

Class Hierarchies
Chapter 2 examined how interfaces can extend other interfaces, creating a

hierarchy of types. One of the characteristics of an object-oriented language is

that classes can extend other classes, creating a class hierarchy. This chapter

investigates class hierarchies and the ways they can be used effectively.

 Subclasses
Java allows one class to extend another. If class A extends class B, then A is

said to be a subclass of B and B is a superclass of A. Subclass A inherits all

public variables and methods of its superclass B, as well as all of B’s code

for these methods.

The most common example of subclassing in Java is the built-in class

Object. By definition, every class in Java is a subclass of Object. That is, the

following two class definitions are equivalent:

 class Bank { ... }

 class Bank extends Object { ... }

Consequently, the methods defined by Object are inherited by every

object. Of these methods, two commonly-used ones are equals and toString.

The equals method returns true if the two references being compared are to

the same object. (That is, the method is equivalent to the “==” operation.) The

toString method returns a string describing the object’s class and its location

in memory. Listing 3-1 demonstrates these methods.

88

Listing 3-1. Demonstrating the Default Equals Method

Object x = new Object();

Object y = new Object();

Object z = x;

boolean b1 = x.equals(y); // b1 is false

boolean b2 = x.equals(z); // b2 is true

System.out.println(x.toString());

// prints something like "java.lang.Object@42a57993"

A class can choose to override an inherited method. Often the code

provided by a superclass is too generic and a subclass may be able

to override the method with more appropriate code. The toString

method is typically overridden. For example, the Bank, SavingsAccount,

and CheckingAccount classes in the version 6 banking demo override

toString.

It is also typical to override the equals method. A class that overrides

the equals method typically compares the states of the two objects to

determine whether they denote the same real-world thing. For example,

consider the class SavingsAccount. Assuming that savings accounts have

distinct account numbers, two SavingsAccount objects should be equal if

their account numbers are the same. However, consider the following code.

 SavingsAccount s1 = new SavingsAccount(123);

 SavingsAccount s2 = new SavingsAccount(123);

 boolean b = s1.equals(s2); // returns false

Since s1 and s2 refer to different objects, comparing them using the

default equals method will return false. If you want the equals method

to return true in this case then SavingsAccount needs to override it. See

Listing 3-2.

Chapter 3 Class hierarChies

89

Listing 3-2. The Version 6 Equals Method of SavingsAccount

boolean equals(Object obj) {

 if (! obj instanceof SavingsAccount)

 return false;

 SavingsAccount sa = (SavingsAccount) obj;

 return getAcctNum() == sa.getAcctNum();

}

This code is probably trickier than you expected. The reason is that

the argument to the default equals method has the type Object, which

means that any class that overrides equals must also declare its argument

to be of type Object. That is, the equals method for SavingsAccount must

handle the possibility of a client comparing a SavingsAccount object to

an object from some other class. The code of Listing 3-2 surmounts this

problem by using instanceof and typecasting, as in Chapter 2. If the

argument is not a savings account then the method immediately returns

false. Otherwise, it casts the argument to the type SavingsAccount and

compares their account numbers.

A method defined in class Object never needs to be declared in an

interface. For example, consider the following code.

 BankAccount ba = new SavingsAccount(123);

 String s = ba.toString();

This code is legal regardless of whether or not the BankAccount

interface declares the toString method, because every implementing

class will inherit toString from Object if it has not been otherwise

overridden. However, there is still a value in having the interface declare

toString—it requires each of its implementing classes to override the

method explicitly.

Chapter 3 Class hierarChies

90

To represent a class–superclass relationship in a class diagram, use a

solid-head arrow with a solid line; this is the same arrow that is used for

an interface–superinterface relationship. For example, Figure 3-1 shows

the part of the class diagram related to the version 6 bank account classes,

revised to include the Object class. In general, class diagrams usually omit

Object because its presence is implied and adding it tends to make the

diagram unnecessarily complex.

Figure 3-1. Adding Object to a class diagram

Chapter 3 Class hierarChies

91

Chapter 2 introduced the Liskov Substitution Principle as it relates

to interfaces. The principle also applies to classes. It states that if class A

extends class B then an A-object can be used anywhere that a B-object is

expected. In other words, if A extends B then A IS-A B.

As an example, suppose that you want to modify the banking demo to

have the new bank account type “interest checking.” An interest checking

account is exactly like a regular checking account except that it gives

periodic interest. Call this class InterestChecking.

Should InterestChecking extend CheckingAccount? When I

described interest checking I said that it “is exactly like” regular checking.

This suggests an IS-A relationship, but let’s be sure. Suppose that the bank

wants a report listing all checking accounts. Should the report include

the interest checking accounts? If the answer is “yes” then there is an IS-A

relationship and InterestChecking should extend CheckingAccount. If

the answer is “no” then it shouldn’t.

Suppose that InterestChecking should indeed be a subclass of

CheckingAccount. An interest checking account differs from a regular

checking account in two ways: its toString method prints “Interest

checking,” and its addInterest method gives interest. Consequently, the

code for InterestChecking will override toString and addInterest, and

inherit the code for the remaining methods from its superclass. A possible

implementation of the class appears in Listing 3-3.

Listing 3-3. A Proposed InterestChecking Class

public class InterestChecking extends CheckingAccount {

 private double rate = 0.01;

 public InterestChecking(int acctnum) {

 super(acctnum);

 }

Chapter 3 Class hierarChies

92

 public String toString() {

 return "Interest checking account " + getAcctNum()

 + ": balance=" + getBalance() + ", is "

 + (isForeign() ? "foreign" : "domestic");

 }

 public void addInterest() {

 int newbalance = (int) (getBalance() * rate);

 deposit(newbalance);

 }

}

Note that the constructor calls the method super. The super method

is a call to the superclass’s constructor and is used primarily when the

subclass needs the superclass to handle its constructor’s arguments. If a

subclass’s constructor calls super then Java requires that the call must be

the first statement of the constructor.

The private variables of a class are not visible to any other class,

including its subclasses. This forces the subclass code to access its

inherited state by calling the superclass’s public methods. For example,

consider again the proposed InterestChecking code of Listing 3-3. The

toString method would like to access the variables acctnum, balance, and

isforeign from its superclass. However, these variables are private, which

forces toString to call the superclass methods getAcctNum, getBalance,

and isForeign to get the same information. Similarly, the addInterest

method has to call getBalance and deposit instead of simply updating the

variable balance.

It is good practice to encapsulate a class from its subclasses as much

as possible. But sometimes (as in the case of the addInterest code) the

result is awkward. Consequently, Java provides the modifier protected

as an alternative to public or private. A protected variable is accessible

Chapter 3 Class hierarChies

93

to its descendent classes in the hierarchy but not to any other classes. For

example, if CheckingAccount declares the variable balance to be protected

then the addInterest method of InterestChecking can be written as

follows:

 public void addInterest() {

 balance += (int) (balance * RATE);

 }

 Abstract Classes
Consider again version 6 of the banking demo. The CheckingAccount

and SavingsAccount classes currently have several identical methods. If

these methods need not remain identical in the future then the classes

are designed properly. However, suppose that the bank’s policy is that

deposits always behave the same regardless of the account type. Then the

two deposit methods will always remain identical; in other words, they

contain duplicate code.

The existence of duplicate code in a program is problematic

because this duplication will need to be maintained as the program

changes. For example, if there is a bug fix to the deposit method of

CheckingAccount then you will need to remember to make the same bug

fix to SavingsAccount. This situation leads to the following design rule,

called Don’t Repeat Yourself (or “DRY”):

The “Don’t Repeat Yourself” Rule

a piece of code should exist in exactly one place.

Chapter 3 Class hierarChies

94

The DRY rule is related to the Most Qualified Class rule, which implies

that a piece of code should only exist in the class that is most qualified to

perform it. If two classes seem equally qualified to perform the code then

there is probably a flaw in the design – most likely, the design is missing a

class that can serve as the most qualified one. In Java, a common way to

provide this missing class is to use an abstract class.

Version 6 of the banking demo illustrates a common cause of duplicate

code: two related classes implementing the same interface. A solution is

to create a superclass of CheckingAccount and SavingsAccount and move

the duplicate methods to it, together with the state variables they use.

Call this superclass AbstractBankAccount. The classes CheckingAccount

and SavingsAccount will each hold their own class-specific code and will

inherit their remaining code from AbstractBankAccount. This design

is version 7 of the banking demo. The code for AbstractBankAccount

appears in Listing 3-4. This class contains

• the state variables acctnum, balance, and isforeign.

These variables have the protected modifier so that

the subclasses can access them freely.

• a constructor that initializes acctnum. This constructor

is protected so that it can only be called by its

subclasses (via their super method).

• code for the common methods getAcctNum,

getBalance, deposit, compareTo, and equals.

Listing 3-4. The Version 7 AbstractBankAccount Class

public abstract class AbstractBankAccount

 implements BankAccount {

 protected int acctnum;

 protected int balance = 0;

 protected boolean isforeign = false;

Chapter 3 Class hierarChies

95

 protected AbstractBankAccount(int acctnum) {

 this.acctnum = acctnum;

 }

 public int getAcctNum() {

 return acctnum;

 }

 public int getBalance() {

 return balance;

 }

 public boolean isForeign() {

 return isforeign;

 }

 public void setForeign(boolean b) {

 isforeign = b;

 }

 public void deposit(int amt) {

 balance += amt;

 }

 public int compareTo(BankAccount ba) {

 int bal1 = getBalance();

 int bal2 = ba.getBalance();

 if (bal1 == bal2)

 return getAcctNum() - ba.getAcctNum();

 else

 return bal1 - bal2;

 }

Chapter 3 Class hierarChies

96

 public boolean equals(Object obj) {

 if (! (obj instanceof BankAccount))

 return false;

 BankAccount ba = (BankAccount) obj;

 return getAcctNum() == ba.getAcctNum();

 }

 public abstract boolean hasEnoughCollateral(int loanamt);

 public abstract String toString();

 public abstract void addInterest();

}

Note the declarations for the methods hasEnoughCollateral, toString,

and addInterest. These methods are declared to be abstract and have

no associated code. The issue is that AbstractBankAccount implements

BankAccount, so those methods need to be in its API; however, the class has

no useful implementation of the methods because the code is provided by

its subclasses. By declaring those methods to be abstract, the class asserts

that its subclasses will provide code for them.

A class that contains an abstract method is called an abstract class and

must have the abstract keyword in its header. An abstract class cannot

be instantiated directly. Instead, it is necessary to instantiate one of its

subclasses so that its abstract methods will have some code. For example:

 BankAccount xx = new AbstractBankAccount(123); // illegal

 BankAccount ba = new SavingsAccount(123); // legal

Listing 3-5 gives the version 7 code for SavingsAccount; the code for

CheckingAccount is similar. This code is basically the same as the version

6 code except that it only contains implementations of the three abstract

methods of AbstractBankAccount; the other methods of BankAccount

can be omitted because they are inherited from AbstractBankAccount.

The implementations of the abstract methods are able to reference the

variables balance, acctnum, and isforeign because they are protected in

AbstractBankAccount.

Chapter 3 Class hierarChies

97

Listing 3-5. The Version 7 SavingsAccount Class

public class SavingsAccount extends AbstractBankAccount {

 private double rate = 0.01;

 public SavingsAccount(int acctnum) {

 super(acctnum);

 }

 public boolean hasEnoughCollateral(int loanamt) {

 return balance >= loanamt / 2;

 }

 public String toString() {

 return "Savings account " + acctnum + ": balance="

 + balance + ", is "

 + (isforeign ? "foreign" : "domestic");

 }

 public void addInterest() {

 balance += (int) (balance * rate);

 }

}

The version 7 code for InterestChecking is similar to the code in

Listing 3-3 except that its methods refer to the protected variables of

AbstractBankAccount; its code is therefore not shown.

The version 7 BankClient and Bank classes have minor revisions to

handle the creation of InterestChecking objects. Listing 3-6 gives the

relevant portion of the newAccount method in BankClient. Listing 3-7 gives

the revised method for newAccount in Bank. The changes are in bold.

Chapter 3 Class hierarChies

98

Listing 3-6. The Version 7 newAccount Method of BankClient

private void newAccount() {

 System.out.print("Enter account type(1=savings,

 2=checking, 3=interest checking): ");

 int type = scanner.nextInt();

 boolean isforeign = requestForeign();

 current = bank.newAccount(type, isforeign);

 System.out.println("Your new account number is "

 + current);

}

Listing 3-7. The Version 7 newAccount Method of Bank

public int newAccount(int type, boolean isforeign) {

 int acctnum = nextacct++;

 BankAccount ba;

 if (type == 1)

 ba = new SavingsAccount(acctnum);

 else if (type == 2)

 ba = new CheckingAccount(acctnum);

 else

 ba = new InterestChecking(acctnum);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

 return acctnum;

}

The class diagram for the version 7 bank account classes appears

in Figure 3-2. From it you can deduce that AbstractBankAccount

implements all the methods in BankAccount except hasEnoughCollateral,

toString, and addInterest; that CheckingAccount and SavingsAccount

Chapter 3 Class hierarChies

99

implement those three methods; and that InterestChecking

overrides toString and addInterest. Note that the rectangle for

AbstractBankAccount italicizes the class name and the abstract methods,

to denote that they are abstract.

Figure 3-2. The version 7 bank account classes

Chapter 3 Class hierarChies

100

An abstract class defines a category of related classes. For example, the

class AbstractBankAccount defines the category “bank accounts,” whose

descendent classes—savings accounts, checking accounts, and interest

checking accounts—are members of this category.

On the other hand, a non-abstract superclass such as CheckingAccount

plays both roles: it defines the category “checking accounts” (of which

InterestChecking is a member) and it also denotes a particular member

of that category (namely, the “regular checking accounts”). This dual

usage of CheckingAccount makes the class less easy to understand and

complicates the design.

A way to resolve this issue is to split CheckingAccount into two pieces:

an abstract class that defines the category of checking accounts and a

subclass that denotes the regular checking accounts. Version 8 of the

banking demo makes this change: the abstract class is CheckingAccount

and the subclass is RegularChecking.

CheckingAccount implements the method hasEnoughCollateral,

which is common to all checking accounts. Its abstract methods are

toString and addInterest, which are implemented by the subclasses

RegularChecking and InterestChecking. Figure 3-3 shows the version

8 class diagram. Note how the two abstract classes form a taxonomy that

categorizes the three bank account classes.

Chapter 3 Class hierarChies

101

The revised code for CheckingAccount appears in Listing 3-8. The

methods toString and addInterest are abstract because its subclasses

are responsible for calculating interest and knowing their account type. Its

constructor is protected because it should be called only by subclasses.

Figure 3-3. The version 8 bank account classes

Chapter 3 Class hierarChies

102

Listing 3-8. The Version 8 CheckingAccount Class

public abstract class CheckingAccount

 extends AbstractBankAccount {

 protected CheckingAccount(int acctnum) {

 super(acctnum);

 }

 public boolean hasEnoughCollateral(int loanamt) {

 return balance >= 2 * loanamt / 3;

 }

 public abstract String toString();

 public abstract void addInterest();

}

The code for RegularChecking appears in Listing 3-9; the code for

InterestChecking is similar. The other classes in the version 8 demo are

essentially unchanged from version 7. For example, the only change to

Bank is its newAccount method, where it needs to create a RegularChecking

object instead of a CheckingAccount object.

Listing 3-9. The Version 8 RegularChecking Class

public class RegularChecking extends CheckingAccount {

 public RegularChecking(int acctnum) {

 super(acctnum);

 }

 public String toString() {

 return "Regular checking account " + acctnum

 + ": balance=" + balance + ", is "

 + (isforeign ? "foreign" : "domestic");

 }

Chapter 3 Class hierarChies

103

 public void addInterest() {

 // do nothing

 }

}

Abstract classes are by far the most common use of subclassing. The Java

library contains numerous examples of subclass–superclass relationships,

but in nearly all of them the superclass is abstract. The InterestChecking

example illustrates why this is so: A design that involves a non-abstract

superclass can often be improved by turning it into an abstract class.

 Writing Java Collection Classes
Chapter 2 introduced the Java collection library, its interfaces, and

the classes that implement these interfaces. These classes are general

purpose and appropriate for most situations. However, a program may

have a specific need for a custom collection class. The problem is that

the collection interfaces have lots of methods, which complicates the

task of writing custom classes. Moreover, many of the methods have

straightforward implementations that would be the same for each

implementing class. The result is duplicated code, violating the DRY rule.

The Java collection library contains abstract classes to remedy this

problem. Most of the collection interfaces have a corresponding abstract

class, whose name is “Abstract” followed by the interface name. That is,

the class corresponding to List<E> is named AbstractList<E>, and so

on. Each abstract class leaves a few of its interface methods abstract and

implements the remaining methods in terms of the abstract ones.

For example, the abstract methods of AbstractList<E> are size and

get. If you want to create your own class that implements List<E> then it

suffices to extend AbstractList<E> and implement these two methods.

(You also need to implement the method set if you want the list to be

modifiable.)

Chapter 3 Class hierarChies

104

As an example, suppose that you want to create a class RangeList that

implements List<Integer>. A RangeList object will denote a collection

that contains the n integers from 0 to n-1, for a value n specified in the

constructor. Listing 3-10 gives the code for a program RangeListTest,

which uses a RangeList object to print the numbers from 0 to 19:

Listing 3-10. The RangeListTest Class

public class RangeListTest {

 public static void main(String[] args) {

 List<Integer> L = new RangeList(20);

 for (int x : L)

 System.out.print(x + " ");

 System.out.println();

 }

}

The code for RangeList appears in Listing 3-11. Note how a RangeList

object acts as if it actually contains a list of values, even though it doesn’t.

In particular, its get method acts as if each slot i of the list contains the

value i. This technique is remarkable and significant. The point is that if

an object declares itself to be a list and behaves like a list, then it is a list.

There is no requirement that it actually contain the list’s elements.

Listing 3-11. The RangeList Class

public class RangeList extends AbstractList<Integer> {

 private int limit;

 public RangeList(int limit) {

 this.limit = limit;

 }

Chapter 3 Class hierarChies

105

 public int size() {

 return limit;

 }

 public Integer get(int n) {

 return n;

 }

}

 Byte Streams
The Java library contains the abstract class InputStream, which denotes

the category of data sources that can be read as a sequence of bytes. This

class has several subclasses. Here are three examples:

• The class FileInputStream reads bytes from a

specified file.

• The class PipedInputStream reads bytes from a

pipe. Pipes are what enable different processes to

communicate. For example, internet sockets are

implemented using pipes.

• The class ByteArrayInputStream reads bytes from

an array. This class enables a program to access the

contents of a byte array as if it were a file.

Similarly, the abstract class OutputStream denotes objects

to which you can write a sequence of bytes. The Java library has

OutputStream classes that mirror the InputStream classes. In particular,

FileOutputStream writes to a specified file, PipedOutputStream writes to

a pipe, and ByteArrayOutputStream writes to an array. The class diagrams

for these classes appear in Figure 3-4.

Chapter 3 Class hierarChies

106

The public variable System.in belongs to an unspecified class

that extends InputStream and by default reads bytes from the console.

For example, the class BankProgram in the banking demo contains the

following statement:

 Scanner sc = new Scanner(System.in);

Figure 3-4. Class diagrams for InputStream and OutputStream

Chapter 3 Class hierarChies

107

This statement can be written equivalently as follows:

 InputStream is = System.in;

 Scanner sc = new Scanner(is);

One of the great values of the abstract classes InputStream and

OutputStream is their support of polymorphism. Client classes that

use InputStream and OutputStream need not depend on the specific

input or output source they use. The class Scanner is a good example.

The argument to the Scanner’s constructor can be any input stream

whatsoever. For example, to create a scanner that reads from the file

“testfile” you can write:

 InputStream is = new FileInputStream("testfile");

 Scanner sc = new Scanner(is);

The demo class EncryptDecrypt illustrates a typical use of byte

streams. The code for this class appears in Listing 3-12. Its encrypt method

takes three arguments: the name of the source and output files, and an

encryption offset. It reads each byte from the source, adds the offset to it,

and writes the modified byte value to the output. The main method calls

encrypt twice. The first time, it encrypts the bytes of the file “data.txt”

and writes them to the file “encrypted.txt”; the second time, it encrypts

the bytes of “encrypted.txt” and writes them to “decrypted.txt.” Since the

second encryption offset is the negative of the first, the bytes in “decrypted.

txt” will be a byte-by-byte copy of “data.txt.”

Listing 3-12. The EncryptDecrypt Class

public class EncryptDecrypt {

 public static void main(String[] args) throws IOException {

 int offset = 26; // any value will do

 encrypt("data.txt", "encrypted.txt", offset);

 encrypt("encrypted.txt", "decrypted.txt", -offset);

 }

Chapter 3 Class hierarChies

108

 private static void encrypt(String source, String output,

 int offset) throws IOException {

 try (InputStream is = new FileInputStream(source);

 OutputStream os = new FileOutputStream(output)) {

 int x;

 while ((x = is.read()) >= 0) {

 byte b = (byte) x;

 b += offset;

 os.write(b);

 }

 }

 }

}

Note that this “decryption by double encryption” algorithm works

properly regardless of the encryption offset. The reason has to do with the

properties of byte arithmetic. When an arithmetic operation causes a byte

value to go outside of its range, the overflow is discarded; the result is that

addition and subtraction become cyclic. For example, 255 is the largest

byte value, so 255+1 = 0. Similarly, 0 is the smallest byte value, so 0-1 = 255.

The encrypt method illustrates the use of the read and write methods.

The write method is straightforward; it writes a byte to the output stream.

The read method is more intricate. It returns an integer whose value is

either the next byte in the input stream (a value between 0 and 255) or a -1

if the stream has no more bytes. Client code typically calls read in a loop,

stopping when the returned value is negative. When the returned value is

not negative, the client should cast the integer value to a byte before using it.

Unbeknown to clients, input and output streams often request

resources from the operating system on their behalf. Consequently,

InputStream and OutputStream have the method close, whose purpose

is to return those resources to the operating system. A client can call close

explicitly, or can instruct Java to autoclose the stream. The encrypt method

Chapter 3 Class hierarChies

109

illustrates the autoclose feature. The streams are opened as “parameters”

to the try clause and will be automatically closed when the try clause

completes.

Most stream methods throw IO exceptions. The reason is that

input and output streams are often managed by the operating system

and therefore are subject to circumstances beyond the control of

the program. The stream methods need to be able to communicate

unexpected situations (such as a missing file or unavailable network)

so that their client has a chance to handle them. For simplicity, the two

EncryptDecrypt methods do not handle exceptions and instead throw

them back up the call chain.

In addition to the zero-argument read method used in Listing 3-12,

InputStream has two methods that read multiple bytes at a time:

• A one-argument read method, where the argument is

a byte array. The method reads enough bytes to fill the

array.

• A three-argument read method, where the arguments

are a byte array, the offset in the array where the first

byte should be stored, and the number of bytes to read.

The value returned by these methods is the number of bytes that were

read, or -1 if no bytes could be read.

As a simple example, consider the following statements:

 byte[] a = new byte[16];

 InputStream is = new FileInputStream("fname");

 int howmany = is.read(a);

 if (howmany == a.length)

 howmany = is.read(a, 0, 4);

Chapter 3 Class hierarChies

110

The third statement tries to read 16 bytes into array a; the variable

howmany contains the actual number of bytes read (or -1 if no bytes were

read). If that value is less than 16 then the stream must have run out of

bytes, and the code takes no further action. If the value is 16 then the next

statement tries to read four more bytes, storing them in slots 0-3 of the array.

Again, the variable howmany will contain the number of bytes actually read.

The class OutputStream has analogous write methods. The primary

difference between the write and read methods is that the write methods

return void.

For a concrete example that uses the multibyte read and write

methods, consider the banking demo. Suppose that you want the bank’s

account information to be written in a file so that its state can be restored

upon each execution of BankProgram.

The revised BankProgram code appears in Listing 3-13. The code

makes use of a class SavedBankInfo that behaves as follows. Its constructor

reads account information from the specified file and constructs the

account map. Its method getAccounts returns the account map, which

will be empty if the file does not exist. Its method nextAcctNum returns the

number for the next new account, which will be 0 if the file does not exist.

Its method saveMap writes the current account information to the file,

overwriting any previous information.

Listing 3-13. The Version 8 BankProgram Class

public class BankProgram {

 public static void main(String[] args) {

 SavedBankInfo info = new SavedBankInfo("bank.info");

 Map<Integer,BankAccount> accounts = info.getAccounts();

 int nextacct = info.nextAcctNum();

 Bank bank = new Bank(accounts, nextacct);

 Scanner scanner = new Scanner(System.in);

 BankClient client = new BankClient(scanner, bank);

Chapter 3 Class hierarChies

111

 client.run();

 info.saveMap(accounts, bank.nextAcctNum());

 }

}

The code for SavedBankInfo appears in Listing 3-14. The variables

accounts and nextaccount are initialized for a bank having no accounts.

The constructor is responsible for reading the specified file; if the file exists,

it calls the local method readMap to use the saved account information

to initialize nextaccount and populate the map. The method saveMap

opens an output stream for the file and calls writeMap to write the account

information to that stream.

Listing 3-14. The Version 8 SavedBankInfo Class

public class SavedBankInfo {

 private String fname;

 private Map<Integer,BankAccount> accounts

 = new HashMap<Integer,BankAccount>();

 private int nextaccount = 0;

 private ByteBuffer bb = ByteBuffer.allocate(16);

 public SavedBankInfo(String fname) {

 this.fname = fname;

 if (!new File(fname).exists())

 return;

 try (InputStream is = new FileInputStream(fname)) {

 readMap(is);

 }

 catch (IOException ex) {

 throw new RuntimeException("file read exception");

 }

 }

Chapter 3 Class hierarChies

112

 public Map<Integer,BankAccount> getAccounts() {

 return accounts;

 }

 public int nextAcctNum() {

 return nextaccount;

 }

 public void saveMap(Map<Integer,BankAccount> map,

 int nextaccount) {

 try (OutputStream os = new FileOutputStream(fname)) {

 writeMap(os, map, nextaccount);

 }

 catch (IOException ex) {

 throw new RuntimeException("file write exception");

 }

 }

 ... // definitions for readMap and writeMap

}

SavedBankInfo has a variable of type ByteBuffer. The ByteBuffer

class defines methods for converting between values and bytes.

A ByteBuffer object has an underlying byte array. Its method putInt

stores the 4-byte representation of an integer into the array at the specified

offset; its method getInt converts the 4 bytes at the specified offset into an

integer. SavedBankInfo creates a single 16-byte ByteBuffer object, whose

underlying array will be used for all reading and writing to the file.

The code for the writeMap and readMap methods appears in Listing 3-15.

These methods determine the overall structure of the data file. First,

writeMap writes an integer denoting the next account number; then it writes

the values for each account. The readMap method reads these values back.

It first reads an integer and saves it in the global variable nextaccount. Then

it reads the account information, saving each account in the map.

Chapter 3 Class hierarChies

113

Listing 3-15. The Methods writeMap and readMap

private void writeMap(OutputStream os,

 Map<Integer,BankAccount> map,

 int nextacct) throws IOException {

 writeInt(os, nextacct);

 for (BankAccount ba : map.values())

 writeAccount(os, ba);

}

private void readMap(InputStream is) throws IOException {

 nextaccount = readInt(is);

 BankAccount ba = readAccount(is);

 while (ba != null) {

 accounts.put(ba.getAcctNum(), ba);

 ba = readAccount(is);

 }

}

The code for writeInt and readInt appears in Listing 3-16. The

writeInt method stores an integer in the first four bytes of the byte

buffer’s underlying array, and then uses the 3-argument write method

to write those bytes to the output stream. The readInt method uses the

3-argument read method to read four bytes into the beginning of the

ByteBuffer array, and then converts those bytes to an integer.

Listing 3-16. The writeInt and readInt Methods

private void writeInt(OutputStream os, int n)

 throws IOException {

 bb.putInt(0, n);

 os.write(bb.array(), 0, 4);

}

Chapter 3 Class hierarChies

114

private int readInt(InputStream is) throws IOException {

 is.read(bb.array(), 0, 4);

 return bb.getInt(0);

}

The code for writeAccount and readAccount appears in Listing 3-17.

The writeAccount method extracts the four crucial values from a bank

account (its account number, type, balance, and isforeign flag), converts

them to four integers, places them into the byte buffer, and then writes

the entire underlying byte array to the output stream. The readAccount

method reads 16 bytes into the underlying byte array and converts it into

four integers. It then uses these integers to create a new account and

configure it properly. The method indicates end of stream by returning a

null value.

Listing 3-17. The writeAccount and readAccount Methods

private void writeAccount(OutputStream os, BankAccount ba)

 throws IOException {

 int type = (ba instanceof SavingsAccount) ? 1

 : (ba instanceof RegularChecking) ? 2 : 3;

 bb.putInt(0, ba.getAcctNum());

 bb.putInt(4, type);

 bb.putInt(8, ba.getBalance());

 bb.putInt(12, ba.isForeign() ? 1 : 2);

 os.write(bb.array());

}

private BankAccount readAccount(InputStream is)

 throws IOException {

 int n = is.read(bb.array());

Chapter 3 Class hierarChies

115

 if (n < 0)

 return null;

 int num = bb.getInt(0);

 int type = bb.getInt(4);

 int balance = bb.getInt(8);

 int isforeign = bb.getInt(12);

 BankAccount ba;

 if (type == 1)

 ba = new SavingsAccount(num);

 else if (type == 2)

 ba = new RegularChecking(num);

 else

 ba = new InterestChecking(num);

 ba.deposit(balance);

 ba.setForeign(isforeign == 1);

 return ba;

}

As you can see, this way of preserving account information is very

low level. Saving the information involves converting each account to a

specific sequence of bytes, and restoring it requires reversing the process.

As a result, the coding is difficult and somewhat painful. Chapter 7 will

introduce the concept of an object stream, which enables clients to read

and write objects directly and let the underlying code perform the tedious

translation to bytes.

Now that you have seen how to use byte streams, it is time to examine

how they are implemented. I will consider input streams only. Output

streams are implemented analogously.

InputStream is an abstract class. It has one abstract method, namely

the zero-argument read method, and provides default implementations of

the other methods. A simplified version of the InputStream code appears

in Listing 3-18.

Chapter 3 Class hierarChies

116

Listing 3-18. A Simplified InputStream Class

public abstract class InputStream {

 public abstract int read() throws IOException;

 public void close() { }

 public int read(byte[] buf, int offset, int len)

 throws IOException {

 for (int i=0; i<len; i++) {

 int x = read();

 if (x < 0)

 return (i==0) ? -1 : i;

 buf[offset+i] = (byte) x;

 }

 return len;

 }

 public int read(byte[] buf) throws IOException {

 read(buf, 0, buf.length);

 }

 ...

}

The default implementations of the three non-abstract methods are

straightforward. The close method does nothing. The three-argument

read method fills the specified portion of the array by making repeated

calls to the zero-argument read method. And the one-argument read

method is just a special case of the three-argument method.

Each subclass of InputStream needs to implement the zero-argument

read method and can optionally override the default implementation of

other methods. For example, if a subclass acquires resources (such as the

file descriptor acquired by FileInputStream) then it should override the

close method to release those resources.

Chapter 3 Class hierarChies

117

A subclass may choose to override the three-argument read method

for efficiency. For example, classes such as FileInputStream and

PipedInputStream obtain their bytes via operating system calls. Since

calls to the operating system are time consuming, the classes will be more

efficient when they minimize the number of these calls. Consequently,

they override the default three-argument read method by a method that

makes a single multibyte call to the operating system.

The code for ByteArrayInputStream provides an example of an

InputStream subclass. A simple implementation appears in Listing 3-19.

Listing 3-19. A Simplified ByteArrayInputStream Class

public class ByteArrayInputStream extends InputStream {

 private byte[] a;

 private int pos = 0;

 public ByteArrayInputStream(byte[] a) {

 this.a = a;

 }

 public int read() throws IOException {

 if (pos >= a.length)

 return -1;

 else {

 pos++;

 return a[pos-1];

 }

 }

}

The way that the InputStream methods act as defaults for their

subclasses is akin to the way that the abstract collection classes help their

subclasses implement the collection interfaces. The difference is that

the collection library makes a difference between an abstract class (such

Chapter 3 Class hierarChies

118

as AbstractList) and its corresponding interface (such as List). The

abstract classes InputStream and OutputStream have no corresponding

interface. In effect, they act as their own interface.

 The Template Pattern
The abstract collection classes and the byte stream classes illustrate a

particular way to use an abstract class: The abstract class implements

some of the methods of its API, and declares the other methods to be

abstract. Each of its subclasses will then implement these abstract public

methods (and possibly override some of the other methods).

Here is a slightly more general way to design an abstract class. The

abstract class will implement all the methods of its API, but not necessarily

completely. The partially-implemented methods call “helper” methods,

which are protected (that is, they are not visible from outside the class

hierarchy) and abstract (that is, they are implemented by subclasses).

This technique is called the template pattern. The idea is that each

partial implementation of an API method provides a “template” of how

that method should work. The helper methods enable each subclass to

appropriately customize the API methods.

In the literature, the abstract helper methods are sometimes called

“hooks.” The abstract class provides the hooks, and each subclass provides

the methods that can be hung on the hooks.

The version 8 BankAccount class hierarchy can be improved by using the

template pattern. The problem with the version 8 code is that it still violates

the DRY rule. Consider the code for method hasEnoughCollateral in the

classes SavingsAccount (Listing 3-5) and CheckingAccount (Listing 3-8).

These two methods are almost identical. They both multiply the account

balance by a factor and compare that value to the loan amount. Their only

difference is that they multiply by different factors. How can we remove this

duplication?

Chapter 3 Class hierarChies

119

The solution is to move the multiplication and comparison up to

the AbstractBankAccount class and create an abstract helper method

that returns the factor to multiply by. This solution is implemented in

the version 9 code. The code for the hasEnoughCollateral method in

AbstractBankAccount changes to the following:

 public boolean hasEnoughCollateral(int loanamt) {

 double ratio = collateralRatio();

 return balance >= loanamt * ratio;

 }

 protected abstract double collateralRatio();

That is, the hasEnoughCollateral method is no longer abstract.

Instead, it is a template that calls the abstract helper method

collateralRatio, whose code is implemented by the subclasses. For

example, here is the version 9 code for the collateralRatio method in

SavingsAccount.

 protected double collateralRatio() {

 return 1.0 / 2.0;

 }

The abstract methods addInterest and toString also contain

duplicate code. Instead of having each subclass implement these

methods in their entirety, it is better to create a template for them in

AbstractBankAccount. Each template method can call abstract helper

methods, which the subclasses can then implement. In particular, the

addInterest method calls the abstract method interestRate and the

toString method calls the abstract method accountType.

Figure 3-5 displays the class diagram for the version 9 banking demo.

From it you can deduce that:

• AbstractBankAccount implements all of the methods

in BankAccount, but itself has the abstract methods

collateralRatio, accountType, and interestRate.

Chapter 3 Class hierarChies

120

• SavingsAccount implements all three of these

methods.

• CheckingAccount implements collateralRatio only,

and leaves the other two methods for its subclasses.

• RegularChecking and InterestChecking implement

accountType and interestRate.

Figure 3-5. The version 9 class diagram

Chapter 3 Class hierarChies

121

The following listings show the revised classes for version 9. The

code for AbstractBankAccount appears in Listing 3-20; the code for

SavingsAccount appears in Listing 3-21; the code for CheckingAccount

appears in Listing 3-22; and the code for RegularChecking appears

in Listing 3-23. The code for InterestChecking is similar to that for

RegularChecking, and is omitted. Note that because of the template

pattern, these classes are remarkably compact. There is no repeated code

whatsoever!

Listing 3-20. The Version 9 AbstractBankAccount Class

public abstract class AbstractBankAccount

 implements BankAccount {

 protected int acctnum;

 protected int balance;

 ...

 public boolean hasEnoughCollateral(int loanamt) {

 double ratio = collateralRatio();

 return balance >= loanamt * ratio;

 }

 public String toString() {

 String accttype = accountType();

 return accttype + " account " + acctnum

 + ": balance=" + balance + ", is "

 + (isforeign ? "foreign" : "domestic");

 }

 public void addInterest() {

 balance += (int) (balance * interestRate());

 }

Chapter 3 Class hierarChies

122

 protected abstract double collateralRatio();

 protected abstract String accountType();

 protected abstract double interestRate();

}

Listing 3-21. The Version 9 SavingsAccount Class

public class SavingsAccount extends BankAccount {

 public SavingsAccount(int acctnum) {

 super(acctnum);

 }

 public double collateralRatio() {

 return 1.0 / 2.0;

 }

 public String accountType() {

 return "Savings";

 }

 public double interestRate() {

 return 0.01;

 }

}

Listing 3-22. The Version 9 CheckingAccount Class

public abstract class CheckingAccount extends BankAccount {

 public CheckingAccount(int acctnum) {

 super(acctnum);

 }

 public double collateralRatio() {

 return 2.0 / 3.0;

 }

Chapter 3 Class hierarChies

123

 protected abstract String accountType();

 protected abstract double interestRate();

}

Listing 3-23. The Version 9 RegularChecking Class

public class RegularChecking extends CheckingAccount {

 public RegularChecking(int acctnum) {

 super(acctnum);

 }

 protected String accountType() {

 return "Regular Checking";

 }

 protected double interestRate() {

 return 0.0;

 }

}

For another illustration of the template pattern, consider the Java

library class Thread. The purpose of this class is to allow a program to

execute code in a new thread. It works as follows:

• Thread has two methods: start and run.

• The start method asks the operating system to create

a new thread. It then executes the object’s run method

from that thread.

• The run method is abstract and is implemented by a

subclass.

• A client program defines a class X that extends Thread

and implements the run method. The client then

creates a new X-object and calls its start method.

Chapter 3 Class hierarChies

124

The class ReadLine in Listing 3-24 is an example of a Thread subclass.

Its run method does very little. The call to sc.nextLine blocks until the

user presses the Return key. When that occurs, the run method stores the

input line in variable s, sets its variable done to true, and exits. Note that

the method does nothing with the input line. The only purpose of the input

is to set the variable done to true when the user presses Return.

Listing 3-24. The ReadLine Class

class ReadLine extends Thread {

 private boolean done = false;

 public void run() {

 Scanner sc = new Scanner(System.in);

 String s = sc.nextLine();

 sc.close();

 done = true;

 }

 public boolean isDone() {

 return done;

 }

}

Listing 3-25 gives the code for the class ThreadTest. That class creates

a ReadLine object and calls its start method, causing its run method to

execute from a new thread. The class then proceeds (from the original

thread) to print integers in increasing order until the isDone method of

ReadLine returns true. In other words, the program prints integers until the

user presses the Return key. The new thread makes it possible for the user

to interactively decide when to stop the printing.

Chapter 3 Class hierarChies

125

Listing 3-25. The ThreadTest Class

public class ThreadTest {

 public static void main(String[] args) {

 ReadLine r = new ReadLine();

 r.start();

 int i = 0;

 while(!r.isDone()) {

 System.out.println(i);

 i++;

 }

 }

}

Note how the Thread class uses the template pattern. Its start method

is part of the public API and acts as the template for thread execution. Its

responsibility is to create and execute a new thread, but it doesn’t know

what code to execute. The run method is the helper method. Each Thread

subclass customizes the template by specifying the code for run.

One common mistake when using threads is to have the client call

the thread’s run method instead of its start method. After all, the Thread

subclass contains the method run and the start method is hidden from

sight. Moreover, calling run is legal; doing so has the effect of running the

thread code, but not in a new thread. (Try executing Listing 3-25 after

changing the statement r.start() to r.run(). What happens?) However,

once you understand that threading uses the template pattern, the reason

for calling the start method becomes clear and the design of the Thread

class finally makes sense.

Chapter 3 Class hierarChies

126

 Summary
Classes in an object-oriented language can form subclass-superclass

relationships. The creation of these relationships should be guided by

the Liskov Substitution Principle: Class X should be a subclass of class Y if

X- objects can be used wherever Y-objects are needed. A subclass inherits

the code of its superclass.

One reason for creating superclass–subclass relationships is to satisfy

the DRY rule, which states that a piece of code should exist in exactly one

place. If two classes contain common code then that common code can

be placed in a common superclass of the two classes. The classes can then

inherit this code from their superclass.

If the two subclasses are different implementations of the same

interface then their common superclass should also implement that

interface. In this case the superclass becomes an abstract class and the

interface methods that it does not implement are declared as abstract. An

abstract class cannot be instantiated, and instead acts as a category for

its implementing classes. The categorization produced by a hierarchy of

abstract classes is called a taxonomy.

There are two ways for an abstract class to implement its interface.

The first way is exemplified by the Java abstract collection classes. The

abstract class declares a few of the interface methods to be abstract and

then implements the remaining methods in terms of the abstract ones.

Each subclass only needs to implement the abstract methods, but can

override any of the other methods if desired.

The second way is exemplified by the Java Thread class. The abstract

class implements all of the interface methods, calling abstract “helper”

methods when needed. Each subclass implements these helper methods.

This technique is called the template pattern. The abstract class provides a

“template” of how each interface method should work, with each subclass

providing the subclass-specific details.

Chapter 3 Class hierarChies

127© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_4

CHAPTER 4

Strategies
Class hierarchies are a fundamental feature of object-oriented programming

languages. Chapter 3 examined their capabilities. This chapter examines

their (often significant) limitations and introduces the more flexible concept

of a strategy hierarchy. Strategy hierarchies are a central component of

several design techniques. This chapter examines two such techniques—the

strategy pattern and the command pattern—and their uses.

 The Strategy Pattern
Let’s begin by reviewing the template pattern from Chapter 3. In it, an

abstract class (known as the template) provides a skeletal implementation

of each public method, and relies on nonpublic abstract methods to

provide the implementation-specific details. These abstract methods

get implemented by the template subclasses. Each subclass is called a

strategy class because it provides a particular strategy for implementing the

template’s abstract methods.

Listing 4-1 gives a simple example. The class IntProcessor is the

template class. It has an abstract method f that computes an output value

from a given integer. The method operateOn passes an integer to f and

prints its output value. There are two strategy subclasses, AddOne and

AddTwo, that provide different implementations of f. The class TestClient

demonstrates the use of these classes. It creates an instance of each

subclass and calls the operateOn method of each instance.

128

Listing 4-1. Example Template Pattern Classes

public abstract class IntProcessor {

 public void operateOn(int x) {

 int y = f(x);

 System.out.println(x + " becomes " + y);

 }

 protected abstract int f(int x);

}

public class AddOne extends IntProcessor {

 protected int f(int x) {

 return x+1;

 }

}

public class AddTwo extends IntProcessor {

 protected int f(int x) {

 return x+2;

 }

}

public class TestClient {

 public static void main(String[] args) {

 IntProcessor p1 = new AddOne();

 IntProcessor p2 = new AddTwo();

 p1.operateOn(6); // prints "6 becomes 7"

 p2.operateOn(6); // prints "6 becomes 8"

 }

}

Another way to design this program is to not use subclassing. Instead

of implementing the strategy classes as subclasses of IntProcessor,

you can give them their own hierarchy, called a strategy hierarchy. The

Chapter 4 StrategieS

129

hierarchy’s interface is named Operation, and has the method f. The

IntProcessor class, which no longer has any subclasses or abstract

methods, holds a reference to an Operation object and uses that reference

when it needs to call f. The revised code appears in Listing 4-2. The

TestClient class creates the desired Operation objects and passes each to

IntProcessor via dependency injection.

Listing 4-2. Refactoring Listing 4-1 to Use a Strategy Hierarchy

public class IntProcessor {

 private Operation op;

 public IntProcessor(Operation op) {

 this.op = op;

 }

 public void operateOn(int x) {

 int y = f(x);

 System.out.println(x + " becomes " + y);

 }

 private int f(int x) {

 return op.f(x);

 }

}

interface Operation {

 public int f(int x);

}

class AddOne implements Operation {

 public int f(int x) {

 return x+1;

 }

}

Chapter 4 StrategieS

130

class AddTwo implements Operation {

 public int f(int x) {

 return x+2;

 }

}

public class TestClient {

 public static void main(String[] args) {

 Operation op1 = new AddOne();

 Operation op2 = new AddTwo();

 IntProcessor p1 = new IntProcessor(op1);

 IntProcessor p2 = new IntProcessor(op2);

 p1.operateOn(6); p2.operateOn(6);

 }

}

If you compare the two listings you will see that they are refactorings of

each other, with nearly identical code. The primary difference is how the

strategy classes are attached to the IntProcessor class. Figure 4-1 shows

the corresponding class diagrams for the two different designs.

Figure 4-1. Class diagrams for Listings 4-1 and 4-2

Chapter 4 StrategieS

131

The technique of organizing strategy classes into a hierarchy is called

the strategy pattern. The strategy pattern is depicted by the class diagram

of Figure 4-2. The strategy interface defines a set of methods. Each class

that implements the interface provides a different strategy for performing

those methods. The client has a variable that holds an object from one of

the strategy classes. Because the variable is of type StrategyInterface,

the client has no idea which class the object belongs to and consequently

does not know which strategy is being used.

The class diagram on the right side of Figure 4-1 corresponds to the

strategy pattern. IntProcessor is the client, Operation is the strategy

interface, and AddOne and AddTwo are the strategy classes.

The Java Thread class provides a real-life example of the duality

between the template and strategy patterns. Recall the ThreadTest

program from Listing 3-25. The class Thread is the template class,

whose public method start calls the abstract method run. Its subclass

ReadLine is the strategy class that implements run. Figure 4-3 depicts the

relationship between Thread and ReadLine.

Figure 4-2. The strategy pattern

Chapter 4 StrategieS

132

In the corresponding design that uses the strategy pattern, ReadLine

will belong to a strategy hierarchy, which will be a dependency of Thread.

The strategy interface is called Runnable and has the method run. A Thread

object holds a reference to a Runnable object, and its start method will

call the Runnable object’s run method. See Figure 4-4.

Figure 4-3. Using the template pattern to connect Thread to its
strategy class

Figure 4-4. Using the strategy pattern to connect Thread to its
strategy class

Chapter 4 StrategieS

133

Compare Figure 4-3 with Figure 4-4. Figure 4-3 requires that ReadLine

extend Thread, whereas Figure 4-4 requires that ReadLine implement

Runnable. Syntactically, this difference is minor. In fact, revising the code

for ReadLine does not involve any change to its code apart from its class

header. The revised class appears in Listing 4-3, with differences from

Listing 3-24 in bold.

Listing 4-3. The Revised ReadLine Class

public class ReadLine implements Runnable {

 private boolean done = false;

 public void run() {

 Scanner sc = new Scanner(System.in);

 String s = sc.nextLine();

 sc.close();

 done = true;

 }

 public boolean isDone() {

 return done;

 }

}

A Thread object obtains its Runnable object via dependency

injection. That is, the client passes the desired Runnable object into

the Thread constructor. Listing 4-4 gives code for the client program

RunnableThreadTest, which revises the ThreadTest class of Listing 3-25 to

use the strategy pattern. Differences are in bold.

Chapter 4 StrategieS

134

Listing 4-4. The RunnableThreadTest Class

public class RunnableThreadTest {

 public static void main(String[] args) {

 ReadLine r = new ReadLine();

 Thread t = new Thread(r);

 t.start();

 int i = 0;

 while(!r.isDone()) {

 System.out.println(i);

 i++;

 }

 }

}

Although ThreadTest and RunnableThreadTest have practically the

same code, their designs are conceptually very different. In ThreadTest,

the class ReadLine is a subclass of Thread, which means that ReadLine

IS-A Thread. In RunnableThreadTest, the ReadLine object is unrelated to

Thread and is merely passed into the constructor of a new Thread object.

Current wisdom holds that creating threads using the strategy pattern

produces better designs than creating threads using the template pattern.

The primary reason is that the strategy pattern creates two objects—in this

case, the runnable and the thread—which keeps their concerns separate.

In contrast, the template pattern combines both concerns into a single

object. A second reason is that the strategy pattern is more flexible, in that

a runnable object is able to extend another class. For example, suppose

for some reason that you want each SavingsAccount object to run in its

own thread. The template pattern approach would not be possible here

because Java does not allow SavingsAccount to extend both Thread and

AbstractBankAccount.

Chapter 4 StrategieS

135

You may have noticed that the Thread class is depicted differently

in Figures 4-3 and 4-4. In Figure 4-3 it is an abstract class, with run as its

abstract method. In Figure 4-4 it is a non-abstract class, whose run method

calls the run method of its strategy class.

The Thread class was designed so that it can be used either way.

Listing 4-5 shows the basic idea. The key issue is how to implement the

run method. There are two potential run methods: the method defined

in Thread, and the method defined in a subclass of Thread. If the strategy

pattern is used (as in Listing 4-4) then the run method defined in Thread

is executed, which calls the run method of the Runnable object passed to

it. If the template pattern is used (as in Listing 3-25) then the run method

defined in the subclass overrides the method defined in Thread, and is

executed.

Listing 4-5. A Simplified Implementation of Thread

public class Thread {

 private Runnable target;

 public Thread() {

 this(null); // if no Runnable is specified, use null

 }

 public Thread(Runnable r) {

 target = r;

 }

 public void start() {

 ... // allocate a new thread

 run(); // and run it

 }

 // This method can be overridden by a subclass.

 public void run() {

Chapter 4 StrategieS

136

 if (target != null)

 target.run();

 }

}

You might be perplexed by why null is used as a possible value for the

variable target, especially since it complicates the code. The reason stems

from the need to handle the following statements:

 Thread t1 = new Thread();

 t1.start();

 Runnable r = null;

 Thread t2 = new Thread(r);

 t2.start();

These statements execute two threads, neither of which has a run

method. Although the code is pointless, it is legal, and the Thread

class must handle it. The solution taken in Listing 4-5 is to store a null

value as the target Runnable object in these cases. The run method can

then check to see if the target is null; if so, it does nothing.

 Comparators
Recall from Chapter 2 how the Comparable interface makes it possible to

compare objects. This interface has one method, named compareTo, which

specifies an ordering on the objects. If a class implements Comparable then

its objects can be compared by calling compareTo. The order defined by

CompareTo is called the object’s natural order.

The problem is that Comparable hardcodes a specific ordering,

which makes it essentially impossible to compare objects in any

other way. For example, the AbstractBankAccount class implements

Comparable<BankAccount>, and its compareTo method (given in Listing 3-4)

Chapter 4 StrategieS

137

compares bank accounts by their balance from low to high. It does not

allow you to compare accounts by account number or by balance from

high to low.

How can you specify different comparison orders? Use the strategy

pattern! The strategy interface declares the comparison method, and the

strategy classes provide specific implementations of that method.

Because object comparison is so common, the Java library provides

this strategy interface for you. The interface is called Comparator and

the method it declares is called compare. The compare method is similar

to compareTo except that it takes two objects as parameters. The call

compare(x,y) returns a value greater than 0 if x>y, a value less than 0 if

x<y, and 0 if x=y.

The code for the example comparator class AcctByMinBal appears in

Listing 4-6. Its compare method compares two BankAccount arguments,

using essentially the same code as the compareTo method of Listing 3-4. The

primary difference is syntactic: the compare method has two arguments,

whereas compareTo has one argument. The other difference is that

Listing 4-6 subtracts the account balances in the opposite order from

Listing 3-4, meaning that it compares balances from high to low. That is,

the account having the smallest balance will be the “maximum.”

Listing 4-6. The AcctByMinBal Class

class AcctByMinBal implements Comparator<BankAccount> {

 public int compare(BankAccount ba1, BankAccount ba2) {

 int bal1 = ba1.getBalance();

 int bal2 = ba2.getBalance();

 if (bal1 == bal2)

 return ba1.getAcctNum() – ba2.getAcctNum();

 else

 return bal2 – bal1;

 }

}

Chapter 4 StrategieS

138

Listing 4-7 gives code for the program ComparatorBankAccounts,

which revises the CompareBankAccounts class of Listing 2-9. Unlike

CompareBankAccounts, which found the maximum bank account using the

natural ordering, ComparatorBankAccounts finds the maximum element

according to four specified orderings. Each ordering is represented by a

different comparator object. Two of the comparators are passed to the

local method findMax. The other two are passed to the Java library method

Collections.max.

Listing 4-7. The ComparatorBankAccounts Class

public class ComparatorBankAccounts {

 public static void main(String[] args) {

 List<BankAccount> accts = initAccts();

 Comparator<BankAccount> minbal = new AcctByMinBal();

 Comparator<BankAccount> maxbal = innerClassComp();

 Comparator<BankAccount> minnum = lambdaExpComp1();

 Comparator<BankAccount> maxnum = lambdaExpComp2();

 BankAccount a1 = findMax(accts, minbal);

 BankAccount a2 = findMax(accts, maxbal);

 BankAccount a3 = Collections.max(accts, minnum);

 BankAccount a4 = Collections.max(accts, maxnum);

 System.out.println("Acct with smallest bal is " + a1);

 System.out.println("Acct with largest bal is " + a2);

 System.out.println("Acct with smallest num is " + a3);

 System.out.println("Acct with largest num is " + a4);

 }

 private static BankAccount findMax(List<BankAccount> a,

 Comparator<BankAccount> cmp) {

 BankAccount max = a.get(0);

 for (int i=1; i<a.size(); i++) {

Chapter 4 StrategieS

139

 if (cmp.compare(a.get(i),max) > 0)

 max = a.get(i);

 }

 return max;

 }

 ... // code for the three comparator methods goes here

}

The findMax method of Listing 4-7 revises the corresponding method

of Listing 2-9. It now takes two parameters: a list of bank accounts and a

comparator. It returns the largest account, where “largest” is determined

by the comparator.

The Collections.max method, like other library methods that involve

comparison, is able to handle both the Comparable and Comparator

interfaces. If you call Collections.max with one argument (as in Listing 2-9)

then it will compare elements according to their natural order. On the

other hand, if you call Collections.max with a comparator as its second

argument (as in Listing 4-7) then the elements will be compared according

to the order specified by the comparator.

The main method of Listing 4-7 creates four objects of type

Comparable<BankAccount>. The first object is an instance of the

AcctByMinBal class of Listing 4-6. The other three objects are created

by the methods innerClassComp, lambdaExpComp1, and lambdaExpComp2;

the code for these methods will appear in listings 4-8 to 4-10. Each

of these methods creates an object from an anonymous inner class;

anonymous inner classes are discussed in the next section.

The class diagram for the ComparatorBankAccounts program appears

in Figure 4-5. Note how it follows the strategy pattern.

Chapter 4 StrategieS

140

 Anonymous Inner Classes
The rule of Abstraction (from Chapter 2) asserts that the type of a variable

should be an interface when possible. In such a case the name of the

class that implements the interface is relatively unimportant, as it will

only be used when the class constructor is called. This section examines

how to create unnamed classes, called anonymous inner classes, and the

convenience that they provide.

 Explicit Anonymous Classes
An anonymous inner class defines a class without giving it a name.

Suppose that T is an interface. The general syntax is:

 T v = new T() { ... };

This statement causes the compiler to do three things:

• It creates a new class that implements T and has the

code appearing within the braces.

• It creates a new object of that class by calling the class’s

default constructor.

• It saves a reference to that object in variable v.

Figure 4-5. The Class Diagram for ComparatorBankAccounts

Chapter 4 StrategieS

141

Note that the client will never need to know the class of the new object,

because it interacts with the object only via the variable of type T.

The code for the method innerClassComp in ComparatorBankAccounts

appears in Listing 4-8. The bold code highlights the anonymous inner

class syntax. The code within the braces implements the compare method,

which in this case happens to be the same as the compareTo method

of Listing 3-4. This class is named AnonymousA in the class diagram of

Figure 4-5, but of course we don’t know (or care) what its name really is.

Listing 4-8. The innerClassComp Method

private static Comparator<BankAccount> innerClassComp() {

 Comparator<BankAccount> result =

 new Comparator<BankAccount>() {

 public int compare(BankAccount ba1,

 BankAccount ba2) {

 int bal1 = ba1.getBalance();

 int bal2 = ba2.getBalance();

 if (bal1 == bal2)

 return ba1.getAcctNum() - ba2.getAcctNum();

 else

 return bal1 - bal2;

 }

 };

 return result;

}

 Lambda Expressions
An anonymous inner class provides a convenient way to define a class and

create a single instance of it, as both the class and its instance can be created

inline. This section shows how it is often possible to shorten the definitions

of anonymous inner classes, making them even more convenient.

Chapter 4 StrategieS

142

An interface is said to be functional if it has only one method, not

counting any default or static methods. The interface Comparator<T>

is an example of a functional interface. An anonymous inner class for a

functional interface can be written very compactly. Since there is only

one method to define, its name and return type are determined by the

interface, so you don’t need to write them; you only need to write the code

for the method. This notation is called a lambda expression. Its syntax is:

 (T1 t1, ..., Tn tn) -> {...}

The method’s parameter list is to the left of the “arrow” and its code is

to its right, within braces. The method lambdaExpComp1 in Comparator

BankAccounts uses this syntax; see the bold portion of Listing 4-9. Its

compare method compares accounts by their account numbers, from high

to low.

Listing 4-9. The lambdaExpComp1 Method

private static Comparator<BankAccount> lambdaExpComp1() {

 Comparator<BankAccount> result =

 (BankAccount ba1, BankAccount ba2) -> {

 return ba2.getAcctNum() - ba1.getAcctNum();

 };

 return result;

}

Although lambda expressions can be written reasonably compactly,

Java lets you abbreviate them even further.

• You don’t have to specify the types of the parameters.

• If there is only one parameter then you can omit the

parentheses around it.

• If the body of the method consists of a single statement then

you can omit the braces; if a single-statement method also

returns something then you also omit the “return” keyword.

Chapter 4 StrategieS

143

The method lambdaExpComp2 in ComparatorBankAccounts uses this

syntax; see the bold portion of Listing 4-10. The compare method compares

accounts by their account numbers, from low to high.

Listing 4-10. The lambdaExpComp2 Method

private static Comparator<BankAccount> lambdaExpComp2() {

 Comparator<BankAccount> result =

 (ba1, ba2) -> ba1.getAcctNum() - ba2.getAcctNum();

 return result;

}

For another example of a lambda expression, consider again the

implementation of the Thread class in Listing 4-5. Its variable target held

the specified runnable object, with a null value denoting a nonexistent

runnable. The run method had to use an if-statement to ensure that it only

executed nonnull runnables.

The use of the null value to mean “do nothing” is poor design, as it

forces the run method to make the decision to “do something” or “do

nothing” each time it is executed. A better idea is to have the class make

the decision once, in its constructor. The solution is to use a lambda

expression. The code of Listing 4-11 revises Listing 4-5.

Listing 4-11. A revised Implementation of Thread

public class Thread {

 private static Runnable DO_NOTHING = () -> {};

 private Runnable target;

 public Thread() {

 this(DO_NOTHING); // use the default runnable

 }

Chapter 4 StrategieS

144

 public Thread(Runnable r) {

 target = (r == null) ? DO_NOTHING : r;

 }

 public void start() {

 ... // allocate a new thread

 run();

 }

 // This method can be overridden by a subclass.

 public void run() {

 target.run(); // no need to check for null!

 }

}

The class creates a Runnable object via the lambda expression ()->{}.

This lambda expression defines a run method that takes no arguments and

does nothing. This Runnable object is saved in the constant DO_NOTHING. If

no Runnable object is passed into the Thread constructor then the variable

target will receive a reference to DO_NOTHING instead of a null value. Since

this object is runnable, the run method can execute it without the need for

an if-statement.

 The Strategy Pattern as a Design Tool
Let’s return to the design of the banking demo. Chapter 3 introduced

version 9 of the demo, which supported three kinds of bank account

organized into the class hierarchy of Figure 4-6.

Chapter 4 StrategieS

145

Suppose that the bank wants to add another feature to the design. It

already distinguishes between domestic accounts and foreign accounts;

it now wants to charge a yearly maintenance fee of $5 for foreign-owned

accounts. The BankAccount interface will get a new method named fee,

which returns the fee for that account.

A simple way to implement the fee method is from within the class

AbstractBankAccount, as shown in Listing 4-12. Although this code is

straightforward, its use of the if-statement is bad design. The method will

need to be modified each time the bank changes the fee categories—which

is a blatant violation of the Open/Closed rule.

Figure 4-6. The version 9 BankAccount hierarchy

Chapter 4 StrategieS

146

Listing 4-12. A Naïve Implementation of the Fee method in

AbstractBankAccount

public int fee() {

 if (isforeign)

 return 500; // $5 is 500 cents

 else

 return 0;

}

A better idea is to use the strategy pattern. The ownership information

will be moved to its own strategy hierarchy, whose interface is called

OwnerStrategy and whose two strategy classes correspond to the two

different fee categories. The AbstractBankAccount class will have

a dependency on OwnerStrategy and will obtain all owner-related

information from it. This design is version 10 of the banking demo. The

relevant portion of its class diagram is in Figure 4-7, with changes from

Figure 3-5 in bold.

Chapter 4 StrategieS

147

This diagram shows the fee method added to the BankAccount

interface. The class AbstractBankAccount implements the method by

calling the fee method of its OwnerStrategy object. The OwnerStrategy

classes also implement the additional method isForeign.

Figure 4-7. The version 10 bank account classes

Chapter 4 StrategieS

148

The code for the OwnerStrategy interface appears in Listing 4-13.

Listing 4-14 gives the code for the Foreign class; the Domestic class is

similar.

Listing 4-13. The OwnerStrategy Interface

public interface OwnerStrategy {

 boolean isForeign();

 int fee();

}

Listing 4-14. The Foreign Class

public class Foreign implements OwnerStrategy {

 public boolean isForeign() {

 return true;

 }

 public int fee() {

 return 500; // $5 is 500 cents

 }

 public String toString() {

 return "foreign";

 }

}

The code for the version 10 AbstractBankAccount class appears in

Listing 4-15, with changes in bold. Its boolean variable isforeign has been

replaced by the strategy variable owner. Its isForeign and fee methods call

the isForeign and fee strategy methods of owner. Its toString method calls

the toString method of the strategy object to obtain the string indicating

that the account is “domestic” or “foreign.” Initially, the owner variable is

bound to a Domestic strategy object. The setForeign method rebinds that

variable to the OwnerStrategy object determined by its argument value.

Chapter 4 StrategieS

149

Listing 4-15. The Version 10 AbstractBankAccount Class

public abstract class AbstractBankAccount

 implements BankAccount {

 protected int acctnum;

 protected int balance = 0;

 private OwnerStrategy owner = new Domestic();

 protected AbstractBankAccount(int acctnum) {

 this.acctnum = acctnum;

 }

 public boolean isForeign() {

 return owner.isForeign();

 }

 public int fee() {

 return owner.fee();

 }

 public void setForeign(boolean b) {

 owner = b ? new Foreign() : new Domestic();

 }

 public String toString() {

 String accttype = accountType();

 return accttype + " account " + acctnum

 + ": balance=" + balance + ", is "

 + owner.toString() + ", fee=" + fee();

 }

 ...

}

Chapter 4 StrategieS

150

 The Command Pattern
The OwnerStrategy strategy hierarchy arose from the problem of how to

implement multiple ways to calculate the fee of a bank account. The initial

solution, given in Listing 4-12, used an if-statement to determine which

calculation to perform. This use of an if-statement was problematic: not

only was it inefficient but it would need to be modified each time a new

type of fee was added. Replacing the if-statement with a strategy hierarchy

elegantly resolved both issues.

A similar situation exists in the BankClient class. It assigns a number

to eight different input commands and its processCommand method uses

an if-statement to determine which code to execute for a given command

number. The code for the method appears in Listing 4-16.

Listing 4-16. The Version 9 processCommand Method

private void processCommand(int cnum) {

 if (cnum == 0) quit();

 else if (cnum == 1) newAccount();

 else if (cnum == 2) select();

 else if (cnum == 3) deposit();

 else if (cnum == 4) authorizeLoan();

 else if (cnum == 5) showAll();

 else if (cnum == 6) addInterest();

 else if (cnum == 7) setForeign();

 else

 System.out.println("illegal command");

}

A better design for this method is to create a strategy interface

InputCommand and an implementing strategy class for each command type.

BankClient can then hold a polymorphic array of type InputCommand,

containing one object from each strategy class. The command number

Chapter 4 StrategieS

151

passed to processCommand becomes an index into that array. The revised

processCommand method appears in Listing 4-17. Note how the indexed

array access replaces the if-statement.

Listing 4-17. The Version 10 processCommand Method

private void processCommand(int cnum) {

 InputCommand cmd = commands[cnum];

 current = cmd.execute(scanner, bank, current);

 if (current < 0)

 done = true;

}

The strategy interface InputCommand has eight implementing classes—

one class for each type of command. These classes are named QuitCmd,

NewCmd, DepositCmd, and so on. Figure 4-8 shows their class diagram.

Figure 4-8. The InputCommand Strategy Hierarchy

Chapter 4 StrategieS

152

The strategy method declared by InputCommand is named execute.

The execute method for each strategy class contains the code required

to perform its designated command. The code for these strategy classes

is taken from the methods referenced in Listing 4-16. For example, the

execute method of DepositCmd contains the same code as the version 9

deposit method.

One complicating issue is that the version 9 methods are able to

modify the global variables of BankClient; in particular, the version 9

newAccount and select commands change the value of the variable

current, and the quit command changes the value of done. However,

the strategy classes have no such access to the BankClient variables.

The solution taken in version 10 is for the execute method to return the

new value of current (or the old value, if it did not change). A value of -1

indicates that done should be set to true. The code of Listing 4-17 reflects

this decision: the return value of execute is assigned to current, and if

current is negative, the value of done gets set to true.

The code for the InputCommand interface appears in Listing 4-18.

The code for DepositCmd appears in Listing 4-19. The code for the other

strategy classes is analogous and are omitted here.

Listing 4-18. The Version 10 InputCommand Interface

public interface InputCommand {

 int execute(Scanner sc, Bank bank, int current);

}

Listing 4-19. The Version 10 DepositCmd Class

public class DepositCmd implements InputCommand {

 public int execute(Scanner sc, Bank bank, int current) {

 System.out.print("Enter deposit amt: ");

 int amt = sc.nextInt();

 bank.deposit(current, amt);

Chapter 4 StrategieS

153

 return current;

 }

 public String toString() {

 return "deposit";

 }

}

The use of command objects also solves another problem of the

version 9 BankClient class, which is related to its run method. The code

in question is the string beginning “Enter command...” in Listing 4-20.

This string explicitly assigns numbers to commands and must be kept in

synch with the processCommand method. If new commands are added to

processCommand or if the numbers assigned to existing commands change,

then this string will need to be rewritten.

Listing 4-20. The Version 9 BankClient Run Method

public void run() {

 while (!done) {

 System.out.print("Enter command (0=quit, 1=new,

 2=select, 3=deposit, 4=loan,

 5=show, 6=interest, 7=setforeign): ");

 int cnum = scanner.nextInt();

 processCommand(cnum);

 }

}

The version 10 BankClient class has a better design, which appears in

Listing 4-21. It takes advantage of the fact that the commands array contains

an object for each command. When the run method is called, it calls the

method constructMessage to traverse that array and construct the “Enter

command...” string. Consequently, that string will always be accurate no

matter how the commands change.

Chapter 4 StrategieS

154

Listing 4-21. The Version 10 BankClient Class

public class BankClient {

 private Scanner scanner;

 private boolean done = false;

 private Bank bank;

 private int current = 0;

 private InputCommand[] commands = {

 new QuitCmd(),

 new NewCmd(),

 new SelectCmd(),

 new DepositCmd(),

 new LoanCmd(),

 new ShowCmd(),

 new InterestCmd(),

 new SetForeignCmd() };

 public BankClient(Scanner scanner, Bank bank) {

 this.scanner = scanner;

 this.bank = bank;

 }

 public void run() {

 String usermessage = constructMessage();

 while (!done) {

 System.out.print(usermessage);

 int cnum = scanner.nextInt();

 processCommand(cnum);

 }

 }

Chapter 4 StrategieS

155

 private String constructMessage() {

 int last = commands.length-1;

 String result = "Enter Account Type (";

 for (int i=0; i<last; i++)

 result += i + "=" + commands[i] + ", ";

 result += last + "=" + commands[last] + "): ";

 return result;

 }

 private void processCommand(int cnum) {

 InputCommand cmd = commands[cnum];

 current = cmd.execute(scanner, bank, current);

 if (current < 0)

 done = true;

 }

}

The method constructMessage creates the user message. In doing so,

it appends each InputCommand object to the string. Java interprets this as

implicitly appending the result of the object’s toString method. That is,

the following statements are equivalent:

 result += i + "=" + commands[i] + ", ";

 result += i + "=" + commands[i].toString() + ", ";

The use of a strategy hierarchy shown in Figure 4-8 is called the

command pattern. The structure of the command pattern is the same

as for the strategy pattern. For example, in Figure 4-8, BankClient is the

client and depends on the strategy hierarchy headed by InputCommand.

The only difference between the two patterns is the purpose of their

strategies. In the strategy pattern the strategies are computational—they

provide alternative ways to compute a value. In the command pattern

the strategies are procedural—they provide alternative tasks that can be

performed.

Chapter 4 StrategieS

156

 Eliminating the Class Hierarchy
The duality between the template pattern and the strategy pattern implies

that any design using the template pattern can be redesigned to use the

strategy pattern. This section shows how to redesign the banking demo

so that its BankAccount class hierarchy is replaced by a strategy hierarchy.

This redesign is version 11 of the banking demo.

The idea of the redesign is to implement SavingsAccount,

RegularChecking, and InterestChecking as strategy classes, headed

by a strategy interface named TypeStrategy. The interface declares

the three methods collateralRatio, accountType, and interestRate.

Consequently, AbstractBankAccount will no longer need subclasses.

Instead, it will implement these three methods via its reference to a

TypeStrategy object.

Figure 4-9 shows the version 11 class diagram. In this design,

AbstractBankAccount has two strategy hierarchies. The OwnerStrategy

hierarchy is the same as in version 10. The TypeStrategy hierarchy

contains the code for the methods of AbstractBankAccount that were

previously abstract.

Chapter 4 StrategieS

157

The TypeStrategy interface appears in Listing 4-22.

Figure 4-9. Version 11 of the Banking Demo

Chapter 4 StrategieS

158

Listing 4-22. The TypeStrategy Interface

public interface TypeStrategy {

 double collateralRatio();

 String accountType();

 double interestRate();

}

The classes SavingsAccount, RegularChecking, and InterestChecking

implement TypeStrategy. These classes are essentially unchanged from

version 10; the primary difference is that they now implement TypeStrategy

instead of extending AbstractBankAccount. Listing 4-23 gives the code for

SavingsAccount; the code for the other two classes is similar.

Listing 4-23. The Version 11 SavingsAccount Class

public class SavingsAccount implements TypeStrategy {

 public double collateralRatio() {

 return 1.0 / 2.0;

 }

 public String accountType() {

 return "Savings";

 }

 public double interestRate() {

 return 0.01;

 }

}

In version 10, the newAccount method of class Bank used the type

number entered by the user to determine the subclass of the new account.

The newAccount method in version 11 uses the type number to determine the

TypeStrategy of the new account. It then passes the TypeStrategy object to

the AbstractBankAccount constructor, as shown in Listing 4-24. Analogous

changes are needed to the class SavedBankInfo, but are not shown here.

Chapter 4 StrategieS

159

Listing 4-24. The Version 11 newAccount Method of Bank

public int newAccount(int type, boolean isforeign) {

 int acctnum = nextacct++;

 TypeStrategy ts;

 if (type==1)

 ts = new SavingsAccount();

 else if (type==2)

 ts = new RegularChecking();

 else

 ts = new InterestChecking();

 BankAccount ba = new AbstractBankAccount(acctnum, ts);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

 return acctnum;

}

The code for AbstractBankAccount appears in Listing 4-25, with changes

in bold. The primary difference from version 10 is that the class is no longer

abstract and implements the previously abstract methods collateralRatio,

accountType, and interestRate. The code of these methods simply calls the

corresponding methods of the TypeStrategy variable ts.

Listing 4-25. The AbstractBankAccount Class

public class AbstractBankAccount implements BankAccount {

 private int acctnum;

 private int balance = 0;

 private OwnerStrategy owner = new Domestic();

 private TypeStrategy ts;

 public AbstractBankAccount(int acctnum, TypeStrategy ts) {

 this.acctnum = acctnum;

 this.ts = ts;

Chapter 4 StrategieS

160

 }

 ...

 private double collateralRatio() {

 return ts.collateralRatio();

 }

 private String accountType() {

 return ts.accountType();

 }

 private double interestRate() {

 return ts.interestRate();

 }

}

 Templates vs. Strategies
The template pattern and the strategy pattern use different mechanisms to

accomplish similar goals—the template pattern uses the class hierarchy,

whereas the strategy pattern uses a separate strategy hierarchy. Can we

derive any insight into when one technique is preferable over the other?

In the template pattern the class hierarchy forms a structure that

organizes the different strategy classes. A class hierarchy takes a general

concept (such as “bank account”) and divides it into increasingly narrower

concepts (such as “savings account,” “regular checking,” and “interest

checking”). Such an organization is known as a taxonomy.

A taxonomy is a useful organizational concept. For example, this book’s

table of contents is a taxonomy of its information. One characteristic of a

taxonomy is that membership in a category is permanent. For example in

the version 10 banking demo, a savings account cannot become a checking

account. The only way to “convert” a savings account into a checking

account is to create a new checking account, transfer the savings account’s

balance to it, and then delete the savings account. But this conversion is

Chapter 4 StrategieS

161

not exact—in particular, the checking account will have a different account

number from the savings account.

Another characteristic of a taxonomy is that it can only represent a

hierarchical relationship between its members. For example, the banking

demo organizes accounts according to “savings” vs. “checking.” That

organization cannot handle the added distinction of “foreign” vs. “domestic.”

On the other hand, the strategy pattern is much more fluid. Each

strategy hierarchy corresponds to a completely independent way of

organizing the objects. Moreover, the strategy pattern allows an object

to change its choice of strategies. For example, the setForeign method

in BankAccount changes that object’s membership in the OwnerStrategy

hierarchy.

Version 11 of the banking demo demonstrated how strategies can

even subsume the functionality of subclasses. In that version, every

bank account belongs to the same class, namely AbstractBankAccount.

The concept of “checking account” or “savings account” is no longer

embedded in a class hierarchy. Instead, a savings account is merely a bank

account that has a specific implementation of the TypeStrategy methods

(namely, savings accounts pay interest, have a low collateral ratio, and

have the name “Savings”). Similarly, the two kinds of checking accounts

are just bank accounts with their own TypeStrategy implementations.

Such a design is tremendously flexible. It is possible to create various

combinations of checking-savings accounts simply by mixing and

matching their strategy implementations.

Is this a good idea? Not necessarily. A class hierarchy provides a

structure that helps tame the unbridled complexity that strategies enable.

The decision of how to mix strategy hierarchies and template subclasses

requires careful consideration, and will depend on the situation being

modeled. For example, my sense is that version 10 of the banking demo

is a better design. The division into checking and savings accounts seems

reasonable and corresponds to how banks operate. Version 11, by giving

up the hierarchy, seems to be less realistic and less easily understood.

Chapter 4 StrategieS

162

In this book I take the position that the version 11 demo is interesting

and educational, but ultimately a dead end. The revisions of Chapter 5 will

be based on version 10.

 Summary
In the template pattern, each subclass of the template defines a different

strategy for implementing the template’s abstract methods, and is called a

strategy class. This chapter investigated the technique of organizing these

strategy classes into their own strategy hierarchy. When the strategy classes

perform computation this technique is called the strategy pattern; when

they denote tasks it is called the command pattern.

These two design patterns model situations where a class can have

multiple ways to perform a computation or a task. A common example

is object comparison. The Java library has the interface Comparator for

precisely this purpose. A client can implement customized comparison

code by writing an appropriate class that implements Comparator.

Strategy classes are often written as anonymous inner classes. If the

strategy interface is functional then a strategy class for it can be written

compactly and elegantly as a lambda expression.

The strategy pattern is more flexible than the template pattern, and

this flexibility can lead to better designs. An example is the problem of how

to calculate fees based on account ownership. Since the class hierarchy is

organized by account type, the fee calculations do not neatly fit into the

existing class structure. Instead, the creation of a separate OwnerStrategy

hierarchy was easy and elegant, and did not impact the existing class

hierarchy.

The strategy pattern can in fact be used to eliminate class hierarchies

altogether, but this is not necessarily a good idea. As a class designer,

you need to understand your options. It is then up to you to weigh their

tradeoffs for a given situation.

Chapter 4 StrategieS

163© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_5

CHAPTER 5

Encapsulating Object
Creation
Polymorphism enables code to be more abstract. When your code

references an interface instead of a class, it loses its coupling to that class

and becomes more flexible in the face of future modifications. This use of

abstraction was central to many of the techniques of the previous chapters.

Class constructors are the one place where such abstraction is not

possible. If you want to create an object, you need to call a constructor;

and calling a constructor is not possible without knowing the name of the

class. This chapter addresses that problem by examining the techniques

of object caching and factories. These techniques help the designer limit

constructor usage to a relatively small, well-known set of classes, in order

to minimize their potential liability.

 Object Caching
Suppose you want to write a program that analyzes the status of a large

number of motion-detecting sensors, whose values are either “on” or “off.”

As part of that program, you write a class Sensors that stores the sensor

information in a list and provides methods to get and set individual sensor

values. The code for that class appears in Listing 5-1.

164

Listing 5-1. Version 1 of the Sensors Class

public class Sensors {

 private List<Boolean> L = new ArrayList<>();

 public Sensors(int size) {

 for (int i=0; i<size; i++)

 L.add(new Boolean(false));

 }

 public boolean getSensor(int n) {

 Boolean val = L.get(n);

 return val.booleanValue();

 }

 public void setSensor(int n, boolean b) {

 L.set(n, new Boolean(b));

 }

}

This code creates a lot of Boolean objects: the constructor creates one

object per sensor and the setSensor method creates another object each

time it is called. However, it is possible to create far fewer objects. Boolean

objects are immutable (that is, their state cannot be changed), which

means that Boolean objects having the same value are indistinguishable

from each other. Consequently, the class only needs to use two Boolean

objects: one for true and one for false. These two objects can be shared

throughout the list.

Listing 5-2 shows a revision of Sensors that takes advantage of

immutability. This code uses the variables off and on as a cache. When

it needs a Boolean object for true it uses on; and when it needs a Boolean

object for false it uses off.

Chapter 5 enCapsulating ObjeCt CreatiOn

165

Listing 5-2. Version 2 of the Sensors Class

public class Sensors {

 private List<Boolean> L = new ArrayList<>();

 private static final Boolean off = new Boolean(false);

 private static final Boolean on = new Boolean(true);

 public Sensors(int size) {

 for (int i=0; i<size; i++)

 L.add(off);

 }

 public boolean getSensor(int n) {

 Boolean val = L.get(n);

 return val.booleanValue();

 }

 public void setSensor(int n, boolean b) {

 Boolean val = b ? on : off;

 L.set(n, val);

 }

}

This use of caching is a good idea, but in this case it is limited to

the Sensors class. If you want to use Boolean objects in another class, it

could be awkward to share the cached objects between the two classes.

Fortunately, there is a better way—the Boolean class has caching built into

it. Listing 5-3 gives a simplified version of the Boolean source code.

Listing 5-3. A Simplified Boolean Class

public class Boolean {

 public static final Boolean TRUE = new Boolean(true);

 public static final Boolean FALSE = new Boolean(false);

 private boolean value;

Chapter 5 enCapsulating ObjeCt CreatiOn

166

 public Boolean(boolean b) {value = b;}

 public boolean booleanValue() {

 return value;

 }

 public static Boolean valueOf(boolean b) {

 return (b ? TRUE : FALSE);

 }

 ...

}

The constants TRUE and FALSE are static and public. They are created

once, when the class is loaded, and are available everywhere. The static

method valueOf returns TRUE or FALSE based on the supplied boolean

value.

Listing 5-4 shows a revision of the Sensors class that uses the valueOf

method and public constants of Boolean instead of its constructor. This is

the preferred use of the Boolean class. The Java documentation states that

valueOf should be used in preference to the constructor, as its caching

saves time and space. In fact, I cannot think of a reason why anyone’s Java

code would ever need to call the Boolean constructor.

Listing 5-4. Version 3 of the Sensors Class

public class Sensors {

 private List<Boolean> L = new ArrayList<>();

 public void init(int size) {

 for (int i=0; i<size; i++)

 L.add(Boolean.FALSE);

 }

Chapter 5 enCapsulating ObjeCt CreatiOn

167

 public void setSensor(int n, boolean b) {

 Boolean value = Boolean.valueOf(b);

 L.set(n, value);

 }

}

Although there is a sharp distinction between the primitive type

boolean and the class Boolean, the Java concept of autoboxing blurs that

distinction. With autoboxing you can use a boolean value anywhere that a

Boolean object is expected; the compiler automatically uses the valueOf

method to convert the boolean to a Boolean for you. Similarly, the concept

of unboxing lets you use a Boolean object anywhere that a boolean value

is expected; the compiler automatically uses the booleanValue method to

convert the Boolean to a boolean.

Listing 5-5 gives yet another revision of Sensors, this time without any

explicit mention of Boolean objects. It is functionally equivalent to Listing 5-4.

This code is interesting because it has a lot going on behind the scenes.

Although it doesn’t explicitly mention Boolean objects, they exist because of

autoboxing. Moreover, because autoboxing calls valueOf, the code will not

create new objects but will use the cached versions.

Listing 5-5. Version 4 of the Sensors Class

public class Sensors {

 private List<Boolean> L = new ArrayList<>();

 public void init(int size) {

 for (int i=0; i<size; i++)

 L.add(false);

 }

 public void setSensor(int n, boolean b) {

 L.set(n, b);

 }

}

Chapter 5 enCapsulating ObjeCt CreatiOn

168

The Java library class Integer also performs caching. It creates a cache

of 256 objects, for the integers between -128 and 127. Its valueOf method

returns a reference to one of these constants if its argument is within that

range; otherwise it creates a new object and returns it.

For example, consider the code of Listing 5-6. The first two calls to

valueOf will return a reference to the cached Integer object for the value

127. The third and fourth calls will each create a new Integer object for the

value 128. In other words, the code creates two new Integer objects, both

having the value 128.

Listing 5-6. An Example of Integer Caching

List<Integer> L = new ArrayList<>();

L.add(Integer.valueOf(127)); // uses cached object

L.add(Integer.valueOf(127)); // uses cached object

L.add(Integer.valueOf(128)); // creates new object

L.add(Integer.valueOf(128)); // creates new object

The Java compiler uses autoboxing and unboxing to convert between

int values and Integer objects. As with Boolean, it uses the valueOf

method to perform the boxing and the intValue method to perform the

unboxing. The code of Listing 5-7 is functionally equivalent to Listing 5-6.

Listing 5-7. An Equivalent Example of Integer Caching

List<Integer> L = new ArrayList<>();

L.add(127); // uses cached object

L.add(127); // uses cached object

L.add(128); // creates new object

L.add(128); // creates new object

Chapter 5 enCapsulating ObjeCt CreatiOn

169

 Singleton Classes
One important use of caching is to implement singleton classes. A singleton

class is a class that has a fixed number of objects, created when the class is

loaded. It does not have a public constructor, so no additional objects can

be created. It is called “singleton” because the most common situation is a

class having a single instance.

For example, if the Java designers had made the Boolean constructor

private (which would have been a good idea) then Boolean would be a

singleton class. On the other hand, Integer cannot be a singleton class,

even if its constructor were private, because its valueOf method creates

new objects when needed.

The Java enum syntax simplifies the creation of singleton classes and

is the preferred way of writing singletons. For example, Listing 5-8 shows

how the code for Boolean can be rewritten as an enum. Differences from

Listing 5-3 are in bold.

Listing 5-8. Writing Boolean as an Enum

public enum Boolean {

 TRUE(true), FALSE(false);

 private boolean value;

 private Boolean(boolean b) {value = b;}

 public boolean booleanValue() {

 return value;

 }

 public static Boolean valueOf(boolean b) {

 return (b ? TRUE : FALSE);

 }

 ...

}

Chapter 5 enCapsulating ObjeCt CreatiOn

170

Note that the syntactic differences are incredibly minor. The main

difference concerns the definitions of the constants TRUE and FALSE,

which omit both the declaration of their type and their call to the Boolean

constructor. The values inside the parentheses denote the arguments to

the constructor. That is, the statement

 TRUE(true), FALSE(false);

is equivalent to the two statements

 public static final Boolean TRUE = new Boolean(true);

 public static final Boolean FALSE = new Boolean(false);

Conceptually, an enum is a class that has no public constructors, and

therefore no objects other than its public constants. In all other respects an

enum behaves like a class. For example, the code of Listing 5-4 would be

the same if Boolean were implemented as an enum or a class.

Beginners are often unaware of the correspondence between enums

and classes because an enum is typically introduced as a named set of

constants. For example, the following enum defines the three constants

Speed.SLOW, Speed.MEDIUM, and Speed.FAST:

 public enum Speed {SLOW, MEDIUM, FAST};

This enum is equivalent to the class definition of Listing 5-9. Note

that each Speed constant is a reference to a Speed object having no

functionality of interest.

Chapter 5 enCapsulating ObjeCt CreatiOn

171

Listing 5-9. The Meaning of the Speed Enum

public class Speed {

 public static final Speed SLOW = new Speed();

 public static final Speed MEDIUM = new Speed();

 public static final Speed FAST = new Speed();

 private Speed() { }

}

As with classes, an enum constructor with no arguments and no body

(such as the constructor for Speed) is called a default constructor. Default

constructors can be omitted from enum declarations just as they can be

omitted from class declarations.

Because the constants in an enum are objects, they inherit the equals,

toString, and other methods of Object. In the simple case of the Speed

enum, its objects can do nothing else. The elegant thing about the Java

enum syntax is that enum constants can be given as much additional

functionality as desired.

The default implementation of an enum’s toString method is to return

the name of the constant. For example, the following statement assigns the

string “SLOW” to variable s.

 String s = Speed.SLOW.toString();

Suppose instead that you want the Speed constants to display as

musical tempos. Then you could override the toString method as shown

in Listing 5-10. In this case the preceding statement would assign the string

“largo” to variable s.

Listing 5-10. Overriding the toString Method of Speed

public enum Speed {

 SLOW("largo"), MEDIUM("moderato"), FAST("presto");

 private String name;

Chapter 5 enCapsulating ObjeCt CreatiOn

172

 private Speed(String name) {

 this.name = name;

 }

 public String toString() {

 return name;

 }

}

 Singleton Strategy Classes
Let’s return to version 10 of the banking demo. The OwnerStrategy

interface has two implementing classes, Domestic and Foreign. Both of

these classes have empty constructors and their objects are immutable.

Consequently, all Domestic objects can be used interchangeably, as can all

Foreign objects.

Instead of creating new Domestic and Foreign objects on demand

(which is what the AbstractBankAccount class currently does), it would

be better for the classes to be singletons. Listing 5-11 shows how to rewrite

Foreign as an enum; the code for Domestic is similar. The two differences

from the version 10 code are in bold.

Listing 5-11. Rewriting Foreign as an Enum

public enum Foreign implements OwnerStrategy {

 INSTANCE;

 public boolean isForeign() {

 return true;

 }

 public int fee() {

 return 500;

 }

Chapter 5 enCapsulating ObjeCt CreatiOn

173

 public String toString() {

 return "foreign";

 }

}

The constant INSTANCE holds the reference to the singleton Foreign

object that was created by calling the enum’s default constructor. The class

Domestic also has a constant INSTANCE. Listing 5-12 shows how the class

AbstractBankAccount can use these constants instead of creating new

strategy objects.

Listing 5-12. Revising AbstractBankAccount to Use the Enums

public class AbstractBankAccount implements BankAccount {

 protected int acctnum;

 protected int balance = 0;

 protected OwnerStrategy owner = Domestic.INSTANCE;

 ...

 public void setForeign(boolean b) {

 owner = b ? Foreign.INSTANCE : Domestic.INSTANCE;

 }

}

Although this use of enums is reasonable, the version 12 banking

demo uses a different implementation technique in which both constants

belong to a single enum named Owners. Its code appears in Listing 5-13.

This enum defines the constants Owners.DOMESTIC and Owners.FOREIGN,

which correspond to the earlier constants Domestic.INSTANCE and

Foreign.INSTANCE.

Chapter 5 enCapsulating ObjeCt CreatiOn

174

Listing 5-13. The Version 12 Owners Enum

public enum Owners implements OwnerStrategy {

 DOMESTIC(false,0,"domestic"), FOREIGN(true,500,"foreign");

 private boolean isforeign;

 private int fee;

 private String name;

 private Owners(boolean isforeign, int fee, String name) {

 this.isforeign = isforeign;

 this.fee = fee;

 this.name = name;

 }

 public boolean isForeign() {

 return isforeign;

 }

 public int fee() {

 return fee;

 }

 public String toString() {

 return name;

 }

}

The revised code for the version 12 class AbstractBankAccount

appears in Listing 5-14.

Listing 5-14. The Version 12 AbstractBankAccount Class

public class AbstractBankAccount implements BankAccount {

 protected int acctnum;

 protected int balance = 0;

Chapter 5 enCapsulating ObjeCt CreatiOn

175

 protected OwnerStrategy owner = Owners.DOMESTIC;

 ...

 public void setForeign(boolean b) {

 owner = (b ? Owners.FOREIGN : Owners.DOMESTIC);

 }

}

From a design point of view, using a single enum that has two

constants is roughly equivalent to using two enums that have one constant

each. I chose the single enum approach because I happen to prefer its

aesthetics—having constants named FOREIGN and DOMESTIC appeals to me

more than having two constants named INSTANCE.

Another strategy interface in the version 10 banking demo is

InputCommand. Its implementing classes are also immutable and can be

rewritten using enums. Listing 5-15 shows how to rewrite the code for

SelectCmd; the other seven strategy classes are similar.

Listing 5-15. Rewriting SelectCmd as an Enum

public enum SelectCmd implements InputCommand {

 INSTANCE;

 public int execute(Scanner sc, Bank bank, int current) {

 System.out.print("Enter acct#: ");

 current = sc.nextInt();

 int balance = bank.getBalance(current);

 System.out.println("The balance of account " + current

 + " is " + balance);

 return current;

 }

 public String toString() {

 return "select";

 }

}

Chapter 5 enCapsulating ObjeCt CreatiOn

176

The only required modification to the version 10 BankClient code is

the way it creates its array of input commands. The array now consists of

enum constants instead of new InputCommand objects. See Listing 5-16.

Listing 5-16. Rewriting BankClient to Reference Enums

public class BankClient {

 private Scanner scanner;

 private boolean done = false;

 private Bank bank;

 private int current = 0;

 private InputCommand[] commands = {

 QuitCmd.INSTANCE,

 NewCmd.INSTANCE,

 SelectCmd.INSTANCE,

 DepositCmd.INSTANCE,

 LoanCmd.INSTANCE,

 ShowCmd.INSTANCE,

 InterestCmd.INSTANCE,

 SetForeignCmd.INSTANCE };

 ...

}

An alternative to having a separate enum for each command is

to create a single enum containing all the commands. The version 12

code takes this approach. The enum is named InputCommands and

its code appears in Listing 5-17. The InputCommands constructor has

two arguments: a string used by the toString method, and a lambda

expression that defines its execute method. The code for the constant

SELECT is in bold so that you can compare it with Listing 5-15.

Chapter 5 enCapsulating ObjeCt CreatiOn

177

Listing 5-17. The Version 12 InputCommands Enum

public enum InputCommands implements InputCommand {

 QUIT("quit", (sc, bank, current)->{

 sc.close();

 System.out.println("Goodbye!");

 return -1;

 }),

 NEW("new", (sc, bank, current)->{

 System.out.print("Enter account type(1=savings,

 2=checking, 3=interest checking): ");

 int type = sc.nextInt();

 boolean isforeign = requestForeign(sc);

 current = bank.newAccount(type, isforeign);

 System.out.println("Your new account number is "

 + current);

 return current;

 }),

 SELECT("select", (sc, bank, current)->{

 System.out.print("Enter account#: ");

 current = sc.nextInt();

 int balance = bank.getBalance(current);

 System.out.println("The balance of account " + current

 + " is " + balance);

 return current;

 }),

 DEPOSIT("deposit", (sc, bank, current)->{

 System.out.print("Enter deposit amount: ");

 int amt = sc.nextInt();

 bank.deposit(current, amt);

 return current;

 }),

Chapter 5 enCapsulating ObjeCt CreatiOn

178

 LOAN("loan", (sc, bank, current)->{

 System.out.print("Enter loan amount: ");

 int amt = sc.nextInt();

 boolean ok = bank.authorizeLoan(current, amt);

 if (ok)

 System.out.println("Your loan is approved");

 else

 System.out.println("Your loan is denied");

 return current;

 }),

 SHOW("show", (sc, bank, current)->{

 System.out.println(bank.toString());

 return current;

 }),

 INTEREST("interest", (sc, bank, current)-> {

 bank.addInterest();

 return current;

 }),

 SET_FOREIGN("setforeign", (sc, bank, current)-> {

 bank.setForeign(current, requestForeign(sc));

 return current;

 });

 private String name;

 private InputCommand cmd;

 private InputCommands(String name, InputCommand cmd) {

 this.name = name;

 this.cmd = cmd;

 }

 public int execute(Scanner sc, Bank bank, int current) {

 return cmd.execute(sc, bank, current);

 }

Chapter 5 enCapsulating ObjeCt CreatiOn

179

 public String toString() {

 return name;

 }

 private static boolean requestForeign(Scanner sc) {

 System.out.print("Enter 1 for foreign,

 2 for domestic: ");

 int val = sc.nextInt();

 return (val == 1);

 }

}

An enum has the static method values, which returns an array of

its constants. The BankClient class can take advantage of this method.

Instead of constructing the array of commands shown in Listing 5-16,

BankClient can now call InputCommands.values(). See Listing 5-18.

Listing 5-18. The Version 12 BankClient Class

public class BankClient {

 private Scanner scanner;

 private boolean done = false;

 private Bank bank;

 private int current = 0;

 private InputCommand[] commands = InputCommands.values();

 ...

}

Although the use of InputCommands.values is certainly convenient,

you may be wondering whether the single enum design is a good idea. One

issue is that it violates the Single Responsibility rule—the InputCommands

enum has the responsibility for eight different commands, which leads

to a larger and more complex enum than having eight separate enums.

Chapter 5 enCapsulating ObjeCt CreatiOn

180

Having a single enum also violates the Open/Closed rule—adding a

new command requires a modification to InputCommands instead of the

creation of another enum.

These violations are mitigated by the fact that enums are much safer

to modify than arbitrary code, as modification only involves adding or

deleting a constant. Perhaps the most compelling reason to use a single

enum is to take advantage of its values method. Without it, the addition of

a new command requires creating the new enum and modifying the code

that creates the list of commands; and since that code exists separately

from the enum, there is a significant chance that the modification will be

overlooked. That possibility seems too dangerous to ignore, and tips the

scales in favor of the single enum design.

 Static Factory Methods
Recall from the beginning of this chapter that the Boolean and Integer

classes have a method valueOf, which takes a primitive value, boxes it, and

returns the boxed object. This method hides certain details about its return

object—in particular, the caller does not know whether the returned object

is a new object or a previously created one. The valueOf method assumes

responsibility for determining the best course of action, which is why using

it is preferable to using a constructor.

The valueOf method is called a static factory method. A factory method

is a method whose job is to create objects. It encapsulates the details of

object creation, and can hide the class of a newly constructed object. It can

even hide the fact that it is returning a previously-created object instead of

a new one.

The Java library contains many other static factory methods. One

example is the static method asList in the class Arrays. The argument

to this method is an array of object references and its return value is a list

containing those references. The following code illustrates its use.

Chapter 5 enCapsulating ObjeCt CreatiOn

181

 String[] names = {"joe", "sue", "max"};

 List<String> L = Arrays.asList(names);

The asList method returns a list containing the elements of the

supplied array, but it gives no other details. The method not only hides

the algorithm for creating the list, it also hides the class of the list. This

encapsulation gives the factory method considerable flexibility in how it

chooses to create the list. For example, one option is for the method to

create a new ArrayList object and then add each element of the array into

it. But other options are possible. Chapter 7 will discuss a very efficient

solution that uses an adapter class.

The library class ByteBuffer provides other examples of static factory

methods. A ByteBuffer object denotes an area of memory and has

methods to store and retrieve primitive values at arbitrary locations within

the area. Formally, ByteBuffer is an abstract class that has two subclasses.

The subclass DirectByteBuffer allocates its space from the operating

system’s I/O buffers. The subclass HeapByteBuffer allocates its space from

the Java VM.

Neither of these subclasses has a public constructor. The only way to

construct a ByteBuffer object is to use one of three static factory methods.

The method allocateDirect creates a new direct buffer; the method

allocate creates a new, uninitialized heap buffer; and the method wrap

creates a new heap buffer based on the contents of its argument array.

The following statements illustrate the use of these three factory

methods. The first statement creates a 200-byte direct buffer. The second

statement creates a 200-byte heap buffer. The last two statements create a

heap buffer based on the array variable bytes.

 ByteBuffer bb = ByteBuffer.allocateDirect(200);

 ByteBuffer bb2 = ByteBuffer.allocate(200);

 byte[] bytes = new byte[200];

 ByteBuffer bb3 = ByteBuffer.wrap(bytes);

Chapter 5 enCapsulating ObjeCt CreatiOn

182

The benefit of these static factory methods is that they hide the

existence of the ByteBuffer subclasses. Note how the class ByteBuffer

acts as a mediator between its clients and its subclasses, ensuring that its

clients are unable to discern anything about how ByteBuffer objects are

created and what classes they belong to.

For a final example of a static factory method, consider the banking

demo. The version 10 BankAccount interface has the static factory method

createSavingsWithDeposit. In this case the purpose of the factory

method is for convenience. It enables a client to create a SavingsAccount

object and perform an initial deposit, using a single method.

Let’s examine how to improve the banking demo by adding additional

static factory methods. Consider for example how the version 10 Bank class

creates bank accounts. Listing 5-19 shows its newAccount method, which

performs the account creation.

Listing 5-19. The Version 10 newAccount Method

public int newAccount(int type, boolean isforeign) {

 int acctnum = nextacct++;

 BankAccount ba;

 if (type == 1)

 ba = new SavingsAccount(acctnum);

 else if (type == 2)

 ba = new RegularChecking(acctnum);

 else

 ba = new InterestChecking(acctnum);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

 return acctnum;

}

Chapter 5 enCapsulating ObjeCt CreatiOn

183

The if-statement in bold is the only part of the entire Bank class

that is aware of the BankAccount subclasses. Everywhere else, the code

manipulates bank accounts transparently, using variables of type

BankAccount. This situation is similar to what occurs with ByteBuffer, and

the solution is also similar: there needs to be a mediator that can handle

the calls to the constructors, thereby shielding Bank from the BankAccount

subclasses.

Version 12 of the demo introduces the interface AccountFactory

for this purpose; its code appears in Listing 5-20. The interface contains

the static factory methods createSavings, createRegularChecking,

createInterestChecking, and createAccount.

Listing 5-20. The Version 12 AccountFactory Interface

public interface AccountFactory {

 static BankAccount createSavings(int acctnum) {

 return new SavingsAccount(acctnum);

 }

 static BankAccount createRegularChecking(int acctnum) {

 return new RegularChecking(acctnum);

 }

 static BankAccount createInterestChecking(int acctnum) {

 return new InterestChecking(acctnum);

 }

 static BankAccount createAccount(int type, int acctnum) {

 BankAccount ba;

 if (type == 1)

 ba = createSavings(acctnum);

 else if (type == 2)

 ba = createRegularChecking(acctnum);

Chapter 5 enCapsulating ObjeCt CreatiOn

184

 else

 ba = createInterestChecking(acctnum);

 return ba;

 }

}

The first three methods hide the subclass constructors. The

createAccount method encapsulates the decision about which account

type has which type number. This decision had previously been made

by Bank (as was shown in Listing 5-19) as well as SavedBankInfo (see

Listing 3-17). By moving the decision to AccountFactory, those classes

can now call createAccount without needing to know anything about

how account types are implemented.

For example, Listing 5-21 shows the version 12 newAccount method

of Bank, modified to call the createAccount method. The SavedBankInfo

class is modified similarly but is not shown here.

Listing 5-21. The Version 12 newAccount Method of Bank

public int newAccount(int type, boolean isforeign) {

 int acctnum = nextacct++;

 BankAccount ba =

 AccountFactory.createAccount(type, acctnum);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

 return acctnum;

}

Recall the static method createSavingsWithDeposit from the

BankAccount interface, which creates savings accounts having a specified

initial balance. This method can now be revised to call a factory method

instead of a constructor. Its code appears in Listing 5-22.

Chapter 5 enCapsulating ObjeCt CreatiOn

185

Listing 5-22. The Version 12 BankAccount Interface

public interface BankAccount extends Comparable<BankAccount> {

 ...

 static BankAccount createSavingsWithDeposit(

 int acctnum, int n) {

 BankAccount ba = AccountFactory.createSavings(acctnum);

 ba.deposit(n);

 return ba;

 }

}

 Factory Objects
The AccountFactory class greatly improves the banking demo, because the

demo now has a single place to hold its knowledge about the BankAccount

subclasses. Of course, AccountFactory is coupled to every BankAccount

subclass, which implies that any changes to the subclasses will require a

modification to AccountFactory—thereby violating the Open/Closed rule.

But at least this violation has been limited to a single, well-known place.

It is possible to improve on this design. The idea is that a static factory

method is essentially a command to create an object. If you have several

related static factory methods (as AccountFactory does) then you can create a

more object-oriented design by using the command pattern from Chapter 4.

Recall that in the command pattern, each command is an object. To

execute a command you first obtain the desired command object and then

call its execute method. Analogously, to execute a factory command you

first obtain the desired factory object and then call its create method. The

following code illustrates how these two steps combine to create a new

BankAccount object from a factory object.

 AccountFactory af = new SavingsFactory();

 BankAccount ba = af.create(123);

Chapter 5 enCapsulating ObjeCt CreatiOn

186

Variable af holds a factory object of type SavingsFactory. Assuming

that the create method of SavingsFactory calls the SavingsAccount

constructor, the variable ba will hold a new SavingsAccount object.

Version 13 of the banking demo takes this approach. It has three

factory classes: SavingsFactory, RegularCheckingFactory, and

InterestCheckingFactory. Each factory class has the method create, which

calls the appropriate class constructor. Listing 5-23 shows the version 13

code for SavingsFactory, whose create method calls the SavingsAccount

constructor. The code for the other two factory classes is similar.

Listing 5-23. The SavingsFactory Class

public class SavingsFactory implements AccountFactory {

 public BankAccount create(int acctnum) {

 return new SavingsAccount(acctnum);

 }

}

The factory classes form a strategy hierarchy with AccountFactory as

its interface. Listing 5-24 shows the version 13 code for AccountFactory. In

addition to the new nonstatic method create, the interface also revises its

static createAccount method to use the strategy classes.

Listing 5-24. The Version 13 AccountFactory Interface

public interface AccountFactory {

 BankAccount create(int acctnum);

 static BankAccount createAccount(int type, int acctnum) {

 AccountFactory af;

 if (type == 1)

 af = new SavingsFactory();

Chapter 5 enCapsulating ObjeCt CreatiOn

187

 else if (type == 2)

 af = new RegularCheckingFactory();

 else

 af = new InterestCheckingFactory();

 return af.create(acctnum);

 }

}

The loss of the static factory method createSavings means that the

method createSavingsWithDeposit in BankAccount needs to be modified

to use a factory object instead. Listing 5-25 gives the revised code.

Listing 5-25. The Version 13 BankAccount Interface

public interface BankAccount extends Comparable<BankAccount> {

 ...

 static BankAccount createSavingsWithDeposit(

 int acctnum, int n) {

 AccountFactory af = new SavingsFactory();

 BankAccount ba = af.create(acctnum);

 ba.deposit(n);

 return ba;

 }

}

Figure 5-1 shows the class diagram for the factory hierarchy and its

connection to the BankAccount hierarchy. Note that there is a dependency

arrow from each factory class to its corresponding BankAccount class.

Chapter 5 enCapsulating ObjeCt CreatiOn

188

 Cached Factory Objects
The code of Listings 5-24 and 5-25 should help solidify your understanding

of how factories work—namely that the creation of an object requires two

steps: creating a factory object, and calling its create method. The code

may also leave you with the question of why anyone would want to do

things this way. What is the advantage of using factory objects?

The answer has to do with the fact that factory objects do not need to be

created at the same time as the objects they create. In fact, it usually makes

sense to create the factory objects early and cache them. Listing 5- 26 revises

Listing 5-24 to perform this caching.

Listing 5-26. Revising AccountFactory to Use Caching

public interface AccountFactory {

 BankAccount create(int acctnum);

 static AccountFactory[] factories = {

 new SavingsFactory(),

Figure 5-1. The AccountFactory hierarchy

Chapter 5 enCapsulating ObjeCt CreatiOn

189

 new RegularCheckingFactory(),

 new InterestCheckingFactory() };

 static BankAccount createAccount(int type, int acctnum) {

 AccountFactory af = factories[type-1];

 return af.create(acctnum);

 }

}

Note the implementation of the createAccount method. It no longer

needs to use an if-statement to choose which type of account to create.

Instead, it can simply index into the precomputed array of factory objects.

This is a big breakthrough in the design of AccountFactory. Not only does

it eliminate the annoying if-statement but it also brings the interface very

close to satisfying the Open/Closed rule. To add a new account factory, you

now only need to create a new factory class and add an entry for that class

into the factories array.

Of course, instead of caching the factory objects manually, it would be

better to implement them as enum constants. This is the approach taken

in version 14 of the banking demo. Listing 5-27 gives the code for the enum

AccountFactories, which creates a constant for each of the three factory

class objects. The constructor has two arguments: a string indicating the

display value of the constant, and a lambda expression giving the code for

the create method.

Listing 5-27. The Version 14 AccountFactories Enum

public enum AccountFactories implements AccountFactory {

 SAVINGS("Savings",

 acctnum -> new SavingsAccount(acctnum)),

 REGULAR_CHECKING("Regular checking",

 acctnum -> new RegularChecking(acctnum)),

 INTEREST_CHECKING("Interest checking",

 acctnum -> new InterestChecking(acctnum));

Chapter 5 enCapsulating ObjeCt CreatiOn

190

 private String name;

 private AccountFactory af;

 private AccountFactories(String name, AccountFactory af) {

 this.name = name;

 this.af = af;

 }

 public BankAccount create(int acctnum) {

 return af.create(acctnum);

 }

 public String toString() {

 return name;

 }

}

Listing 5-28 gives the version 14 code for AccountFactory. As with the

InputCommands enum, the call to AccountFactories.values() enables

AccountFactory to completely satisfy the Open/Closed rule. Now the only

action required to add a new account factory is to create a new constant for

it in AccountFactories.

Listing 5-28. The Version 14 AccountFactory Class

public interface AccountFactory {

 BankAccount create(int acctnum);

 static AccountFactory[] factories =

 AccountFactories.values();

 static BankAccount createAccount(int type, int acctnum) {

 AccountFactory af = factories[type-1];

 return af.create(acctnum);

 }

}

Chapter 5 enCapsulating ObjeCt CreatiOn

191

The version 14 code for the createSavingsWithDeposit method

appears in Listing 5-29.

Listing 5-29. The Version 14 BankAccount Interface

public interface BankAccount extends Comparable<BankAccount> {

 ...

 static BankAccount createSavingsWithDeposit(

 int acctnum, int n) {

 AccountFactory af = AccountFactory.SAVINGS;

 BankAccount ba = af.create(acctnum);

 ba.deposit(n);

 return ba;

 }

}

One final point: You might recall that the constant NEW in the version 13

InputCommands enum asks the user to choose from a list of account types.

How can you ensure that the type numbers presented to the user stay in

synch with the type numbers associated with the AccountFactory array?

The solution is to modify NEW so that it constructs the user message

based on the contents of the AccountFactories.values array. Listing 5-30

shows the relevant code.

Listing 5-30. The Version 14 InputCommands Enum

public enum InputCommands implements InputCommand {

 ...

NEW("new", (sc, bank, current)->{

 printMessage();

 int type = sc.nextInt();

 current = bank.newAccount(type);

 System.out.println("Your new account number is "

 + current);

Chapter 5 enCapsulating ObjeCt CreatiOn

192

 return current;

 }),

...

 private static String message;

 static {

 AccountFactory[] factories = AccountFactories.values();

 message = "Enter Account Type (";

 for (int i=0; i<factories.length-1; i++)

 message += (i+1) + "=" + factories[i] + ", ";

 message += factories.length + "="

 + factories[factories.length-1] +")";

 }

 private static void printMessage() {

 System.out.print(message);

 }

}

The construction of the message string is in a static block to ensure

that it only occurs once. The code iterates through the constants in the

AccountFactories enum. For each constant, it adds the index of that constant

(plus one) to the message, followed by the toString value of the constant.

 The Factory Pattern
The class diagram of Figure 5-1 illustrates a typical use of factory classes,

namely that the classes in the factory hierarchy create objects belonging

to a second, parallel hierarchy called the result hierarchy. Each class in

the factory hierarchy has a corresponding class in the result hierarchy. In

Figure 5-1 the parallel hierarchies are AccountFactory and BankAccount.

Chapter 5 enCapsulating ObjeCt CreatiOn

193

This design is sufficiently common that is has a name: the factory

pattern. Figure 5-2 shows the general form of the factory pattern with its

parallel hierarchies.

Figure 5-2. The factory pattern

Typically, the need for the factory pattern arises when you have a result

hierarchy and you want clients to be able to create result objects without

knowing the names of each result subclass. The factory pattern says that you

should create a parallel factory hierarchy so that your clients can create a

result object by calling the create method of the appropriate factory object.

For an example, consider the List interface. The Java library has

several classes that implement List, with each class having a different

purpose. For example, Vector is thread-safe; CopyOnWriteArrayList

enables safe concurrent access; ArrayList is random-access; and

LinkedList supports fast inserts and deletes. Suppose that you want your

clients to be able to create List objects based on these characteristics, but

you don’t want them to choose the classes themselves. You might have

several reasons for this decision: perhaps you don’t want your clients to

have to know the name of each class and its characteristics, or you want

clients to choose from only these four classes, or you want the flexibility to

change the class associated with a given characteristic as time goes on.

Chapter 5 enCapsulating ObjeCt CreatiOn

194

Your solution is to use the factory pattern. You create an interface

ListFactory, whose factory classes are ThreadSafeFactory,

ConcurrentAccessFactory, RandomAccessFactory, and

FastUpdateFactory. Each factory creates an object from its associated

result class. Clients can use these factory objects to create a List object

having a particular characteristic but without knowing its actual class. The

class diagram appears in Figure 5-3; note its similarity to Figure 5-2.

Figure 5-3. The ListFactory strategy hierarchy

Chapter 5 enCapsulating ObjeCt CreatiOn

195

 Factories for Customized Objects
The factory pattern assumes that the classes in a factory hierarchy create

objects from different result classes. Another way to use a factory hierarchy

is to have the factory classes create objects from the same result class.

In this case, the purpose of each factory is to customize its result object

in a particular way. This section examines three examples of this design

technique.

For the first example, consider version 11 of the banking demo

(i.e., the aborted version from the end of Chapter 4). In that version,

AbstractBankAccount has no subclasses; all bank accounts are instances

of AbstractBankAccount. The different types of account are distinguished

by a TypeStrategy object passed to the AbstractBankAccount constructor.

How would you use factory classes here?

Even though there is no AbstractBankAccount hierarchy, it would

still make sense to have an AccountFactory hierarchy. Each factory

object would choose the appropriate TypeStrategy object and pass it

to the AbstractBankAccount constructor. Listing 5-31 shows what the

SavingsFactory class might look like, with differences from the version 11

code in bold. Each factory class creates an AbstractBankAccount object,

customized with a different type strategy.

Listing 5-31. An Alternative SavingsFactory Class

public class SavingsFactory implements AccountFactory {

 public BankAccount create(int acctnum) {

 TypeStrategy ts = new SavingsAccount();

 return new AbstractBankAccount(acctnum, ts);

 }

}

Chapter 5 enCapsulating ObjeCt CreatiOn

196

For a second example of customization, return to version 14 of the

banking demo. Suppose that the bank decides that savings accounts

opened by new customers will have an initial balance of $10. A reasonable

way to implement this feature is to create a “new customer” factory

by adding NEW_CUSTOMER to the AccountFactories enum as its fourth

constant. See Listing 5-32. Note that the “new customer” factory does not

create “new customer” accounts. Instead, it creates savings accounts that

have been customized to have a non-zero initial balance.

Listing 5-32. Adding Promotional Accounts to AccountFactories

public enum AccountFactories implements AccountFactory {

 SAVINGS("Savings",

 acctnum -> new SavingsAccount(acctnum)),

 REGULAR_CHECKING("Regular checking",

 acctnum -> new RegularChecking(acctnum)),

 INTEREST_CHECKING("Interest checking",

 acctnum -> new InterestChecking(acctnum)),

 NEW_CUSTOMER("New Customer Savings",

 acctnum -> {

 BankAccount result = new SavingsAccount(acctnum);

 result.deposit(1000); // $10 for free!

 return result; });

 ...

}

The Java library interface ThreadFactory provides a third example

of how factories can be used for object customization. This interface is

defined as follows:

 interface ThreadFactory {

 Thread newThread(Runnable r);

 }

Chapter 5 enCapsulating ObjeCt CreatiOn

197

The newThread method returns a customized Thread object. Each

class that implements ThreadFactory will have its own way to customize

the threads returned by newThread. As an example, Listing 5-33 defines

the class PriorityThreadFactory, which generates new threads having a

specified priority.

Listing 5-33. The Class PriorityThreadFactory

class PriorityThreadFactory implements ThreadFactory {

 private int priority;

 public PriorityThreadFactory(int p) {

 priority = p;

 }

 public Thread newThread(Runnable r) {

 Thread t = new Thread(r);

 t.setPriority(priority);

 return t;

 }

 }

Listing 5-34 illustrates the use of PriorityThreadFactory. The code

creates two ThreadFactory objects: one that creates high-priority Thread

objects and one that creates low-priority Thread objects. It then creates

two threads from each factory and runs them.

Listing 5-34. Using the PriorityThreadFactory Class

ThreadFactory important = new PriorityThreadFactory(9);

ThreadFactory menial = new PriorityThreadFactory(2);

Runnable r1 = ...; Runnable r2 = ...;

Runnable r3 = ...; Runnable r4 = ...;

Chapter 5 enCapsulating ObjeCt CreatiOn

198

Thread t1 = important.newThread(r1);

Thread t2 = important.newThread(r2);

Thread t3 = menial.newThread(r3);

Thread t4 = menial.newThread(r4);

t1.start(); t2.start(); t3.start(); t4.start();

Listing 5-34 demonstrates another benefit of using a factory class

to customize objects. Given a factory object, a client can call its create

method multiple times and the resulting objects will all be customized

the same. (In Listing 5-34 the objects will all have the same priority. In

Listing 5-31 they will all have the same account type.) You can think of

each factory object as a cookie cutter, with each factory class producing

a different shape of cookie. Moreover, factory objects can be passed from

one method to another, so that the user of a factory object may have no

idea which shape of cookie it creates.

 Summary
Class constructors are problematic. When a class calls the constructor of

another class the two classes become coupled. This coupling reduces the

ability to write abstract and transparent code. This chapter examined two

strategies for addressing this issue: caching and factories.

Caching reuses objects, thereby reducing the need for constructors.

Immutable objects are good candidates for caching. If a class only needs

a fixed number of immutable objects, then it can create and cache those

objects when it is loaded. Such classes are called singletons. The Java enum

syntax is the preferred way to define singleton classes.

A factory is a class that encapsulates constructor usage. When a class

needs to create an object, it calls a method from the appropriate factory

class. Factory classes can be static or nonstatic.

Chapter 5 enCapsulating ObjeCt CreatiOn

199

A static factory class typically consists of multiple static methods, each

of which calls a different constructor. A static factory method hides the

constructor it calls, as well as the class of the return value. An example

is the static method ByteBuffer.allocate, which hides its call to the

HeapByteBuffer constructor. A caller of the allocate method is not aware

of the ByteBuffer subclass that the return value belongs to, or even that

ByteBuffer has subclasses.

Nonstatic factory classes are organized into strategy hierarchies. Each

class in the hierarchy implements a create method, which embodies a

particular strategy for creating result objects. When all the classes in a

factory hierarchy create objects belonging to the same result hierarchy

then the design is called the factory pattern. When multiple factory classes

create objects belonging to the same class then the factory classes are said

to provide customizations of their result objects.

Chapter 5 enCapsulating ObjeCt CreatiOn

201© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_6

CHAPTER 6

Iterables and Iteration
This chapter addresses the following question: suppose that a variable

holds a collection of objects; what code should you write to examine its

elements? Technically speaking, this question is asking about iterables and

iteration. A collection is an iterable, and the mechanism for examining

its elements is iteration. The question can be rephrased as “How should I

iterate through an iterable?”

Java supports multiple ways to iterate through an iterable, which can

be divided into two categories: external iteration, in which you write a loop

that examines each element of the iterable; and internal iteration, in which

you call a method to perform the loop for you. This chapter covers the

programming issues related to both uses of iteration, as well as the design

issues of how to write classes that support iteration.

 Iterators
Suppose that you have a variable L that holds a collection of objects. What

code should you write to print its elements? One possibility is to write the

following loop:

 for (int i=0; i<L.size(); i++)

 System.out.println(L.get(i));

202

There are two reasons why this code is not very good. First, it

violates the rule of Abstraction because it uses the method get, which

is only supported by collections that implement List. Second, it will

execute much less efficiently in some List implementations than

in others. In particular, the get method for ArrayList performs a constant-

time array access whereas the get method for LinkedList searches the

chain of nodes. Consequently, the loop will execute in linear time if L

implements ArrayList but in quadratic time if L implements LinkedList.

The way to address both issues is to provide each collection class with

methods that are specifically dedicated to iteration. In Java these methods

are called hasNext and next. The method hasNext returns a boolean

indicating whether an unexamined element remains. The method next

returns one of the unexamined elements. These methods solve the first

issue because they can be implemented for any kind of collection, not

just lists; they solve the second issue because each class can have its own

implementation of these methods, tuned to be as efficient as possible.

Where should these methods live? Recall from Figure 2-3 that the

root of the collection hierarchy is the interface Iterable. All collections

are iterables. These methods should be associated with Iterable, but

how? The obvious design is to add the methods to the Iterable interface,

meaning that each collection object would have its own hasNext and next

methods. Under this design, the code to print the contents of a list L would

look like this:

 // Warning: This code is not legal Java.

 while (L.hasNext())

 System.out.println(L.next());

This design is unsatisfactory because it can allow incorrect behavior

to occur. Listing 6-1 provides an example. The noDuplicates method is

intended to return true if its argument list has no duplicates. The code

calls the helper method isUnique, which should return true if a specified

Chapter 6 Iterables and IteratIon

203

string appears exactly once in the list. The idea is noDuplicates iterates

through each string in L, calling isUnique for each one and returning false

if isUnique ever returns false. The method isUnique also iterates through

L, returning true if it finds exactly one occurrence of string s.

Listing 6-1. A Terrible Way to Test a List for Duplicates

// Warning: This code is not legal Java.

// And even if it were, it wouldn’t work.

public boolean noDuplicates(List<String> L) {

 while (L.hasNext()) {

 String s = L.next();

 if (!isUnique(L, s))

 return false;

 }

 return true;

}

private boolean isUnique(List<String> L, String s) {

 int count = 0;

 while (L.hasNext())

 if (L.next().equals(s))

 count++;

 return count == 1;

}

Incorrect behavior occurs because both methods iterate through L

concurrently. The first time through the noDuplicates loop, the code

examines the first element of L and calls isUnique. That method will

iterate through L (starting with the second element) and return back

to noDuplicates after having read all of L. Therefore, the second time

through the noDuplicates loop the call to L.hasNext will immediately

return false, and noDuplicates will exit prematurely.

Chapter 6 Iterables and IteratIon

204

The only way for this algorithm to work correctly is if both methods can

iterate through L independently. That is, the functionality to iterate though

a list must be separate from the list itself. Java takes this approach, moving

the methods hasNext and next to a separate interface called Iterator.

The Iterable interface (and thus every collection) has a method

iterator; each call to iterator returns a new Iterator object. For

example, the following code prints the elements of L:

 Iterator<String> iter = L.iterator();

 while (iter.hasNext())

 System.out.println(iter.next());

It may seem awkward to create an Iterator object each time you need

to iterate through a collection, but that is how Java separates the iteration

from the collection. When a method creates an Iterator object for a

collection, the method is guaranteed that its iteration will be independent

of any other iteration of the collection. (And if some other method

happens to modify the iterable while your iteration is still in progress, Java

will throw a ConcurrentModificationException to inform you that your

iteration has become invalid.)

Listing 6-2 gives the correct code for NoDuplicates. Note that each

method has its own iterator. In fact, isUnique creates a new iterator for L

each time it is called.

Listing 6-2. A Correct Way to Check a List for Duplicates

public class NoDuplicates {

 public boolean noDuplicates(List<String> L) {

 Iterator<String> iter = L.iterator();

 while (iter.hasNext()) {

 String s = iter.next();

 if (!isUnique(L, s))

 return false;

 }

Chapter 6 Iterables and IteratIon

205

 return true;

 }

 private boolean isUnique(List<String> L, String s) {

 int count = 0;

 Iterator<String> iter = L.iterator();

 while (iter.hasNext())

 if (iter.next().equals(s))

 count++;

 return count == 1;

 }

}

 Writing an Iterator Class
This section explores some classes that implement Iterator. An iterator

class needs to implement the hasNext and next methods. It need not be

associated with an iterable. Listing 6-3 gives a very simple example of a

“stand alone” iterator class named RandomIterator. The intent of this class

is to generate arbitrarily many random numbers. Its next method returns

another random integer and its hasNext method always returns true.

Listing 6-3. The RandomIterator Class

public class RandomIterator implements Iterator<Integer> {

 private Random rand = new Random();

 public boolean hasNext() {

 return true;

 }

 public Integer next() {

Chapter 6 Iterables and IteratIon

206

 return rand.nextInt();

 }

}

The code in Listing 6-4 tests RandomIterator. It generates random

integers, savings them in a hash set and stopping when a duplicate occurs.

It then prints the number of nonduplicate integers that were generated.

Listing 6-4. Using the RandomIterator Class

Iterator<Integer> iter = new RandomIterator();

Set<Integer> nums = new HashSet<>();

boolean dupNotFound = true;

while (dupNotFound)

 dupNotFound = nums.add(iter.next());

System.out.println(nums.size());

Listing 6-5 gives another example of an iterator class, named

PrimeIterator. This class generates the first N prime numbers, where N is

specified in the constructor. The code for next calculates the value of the next

prime and keeps track of how many primes have been generated. The code

for hasNext returns false as soon as the indicated number of primes has been

generated. The code of Listing 6-6 tests this class by printing the first 20 primes.

Listing 6-5. The PrimeIterator Class

public class PrimeIterator implements Iterator<Integer> {

 private int current = 1;

 private int howmany;

 private int count = 0;

 public PrimeIterator(int howmany) {

 this.howmany = howmany;

 }

Chapter 6 Iterables and IteratIon

207

 public boolean hasNext() {

 return count < howmany;

 }

 public Integer next() {

 current++;

 while (!isPrime(current)) // Loop until

 current++; // you find a prime.

 count++;

 return current;

 }

 private boolean isPrime(int n) {

 for (int i=2; i*i<=n; i++)

 if (n%i == 0)

 return false;

 return true;

 }

}

Listing 6-6. Printing the First 20 Primes

Iterator<Integer> iter = new PrimeIterator(20);

while (iter.hasNext()) {

 int p = iter.next();

 System.out.println(p);

}

Now suppose that you want to create a class PrimeCollection whose

objects denote a collection of the first N primes for some N. The easiest way

to create a class that implements Collection is to extend the abstract class

AbstractCollection. To do so you need to implement its abstract methods

size and iterator. The code for PrimeCollection appears in Listing 6-7. It

uses the PrimeIterator class to implement the iterator method.

Chapter 6 Iterables and IteratIon

208

Listing 6-7. The PrimeCollection Class

public class PrimeCollection

 extends AbstractCollection<Integer> {

 private int size;

 public PrimeCollection(int size) {

 this.size = size;

 }

 public int size() {

 return size;

 }

 public Iterator<Integer> iterator() {

 return new PrimeIterator(size);

 }

}

A PrimeCollection object has a very interesting feature—its collection

of primes is not stored within the object, nor are they stored within its

iterator. Instead, the primes are generated by the iterator, on demand.

Some people find it difficult to grasp the idea that a Collection object

doesn’t need to actually hold a collection. Instead, it only needs to act as if

it does, by implementing the methods of the interface. This is the beauty of

encapsulation.

The easy way to create a class that implements List is to extend

AbstractList and implement its two abstract methods size and get. The

code for AbstractList implements the remaining methods of the List

interface. The class RangeList from Listing 3-11 was such an example.

Chapter 6 Iterables and IteratIon

209

The iterator method is one of the methods implemented by

AbstractList. Listing 6-8 gives a simplified implementation of the

method. Its code creates and returns a new AbstractListIterator object.

The object holds a reference to the list and its current position in the list.

Its next method calls the list’s get method to retrieve the element from

the list at the current position, and increments the current position. Its

hasNext method calls the list’s size method to determine when there are

no more elements.

Listing 6-8. Simplified Code for the AbstractList and

AbstractListIterator Classes

public abstract class AbstractList<T> {

 public abstract T get(int n);

 public abstract int size();

 public Iterator<T> iterator() {

 return new AbstractListIterator<T>(this);

 }

 ... // code for the other List methods

}

class AbstractListIterator<T> implements Iterator<T> {

 private int current = 0;

 private AbstractList<T> list;

 public AbstractListIterator(AbstractList<T> list) {

 this.list = list;

 }

 public boolean hasNext() {

 return current < list.size();

 }

Chapter 6 Iterables and IteratIon

210

 public T next() {

 T val = list.get(current);

 current++;

 return val;

 }

}

Note that this implementation of iterator uses the get method,

and therefore will exhibit the same inefficient behavior as the code at the

very beginning of this chapter. As a result, whenever you create a class by

extending AbstractList, you must decide if it makes sense to overwrite

the default implementation of iterator with a more efficient one.

 The Iterator Pattern
Figure 6-1 depicts the relationship between the classes and interfaces

mentioned in the previous section. The interface Iterable, its two sub-

interfaces, and three implementing classes constitute the shaded hierarchy

on the left side of the diagram; Iterator and its three implementing

classes form the hierarchy on the right side.

Chapter 6 Iterables and IteratIon

211

This separation between the Iterable and Iterator hierarchies is

known as the iterator pattern. The iterator pattern asserts that every class

that implements Iterable should be coupled to a corresponding class that

implements Iterator. The Java collection class library was specifically

designed to satisfy the iterator pattern.

The parallel hierarchies of the iterator pattern bear a strong

resemblance to the parallel hierarchies of the factory pattern, as shown

in Figure 5-2. This resemblance is not coincidental. An iterable can be

thought of as an “iterator factory.” Given an Iterable object L, each call

to L.iterator() creates a new Iterator object customized with the

elements of L.

Figure 6-1. Examples of the iterator pattern

Chapter 6 Iterables and IteratIon

212

 Designing Iterable Classes
An iterable class need not be a collection; it just needs to be a class for

which the iterator method is meaningful. For an example, consider the

banking demo. Suppose that you want to write programs to analyze the

accounts held by the Bank class. These programs may involve tasks such

as finding the distribution of account balances, the number of accounts

of a given type, and so on. Here are three design options you could

choose from.

Your first option is to modify Bank so that it has a new method for each

analytical task. This option makes it easy to write the analysis programs,

since the Bank class will be doing all the work. The problem is that you will

have to modify the Bank class to handle each new requirement, violating

the Open/Closed rule. The modifications would also cause Bank to be

bloated with specialized methods, violating the Single Responsibility rule.

Your second design option is to realize that Bank already has a method

that returns the information about its accounts, namely toString. Each of

your analysis programs can call toString, extract the desired information

from the returned string, and process it as needed. For example, suppose

that the bank’s toString method returns the string shown in Listing 6-9.

Each line except the first describes an account. To find the balance of

each account, the analysis program can look for the number following

“balance=” on each line. To find the foreign accounts, it can look for the

string “is foreign”. And so on.

Listing 6-9. Output of the Bank’s toString Method

The bank has 3 accounts.

 Savings account 0: balance=3333, is foreign, fee=500

 Regular checking account 1: balance=6666, is domestic, fee=0

 Interest checking account 2: balance=9999, is domestic, fee=0

Chapter 6 Iterables and IteratIon

213

This technique is known as screen scraping. The term refers to the case

when a program extracts information from the HTML contents of a web

page. Screen scraping is an option of last resort. It is difficult to perform

and will break when the format of the toString output changes.

The third and only good option is to modify the Bank class to have

one (or more) general-purpose methods that clients can use to extract

information. The iterator method is a good choice here. It allows clients

to iterate through the desired accounts without breaking the encapsulated

implementation of the account information. (For example, the clients

won’t be able to discover that the accounts are stored in a map.)

Version 15 of the banking demo makes this modification. The Bank

class now implements Iterable<BankAccount>, which means that it must

supply an iterator method that returns BankAccount objects. Listing 6-10

gives the relevant changes to Bank.

Listing 6-10. The Version 15 Bank Class

public class Bank implements Iterable<BankAccount> {

 ...

 public Iterator<BankAccount> iterator() {

 return accounts.values().iterator();

 }

}

Version 15 of the banking demo also has two new classes,

IteratorAccountStats and StreamAccountStats, which are clients

of Bank. The methods in these classes support two prototypical tasks:

printing and finding the maximum balance of some selected accounts.

These classes contain multiple methods for the two tasks, in order to

illustrate different programming techniques. The remainder of this chapter

examines the methods in these classes and the techniques behind them.

Chapter 6 Iterables and IteratIon

214

 External Iteration
Iterators are the fundamental way to examine the elements of an

iterable. Listing 6-11 shows the basic idiom for traversing an iterable.

The examples in the previous sections of this chapter all used this

idiom.

Listing 6-11. The Basic Idiom for Using Iterators

Iterable<E> c = ...

Iterator<E> iter = c.iterator();

while (iter.hasNext()) {

 E e = iter.next();

 ... // process e

}

Listing 6-12 gives the code for the methods printAccounts1 and

maxBalance1 from the IteratorAccountStats class. Both methods use

the basic idiom to iterate through the iterable class Bank. The method

printAccounts1 prints all bank accounts and maxBalance1 returns the

maximum balance of the accounts.

Listing 6-12. The printAccounts1 and maxBalance1 Methods

public void printAccounts1() {

 Iterator<BankAccount> iter = bank.iterator();

 while (iter.hasNext()) {

 BankAccount ba = iter.next();

 System.out.println(ba);

 }

}

Chapter 6 Iterables and IteratIon

215

public int maxBalance1() {

 Iterator<BankAccount> iter = bank.iterator();

 int max = 0;

 while (iter.hasNext()) {

 BankAccount ba = iter.next();

 int balance = ba.getBalance();

 if (balance > max)

 max = balance;

 }

 return max;

}

This idiom is so common that Java has a syntax specifically designed to

simplify it. This syntax is the for-each loop. For example, the following loop

is equivalent to the code of Listing 6-11.

 for (E e : c) {

 ... // process e

 }

The variable c in the above for-each loop can be any Iterable; it need

not be a collection. Listing 6-13 gives the code for methods printAccounts2

and maxBalance2 of IteratorAccountStats. These methods revise their

earlier versions, replacing the explicit iterator methods with a for-each loop.

Note that the code is significantly easier to read and understand, primarily

because it no longer mentions iterators explicitly.

Listing 6-13. The Methods printAccounts2 and maxBalance2

 public void printAccounts2() {

 for (BankAccount ba : bank)

 System.out.println(ba);

 }

 public int maxBalance2() {

 int max = 0;

Chapter 6 Iterables and IteratIon

216

 for (BankAccount ba : bank) {

 int balance = ba.getBalance();

 if (balance > max)

 max = balance;

 }

 return max;

 }

Although the for-each loop simplifies the use of iterators, it is not

always applicable. The issue is that a for-each loop hides its calls to the

iterator’s next method, so there is no way to control when that method

will be called. Here are two situations where such control is needed.

The first situation is finding the maximum element in an iterable.

Listing 6-14 gives code for the method findMax, which rewrites the

method from Listing 2-9 to use iterators.

Listing 6-14. Using an Iterator to Find the Maximum Element

public BankAccount findMax(Iterable<BankAccount> bank) {

 Iterator<BankAccount> iter = bank.iterator();

 BankAccount max = iter.next();

 while (iter.hasNext()) {

 BankAccount ba = iter.next();

 if (ba.compareTo(max) > 0)

 max = ba;

 }

 return max;

}

This code uses the first element of the iterator to initialize the variable

max, and then loops through the remaining elements. Such a strategy is not

possible with a for-each loop. The solution shown in Listing 6-15 initializes

max to null. Unfortunately, it must check max for null each time through the

loop, which is unsatisfactory.

Chapter 6 Iterables and IteratIon

217

Listing 6-15. Using a for-each Loop to Find the Maximum Element

public BankAccount findMax(Iterable<BankAccount> bank) {

 BankAccount max = null;

 for (BankAccount ba : bank)

 if (max == null || ba.compareTo(max) > 0)

 max = ba;

 return max;

}

The second situation is when you want to interleave the elements of

two collections. Listing 6-16 shows how to perform this task using explicit

iterators. I know of no good way to rewrite this code using for-each loops.

Listing 6-16. Interleaving Access to Two Collections

Iterator<String> iter1 = c1.iterator();

Iterator<String> iter2 = c2.iterator();

Iterator<String> current = iter1;

while (current.hasNext()) {

 String s = current.next();

 // process s

 current = (current == iter1) ? iter2 : iter1;

}

 Internal Iteration
Each of the examples in the previous section used a loop to traverse its

iterator. This looping was performed in two different ways: by calling the

iterator methods explicitly, or by using a for-each loop. Both ways are

examples of external iteration, because in each case the client writes the loop.

It is also possible to traverse the elements of an iterable object

without writing a loop. This technique is called internal iteration.

Chapter 6 Iterables and IteratIon

218

For example, the method addInterest in Bank performs internal iteration

for the client, invisibly looping through the bank’s accounts.

The addInterest method is an internal iterator that is specialized to

perform a single task. The Java Iterable interface has the default method

forEach, which can be used for general-purpose internal iteration. The

argument to forEach is an object that implements the Consumer interface.

This interface, which also is part of the Java library, has a single void

method accept and is defined as follows:

 interface Consumer<T> {

 void accept(T t);

 }

The purpose of the accept method is to perform an action to its

argument object. Listing 6-17 gives an example of the creation and use

of a Consumer object. Its first statement creates the Consumer object and

saves a reference to it in the variable action. The Consumer object’s

accept method prints its BankAccount argument. The second statement

obtains a reference to bank account 123, and saves in the variable x.

The third statement performs the action on the specified account. In other

words, the statement prints account 123.

Listing 6-17. Creating and Using a Consumer Object

Consumer<BankAccount> action = ba -> System.out.println(ba);

BankAccount x = bank.getAccount(123);

action.accept(x);

An iterable’s forEach method performs an action on every object of

the iterable’s iterator; this action is defined by the Consumer object that

is the argument to forEach. Listing 6-18 gives the code for the method

printAccounts3, which uses forEach to print every element generated by

the bank’s iterator.

Chapter 6 Iterables and IteratIon

219

Listing 6-18. The Method printAccounts3

public void printAccounts3() {

 Consumer<BankAccount> action = ba->System.out.println(ba);

 bank.forEach(action);

}

The interesting feature of listing 6-18 is that there is no explicit loop.

Instead, the looping is performed internally within the forEach method.

Listing 6-19 gives a simplified version of the Iterable interface, showing

how the forEach method might perform its loop.

Listing 6-19. A Simplified Iterable Interface

public interface Iterable<T> {

 Iterator<T> iterator();

 default void forEach(Consumer<T> action) {

 Iterator<T> iter = iterator();

 while (iter.hasNext())

 action.apply(iter.next());

 }

}

 The Visitor Pattern
The Consumer object that is passed to the forEach method is called a

visitor. As the forEach method encounters each element of the iterable,

the Consumer object “visits” that element. This visitation could involve

printing the element (as in printAccounts3), modifying it, or any other

action that can be expressed as a Consumer.

The beauty of the forEach method is that it separates the code for

visiting an element (the Consumer object) from the code to iterate through

the elements. This separation is called the visitor pattern.

Chapter 6 Iterables and IteratIon

220

The demo class IteratorAccountStats has a method visit1 that

generalizes printAccounts3 so that its argument can be any visitor.

Its code appears in Listing 6-20. The statements in Listing 6-21 illustrate

its use.

Listing 6-20. The Method visit1

public void visit1(Consumer<BankAccount> action) {

 bank.forEach(action);

}

Listing 6-21. Uses of the visit1 Method

// Print all accounts

visit1(ba -> System.out.println(ba));

// Add interest to all accounts

visit1(ba -> ba.addInterest());

// Print the balance of all domestic accounts

visit1(ba -> { if (!ba.isForeign())

 System.out.println(ba.getBalance()); });

The problem with the visit1 method is that it only applies to void

actions—that is, actions that do not return a value. For example, it is

not possible to use visit1 to calculate the maximum account balance.

To achieve this functionality, the definition of a visitor must also have a

method that calculates a return value. Java does not have such a visitor

interface in its library, but it is easy enough to create one. See Listing 6-22.

Listing 6-22. The Visitor Interface

public interface Visitor<T,R> extends Consumer<T> {

 R result();

}

Chapter 6 Iterables and IteratIon

221

This interface defines a visitor to be a consumer with the additional

method result. A visitor has two generic types: Type T is the type of the

elements it visits, and type R is the type of the result value.

Listing 6-23 gives code for the visitor class MaxBalanceVisitor, whose

objects calculate the maximum balance of the accounts they visit. The

variable max holds the maximum balance encountered so far. The accept

method examines the balance of the currently-visited account and updates

max if appropriate. The result method returns the final value of max.

Listing 6-23. The Class MaxBalanceVisitor

public class MaxBalanceVisitor

 implements Visitor<BankAccount,Integer> {

 private int max = 0;

 public void accept(BankAccount ba) {

 int bal = ba.getBalance();

 if (bal > max)

 max = bal;

 }

 public Integer result() {

 return max;

 }

}

IteratorAccountStats contains two methods that use a visitor to find

the maximum bank account balance. Their code appears in Listing 6-24.

The method maxBalance3a creates a MaxBalanceVisitor object. The

method maxBalance3b defines the equivalent visitor object inline. Since

the Visitor interface has two nondefault methods, maxBalance3b cannot

define its visitor using a lambda expression; instead, it must use an

anonymous inner class. Note that a Visitor object can be legitimately

passed to the forEach method because Visitor is a subtype of Consumer.

Chapter 6 Iterables and IteratIon

222

Listing 6-24. The maxBalance3a and maxBalance3b Methods

public int maxBalance3a() {

 Visitor<BankAccount,Integer> v = new MaxBalanceVisitor();

 bank.forEach(v);

 return v.result();

}

public int maxBalance3b() {

 Visitor<BankAccount,Integer> v =

 new Visitor<BankAccount,Integer>() {

 private int max = 0;

 public void accept(BankAccount ba) {

 int bal = ba.getBalance();

 if (bal > max)

 max = bal;

 }

 public Integer result() {

 return max;

 }

 };

 bank.forEach(v);

 return v.result();

}

Listing 6-25 gives the code for the method visit2, which generalizes

visit1 so that its argument is a Visitor object instead of a Consumer

object. Listing 6-26 gives the code for the method maxBalance3c, which

uses visit2 to find the maximum account balance.

Chapter 6 Iterables and IteratIon

223

Listing 6-25. The visit2 Method

public <R> R visit2(Visitor<BankAccount, R> action) {
 bank.forEach(action);
 return action.result();
}

Listing 6-26. The maxBalance3c Method

public int maxBalance3c() {
 return visit2(new MaxBalanceVisitor());
}

 Predicates
The previous section presented several methods that traversed the bank’s

iterator. Each method visited all the accounts, printing them or finding

their maximum balance.

Suppose now that you want to write code to visit only some of the

accounts; for example, suppose you want to print the domestic accounts.

It might be an unwelcome surprise to discover that none of these methods

will be of any use. Instead, you will need to write a new method, such as

the method shown in Listing 6-27.

Listing 6-27. Printing the Domestic Accounts

public void printDomesticAccounts() {
 for (BankAccount ba : bank)
 if (!ba.isForeign())
 System.out.println(ba);
}

Note that this method contains most of the same code as

printAccounts2, in violation of the Don’t Repeat Yourself rule. Moreover,

you will need to write a new method whenever you are interested in

another subset of the accounts. This situation is unacceptable.

Chapter 6 Iterables and IteratIon

224

The solution is to rewrite the printAccounts and maxBalance

methods to have an argument that specifies the desired subset of

accounts. The Java library has the interface Predicate for this purpose.

It has a method test, whose return value indicates whether the specified

object satisfies the predicate. The Predicate interface is defined as

follows:

 interface Predicate<T> {

 boolean test(T t);

 }

Since the interface is functional (that is, it has a single method),

classes that implement Predicate can be defined by lambda expressions.

For example, consider Listing 6-28. Its first statement creates a predicate

that specifies accounts having a balance greater than $100. Its second

statement obtains a reference to account 123. Its third statement uses the

predicate to determine if the balance of that account is greater than $100,

and prints it if it does.

Listing 6-28. Creating and Using a Predicate

Predicate<BankAccount> pred = ba -> ba.getBalance() > 10000;

BankAccount x = bank.getAccount(123);

if (pred.test(x))

 System.out.println(x);

Listing 6-29 gives code for the methods printAccounts4 and

maxBalance4 of InteratorAccountStats. These methods take an arbitrary

predicate as their argument and use that predicate to restrict the bank

accounts they visit.

Chapter 6 Iterables and IteratIon

225

Listing 6-29. The printAccounts4 and maxBalance4 Methods

public void printAccounts4(Predicate<BankAccount> pred) {

 for (BankAccount ba : bank)

 if (pred.test(ba))

 System.out.println(ba);

}

public int maxBalance4(Predicate<BankAccount> pred) {

 int max = 0;

 for (BankAccount ba : bank) {

 if (pred.test(ba)) {

 int balance = ba.getBalance();

 if (balance > max)

 max = balance;

 }

 }

 return max;

}

Predicates can also be embedded into the visitor pattern. Method

printAccounts5 creates a Consumer object that visits each account. If the

account satisfies the predicate then it prints the account. See Listing 6-30.

Listing 6-30. The printAccounts5 Method

public void printAccounts5(Predicate<BankAccount> pred) {

 Consumer<BankAccount> action =

 ba -> { if (pred.test(ba))

 System.out.println(ba);

 };

 bank.forEach(action);

}

Chapter 6 Iterables and IteratIon

226

The statements in Listing 6-31 illustrate three uses of printAccounts5.

They print the accounts having a balance greater than $100, the domestic

accounts, and all accounts.

Listing 6-31. Using the printAccounts5 Method

Predicate<BankAccount> p = ba -> ba.getBalance() > 10000;

printAccounts5(p);

printAccounts5(ba->!ba.isForeign());

printAccounts5(ba->true);

Listing 6-32 gives code for the method maxBalance5, which creates a

Consumer object that incorporates both its argument predicate and its visitor.

Listing 6-32. The maxBalance5 Method

public int maxBalance5(Predicate<BankAccount> pred) {

 Visitor<BankAccount,Integer> r = new MaxBalanceVisitor();

 Consumer<BankAccount> action =

 ba -> {if (pred.test(ba))

 r.accept(ba);};

 bank.forEach(action);

 return r.result();

}

The following statement shows how to use maxBalance5 to return the

maximum balance of the domestic accounts.

 int max = maxBalance5(ba->!ba.isForeign());

This ability to combine a predicate with a consumer can be

generalized. The method visit3 takes two arguments: a predicate and a

consumer. The arguments to method visit4 are a predicate and a visitor.

Each method visits those elements that satisfy the predicate. The code for

both methods appears in Listing 6-33.

Chapter 6 Iterables and IteratIon

227

Listing 6-33. The visit3 and visit4 Methods

public void visit3(Predicate<BankAccount> pred,

 Consumer<BankAccount> action) {

 bank.forEach(ba -> {if (pred.test(ba))

 action.accept(ba);});

}

public <R> R visit4(Predicate<BankAccount> pred,

 Visitor<BankAccount, R> action) {

 bank.forEach(ba -> {if (pred.test(ba))

 action.accept(ba);});

 return action.result();

}

The code in Listing 6-34 illustrates the use of visit3 and visit4. The

first statement prints the balance of all domestic accounts whose balance

is over $50. The second statement assigns the maximum balance of the

domestic accounts to variable max.

Listing 6-34. Using the visit3 and visit4 Methods

 visit3(ba->(!ba.isForeign() && ba.getBalance()>5000),

 ba->System.out.println(ba));

 int max = visit4(ba->!ba.isForeign(),

 new MaxBalanceVisitor());

 Collection Streams
This section examines the Stream interface from the Java library. A Stream

object is similar to an iterator, in that its methods allow you to iterate

through a group of elements. The difference is that the Stream provides

additional methods that simplify the use of internal iteration.

Chapter 6 Iterables and IteratIon

228

The code for Stream and six of its methods appears in Listing 6-35.

The iterator method converts the stream into an iterator, so that clients

can use the hasNext and next methods for external iteration. This method

is not commonly used and exists only for the rare cases where internal

iteration is not possible.

Listing 6-35. The Stream Interface

interface Stream<T> {

 Iterator<T> iterator();

 void forEach(Consumer<T> cons);

 Stream<T> filter(Predicate<T> p);

 <R> Stream<R> map(Function<T,R> f);

 T reduce(T id, BinaryOperator<T> op);

 boolean anyMatch(Predicate<T> p);

 ...

}

The other stream methods support internal iteration. The forEach

method is the same as the forEach method of Iterator. The methods

filter, map, reduce, and anyMatch will be discussed soon.

Objects that implement Stream are called collection streams. The

elements of a collection stream come from a collection or something that

can be viewed as a collection (such as an array). A collection stream has no

relationship whatsoever to the byte streams discussed in Chapter 3.

The Collection interface contains the method stream, which creates

a Stream object whose elements are the elements of the collection. This

is the most common way to get a collection stream. A noncollection

class (such as Bank) can also implement the stream method. Typically,

the stream method for such a class calls the stream method of one of its

collections. For example, the Bank class in the version 15 banking demo

implements the method stream. Listing 6-36 gives the relevant code.

Chapter 6 Iterables and IteratIon

229

Listing 6-36. The version 15 Bank Class

public class Bank implements Iterable<BankAccount> {

 private Map<Integer,BankAccount> accounts;

 ...

 public Stream<BankAccount> stream() {

 return accounts.values().stream();

 }

}

The class StreamAcctStats in the version 15 banking demo illustrates

the use of several Stream methods. The code for printAccounts6 appears

in Listing 6-37. It uses the Stream methods filter and forEach to print the

bank accounts satisfying the given predicate.

Listing 6-37. The printAccounts6 Method

public void printAccounts6(Predicate<BankAccount> pred) {

 Stream<BankAccount> s1 = bank.stream();

 Stream<BankAccount> s2 = s1.filter(pred);

 s2.forEach(ba->System.out.println(ba));

}

The forEach method behaves the same as the corresponding method

in Iterable. The filter method transforms one stream to another. It

takes a predicate as an argument and returns a new stream containing

the elements that satisfy the predicate. In Listing 6-37, stream s2 contains

those accounts from s1 that satisfy the predicate. Note how the filter

method uses internal iteration to do what you otherwise would need a

loop and an if-statement to do.

Because Java syntax allows method calls to be composed, it is possible

to rewrite printAccounts6 so that the filter method is called by the

output of the stream method. See Listing 6-38.

Chapter 6 Iterables and IteratIon

230

Listing 6-38. A Revised Version of the Method printAccounts6

public void printAccounts6(Predicate<BankAccount> pred) {

 Stream<BankAccount> s = bank.stream().filter(pred);

 s.forEach(ba->System.out.println(ba));

}

In fact, you could even rewrite printAccounts6 so that all method calls

occur in a single statement. In this case you don’t need the Stream variable

s. See Listing 6-39.

Listing 6-39. Another Revsion of printAccounts6

public void printAccounts6(Predicate<BankAccount> pred) {

 bank.stream().filter(pred).forEach(

 ba->System.out.println(ba));

}

This code is not particularly readable. However, it becomes nicely

readable if it is rewritten so that each method call is on a different line. This

is what the method printAccounts7 does. Its code appears in Listing 6-40.

Listing 6-40. The Method printAccounts7

public void printAccounts7(Predicate<BankAccount> pred) {

 bank.stream()

 .filter(pred)

 .forEach(ba->System.out.println(ba));

}

This programming style is called fluent. A fluent expression consists

of several composed method calls. You can think of each method call as a

transformation of one object to another. For example, Listing 6-41 gives a

fluent statement that prints the bank accounts having a balance between

$10 and $20.

Chapter 6 Iterables and IteratIon

231

Listing 6-41. A Fluent Statement

bank.stream()

 .filter(ba -> ba.getBalance() >= 1000)

 .filter(ba -> ba.getBalance() <= 2000)

 .forEach(ba->System.out.println(ba));

The filter method transforms a stream into another stream that

contains a subset of the original elements. Another form of transformation

is produced by the method map. The argument to map is an object that

implements the Function interface. This interface, which is part of the Java

library, has a single method apply and is defined as follows:

 interface Function<T,R> {

 R apply(T t);

 ...

 }

The apply method transforms an object of type T to an object of type R.

The map method calls apply for each element in the input stream and

returns the stream consisting of the transformed elements. You can use

lambda expressions to create Function objects. For example, consider the

following statement. The lambda expression transforms a BankAccount

object to an integer that denotes its balance. The map method

therefore returns a stream containing the balances of each account.

 Stream<Integer> balances = bank.stream()

 .map(ba -> ba.getBalance());

It is also useful to be able to construct a “return value” from a stream.

This operation is called reducing the stream. The Stream interface has the

method reduce for this purpose. For example, Listing 6-42 gives the code

for the maxBalance4 method of StreamAcctStats.

Chapter 6 Iterables and IteratIon

232

Listing 6-42. The Method maxBalance4

public int maxBalance4(Predicate<BankAccount> pred) {

 return bank.stream()

 .filter(pred)

 .map(ba->ba.getBalance())

 .reduce(0, (x,y)->Math.max(x,y));

}

The reduce method has two arguments. The first argument is the

initial value of the reduction. The second argument is the reduction

method, which reduces two values into a single value. The reduce method

repeatedly calls its reduction method for each element of the stream.

Its algorithm is given in Listing 6-43, where x is the initial value of the

reduction and r is the reduction method.

Listing 6-43. The Reduction Algorithm

 1. Set currentval = x.

 2. For each element e in the stream:

 currentval = r(currentval, e).

 3. Return currentval.

The Stream interface also has reduction methods that search for

elements that match a given predicate. Three of these methods are

allMatch, anyMatch, and findFirst. The code of Listing 6-44 uses anyMatch

to determine if there is an account having a balance greater than $1,000.

Listing 6-44. Using the anyMatch Method

boolean result =

 bank.stream()

 .anyMatch(ba->ba.getBalance() > 100000);

Chapter 6 Iterables and IteratIon

233

Collection streams are the building blocks of map-reduce programs.

Map-reduce programming is an effective, commonly used way to process

Big data applications. Map-reduce programs have the structure given in

Listing 6-45.

Listing 6-45. The Structure of a Map-Reduce Program

1. Obtain an initial collection stream.

2. Transform the stream, filtering and mapping its contents

until you get a stream containing the values you care about.

3. Reduce that stream to get the answer you want.

Map-reduce programming has two advantages. First, it allows you to

divide your problem into a sequence of small transformations. People find

this coding style easy to write, and easy to debug. Note that map-reduce

code has no assignment statements and no control structures.

The second advantage is that you can easily change the code to run in

parallel. Each collection has a method parallelStream as well as stream.

Given a collection, if you use the parallelStream method to create the

stream then the resulting stream will execute in parallel. That’s it! The Java

parallelSteam method does all the hard work behind the scenes.

 Summary
An iterator generates a sequence of elements. It has the two methods next

and hasNext. The method next returns the next element in the iterator

and hasNext indicates whether the iterator has more elements left. An

iterable is an object that has an associated iterator. Collections are the most

common examples of iterables.

The iterator pattern organizes the iterable and iterator classes into

separate, parallel hierarchies, with each iterable class having a

corresponding iterator class. The Java library contains the interfaces Iterable

and Iterator for exactly this purpose. Iterable declares the method

iterator, which returns the Iterator object associated with that iterable.

Chapter 6 Iterables and IteratIon

234

The most fundamental way to iterate through an iterable L is to use the

following basic idiom:

 Iterator<T> iter = L.iterator();

 while (iter.hasNext()) {

 T t = iter.next();

 process(t); // some code that uses t

 }

Java has a special syntax for this idiom, called the for-each loop.

The above code can be written more succinctly using the following

for-each loop:

 for (T t : L) {

 process(t);

 }

Explicitly looping through the elements of an iterator is called external

iteration. A method that encapsulates the looping (such as the bank’s

addInterest method) is said to perform internal iteration. The Java

Iterable interface has a general-purpose internal iteration method called

forEach. The argument to forEach is a Consumer object that specifies

the body of the iteration loop. Using forEach, the preceding code can be

written as follows:

 L.forEach(t->process(t));

The Consumer object is said to visit each element of the iterable.

The forEach method separates the specification of the visitor from the

specification of the looping. This separation is called the visitor pattern.

Collection streams are a way to simplify the use of the visitor pattern.

Instead of expressing iteration via a single visitor having a complex body,

you can use the collection stream methods to express the iteration as a

sequence of small transformations. Each transformation is itself a visitor

Chapter 6 Iterables and IteratIon

235

that performs a limited action, such as a filter or a map. This technique

is the foundation of map-reduce programming. The idea is that writing

several small transformations is much simpler, more compact, and less

error-prone than writing a single large one.

The use of collection streams, however, raises the question of

efficiency. If the stream transformations were to execute sequentially,

each via its own iteration loop, then a map-reduce program would take

far more time than a traditional program that made a single iteration

through the elements. Collection streams will be useful only if their

transformations can be coalesced somehow. The technique for doing so is

interesting, and will be discussed in Chapter 8.

Chapter 6 Iterables and IteratIon

237© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_7

CHAPTER 7

Adapters
The next two chapters examine a design technique known as wrapping.

Wrapping denotes a close relationship between two classes, called the

wrapper class and the wrapped class. The sole purpose of the wrapper

class is to modify or enhance the functionality of its wrapped class.

Wrapping corresponds perfectly to the Open/Closed design rule: If you

need a class to behave slightly differently then don’t modify it. Instead,

create a new class that wraps it.

This chapter covers the concept of an adapter, which is a wrapper

that changes the functionality of the class it wraps. This chapter presents

several examples that illustrate the widespread applicability of adapter

classes. Of particular interest are the Java library classes that adapt the

byte streams of Chapter 3. These classes make it possible to read and write

streams of characters, primitive values, or objects simply by adapting the

existing classes that implement streams of bytes.

 Inheritance for Reuse
Suppose you need to write a class. There is an existing class that has

methods similar to the methods you need. You therefore decide to define

your class as a subclass of this existing class, so that you can inherit those

methods and thereby simplify your code-writing task.

238

This sounds like a great idea, right? Unfortunately, it isn’t. In fact, it’s

a very bad idea. As discussed in Chapter 3, the only good reason to create

a subclass is because the subclass–superclass relationship satisfies the

Liskov Substitution Principle—that is, if subclass objects can be used in

place of a superclass objects. The possibility of inheriting code plays no

part in the decision.

Nevertheless, it is hard to resist the temptation to create a subclass

just to inherit code. The history of object-oriented software is littered with

such classes. This design technique even has a name: inheritance for reuse.

In the early days of object-oriented programming, inheritance for

reuse was touted as one of the big advantages of object orientation. Now

we understand that this idea is completely wrong. The Java library class

Stack provides a good example of the problems that arise.

Stack extends the Java library class Vector, which implements List.

The advantage to extending Vector is that the stack methods empty, push,

and pop become very easy to implement. Listing 7-1 gives a simplified

version of the source code for Stack.

Listing 7-1. Simplified Code for the Stack Class

public class Stack<E> extends Vector<E> {

 public boolean empty() {

 return size() == 0;

 }

 public void push(E item) {

 add(item);

 }

 public E pop() {

 return remove(size()-1);

 }

}

Chapter 7 adapters

239

This code takes advantage of the inherited methods size, add, and

remove from Vector. The designers of Stack were no doubt delighted that

they could use the Vector methods for “free,” without having to write any

code for them. This is a perfect example of inheritance for reuse.

However, this design has significant problems. The decision to extend

Vector violates the Liskov Substitution Principle because a stack in no way

behaves like a list. For example, a stack only lets you look at its top element

whereas a list lets you look at (and modify) every element.

Practically speaking, the problem is that clients can use a stack in non–

stack-like ways. For a simple example, the last statement of the following

code modifies the bottom of the stack:

 Stack<String> s = new Stack<>();

 s.push("abc");

 s.push("xyz");

 s.set(0,"glorp");

In other words, the Stack class is not sufficiently encapsulated. A client

can take advantage of the fact that it is implemented in terms of Vector.

The Stack class was part of the first Java release. Since then the Java

development community has admitted that this design was a mistake. In

fact, the current documentation for the class recommends that it not be

used.

 Wrappers
The good news is that it is possible to write Stack so that it makes use of

Vector without being a subclass of it. Listing 7-2 illustrates the technique:

Stack holds a variable of type Vector, and uses this variable to implement

its empty, push, and pop methods. Since the variable is private to Stack, it is

inaccessible from the other classes, which ensures that Stack variables are

not able to call Vector methods.

Chapter 7 adapters

240

Listing 7-2. Using a Wrapper to Implement Stack

public class Stack<E> {

 private Vector<E> v = new Vector<>();

 public boolean empty() {

 return v.size() == 0;

 }

 public void push(E item) {

 v.add(item);

 }

 public E pop() {

 return v.remove(v.size()-1);

}

This implementation technique is called wrapping. Wrapping is a

specific use of a dependency relationship in which a class C implements its

methods via a dependency to a class D, calling D’s methods to do most (or

all) of the work. The class D is called the backing store of the wrapper C. For

example in Listing 7-2, Stack wraps Vector because it has a dependency to

Vector, and implements its methods by calling the Vector methods.

Wrapping is a remarkably useful technique. If a design involves

inheritance for reuse then it can always be redesigned to use wrapping

instead. And experience has shown that the wrapper-based design is

always better.

 The Adapter Pattern
Wrapper classes are often used as adapters. The term “adapter” has an

analogy with real life adapters. For example, suppose you want to plug a

three-pronged vacuum cleaner into a two-prong electric outlet. One way to

resolve this impasse is to purchase a new vacuum cleaner that works with

Chapter 7 adapters

241

a two-prong outlet. Another way is to rewire the outlet so that it accepts

three prongs. Both of these options are expensive and impractical.

A third and far better option is to buy an adapter that has two prongs on

one end and accepts three prongs on the other end. The device plugs into

one end of the adapter and the adapter’s other end plugs into the outlet. The

adapter manages the transfer of electricity between its two ends.

An analogous situation exists with software. Suppose that your code

needs a class having a particular interface but the best available class

implements a slightly different interface. What should you do? You have

the same three options.

Your first two options are to modify your code so that it uses the existing

interface, or to modify the code for the existing class so that it implements

the desired interface. As with the electrical adapter scenario, these options

can be expensive and impractical. Moreover, they may not even be possible.

For example, you are not allowed to modify classes in the Java library.

A simpler and better solution is to write an adapter class. The adapter

class wraps the existing class and uses it to implement the desired

interface. This solution is known as the adapter pattern. Its class diagram

appears in Figure 7-1.

Figure 7-1. The adapter pattern

Chapter 7 adapters

242

The Stack class in Listing 7-2 is an example of the adapter pattern.

The existing class is Vector. The desired interface consists of the methods

{push, pop, empty}. The adapter class is Stack. Figure 7-2 shows their

relationship. In this case there is no formal Java interface, so the diagram

uses “StackAPI” to denote the desired methods.

Another example of the adapter pattern arises in the Java library class

Arrays. Recall from Chapter 5 that Arrays has a static factory method

asList that returns a list containing the contents of a given array. The

following code illustrates its use:

 String[] a = {"a", "b", "c", "d"};

 List<String> L = Arrays.asList(a);

One way to implement this method is to create a new ArrayList

object, add the array elements to it, and return it. This idea is not very good

because copying the elements of a large array is inefficient.

A much better idea is to use the adapter pattern. The object returned

by the asList method will belong to an adapter class that wraps the array

Figure 7-2. Stack as an adapter class

Chapter 7 adapters

243

and implements the List methods. The code in Listing 7-3 implements the

Arrays class using this idea. The adapter class is called ArrayAsList.

Listing 7-3. A Simplified Implementation of the Arrays Class

public class Arrays {

 ...

 public static <T> List<T> asList(T[] vals) {

 return new ArrayAsList<T>(vals);

 }

}

class ArrayAsList<T> extends AbstractList<T> {

 private T[] data;

 public ArrayAsList(T[] data) {

 this.data = data;

 }

 public int size() {

 return data.length;

 }

 public T get(int i) {

 return data[i];

 }

 public T set(int i, T val) {

 T oldval = data[i];

 data[i] = val;

 return oldval;

 }

}

The asList method simply creates and returns an object from its

ArrayAsList adapter class. ArrayAsList extends the Java library class

Chapter 7 adapters

244

AbstractList, implementing the methods size, get, and set. Note that

the code does not copy the array, but instead accesses the array elements

on demand. The design is elegant and efficient. Figure 7-3 gives the class

diagram showing how ArrayAsList fits into the adapter pattern.

Another example of an adapter is the class RandomIterator from

Chapter 6, whose code appeared in Listing 6-3. The class wrapped an

object of type Random and used it to implement the Iterator interface.

 Text Streams
Chapter 3 introduced the abstract class InputStream, whose subclasses

are able to read bytes from files, pipes, and other input sources; it also

introduced OutputStream, which has analogous subclasses for writing bytes.

The sequences of bytes managed by these classes are called byte streams

Figure 7-3. The adapter class ArrayAsList

Chapter 7 adapters

245

(and are totally unrelated to the collection streams of Chapter 6). This section

is concerned with streams of characters, which are called text streams.

The character stream hierarchies are headed by the abstract classes

Reader and Writer. These classes closely parallel InputStream and

OutputStream. Their methods are similar, the major difference being that

the read and write methods for Reader and Writer manipulate characters

instead of bytes. Their subclasses are also analogous. For example, the

classes FileReader and PipedReader parallel FileInputStream and

PipedInputStream.

As an example, Listing 7-4 gives the code for a program that reads

the text file “mobydick.txt” and writes its first 500 characters to the file

“shortmoby.txt.”

Listing 7-4. Reading and Writing a Text File

public class FilePrefix {

 public static void main(String[] args) throws IOException {

 try (Reader r = new FileReader("mobydick.txt");

 Writer w = new FileWriter("shortmoby.txt")) {

 for (int i=0; i<500; i++) {

 int x = r.read();

 if (x < 0)

 break;

 char c = (char) x;

 w.write(c);

 }

 }

 }

}

Chapter 7 adapters

246

From a design perspective, the most interesting question about text

streams is how the various Reader and Writer classes are implemented.

It turns out that adapters play a big part, as discussed in the following

subsections.

 The Adapter OutputStreamWriter
Suppose you are asked to implement the FileWriter class; what would

you do? Your code will need to address two issues. First, it will need to

manage the file—opening it, writing values to it, and closing it. Second,

your code will need to translate each output character to one or more

bytes, because files understand bytes and not characters. You can handle

the first issue by looking at the code for FileOutputStream. It has already

dealt with that issue, so you can copy the relevant code. You can handle

the second issue by using the class CharEncoder from the Java library, in

a way that will be discussed soon. So everything seems under control. But

before you proceed further you should stop and reread this paragraph. Is

the proposed design a good one?

The answer is “no.” Copying code from FileOutputStream

violates the Don’t Repeat Yourself design rule, and is a terrible idea. A

much better design is to use an adapter class to leverage the existing

implementation. In other words, FileWriter should be a class that adapts

FileOutputStream and implements Writer.

In fact, you can do even better. Note that FileWriter’s only real

responsibility is to encode each character into bytes and write those bytes

to its wrapped output stream. This code is applicable to any output stream,

not just FileOutputStream. In other words, instead of writing an adapter

class for FileOutputStream, a more general solution is to write an adapter

class for OutputStream.

Chapter 7 adapters

247

The Java library provides exactly such an adapter class, called

OutputStreamWriter. This class wraps an object that has existing

functionality (namely OutputStream, which has the ability to write bytes)

and uses it to implement the desired interface (namely Writer, which

gives you the ability to write chars).

The usefulness of the OutputStreamWriter adapter is that it can

convert any output stream into a writer. In particular, you can use it to

write FileWriter. The following two statements are equivalent:

 Writer fw = new FileWriter(f);

 Writer fw = new OutputStreamWriter(new FileOutputStream(f));

In other words, FileWriter is a convenience class. It can be

implemented as a subclass of OutputStreamWriter whose constructor

creates the wrapped FileOutputStream object. Its code looks something like

Listing 7-5.

Listing 7-5. The Code for the FileWriter Class

public class FileWriter extends OutputStreamWriter {

 public FileWriter(String f) throws IOException {

 super(new FileOutputStream(f));

 }

}

The class diagram in Figure 7-4 shows the relationship between the

Writer, OutputStream, and FileWriter classes, and the key role played by

the adapter class OutputStreamWriter.

Chapter 7 adapters

248

Now that the purpose of OutputStreamWriter is clear, it is time to

consider its implementation. A simplified version of the code appears in

Listing 7-6. The class extends the abstract class Writer and therefore needs

to implement three abstract methods: close, flush, and the 3-arg write

method. OutputStreamWriter implements these three methods using its

wrapped OutputStream object. The implementation of close and flush

simply call the corresponding OutputStream methods. The write method

encodes the specified characters, places the encoded bytes into a byte

buffer, and writes each byte to the wrapped output stream.

Figure 7-4. OutputStreamWriter as an adapter

Chapter 7 adapters

249

Listing 7-6. A Simplified OutputStreamWriter Class

public class OutputStreamWriter extends Writer {

 private CharsetEncoder encoder;

 private OutputStream os;

 public OutputStreamWriter(OutputStream os,

 String charsetname) throws IOException {

 this.os = os;

 encoder = Charset.forName(charsetname).newEncoder();

 }

 public OutputStreamWriter(OutputStream os)

 throws IOException {

 this(os, Charset.defaultCharset().name());

 }

 public void write(char cbuf[], int offset, int len)

 throws IOException {

 CharBuffer cb = CharBuffer.wrap(cbuf, offset, len);

 ByteBuffer bb = encoder.encode(cb);

 for (int i=0; i<bb.limit(); i++)

 os.write(bb.get(i));

 }

 public void close() throws IOException {

 os.close();

 }

 public void flush() throws IOException {

 os.flush();

 }

}

Chapter 7 adapters

250

The complexity of this class arises from the fact that there are many ways

to encode characters. For example, Java uses 16-bit Unicode for its in-memory

character encoding, which requires two bytes to store most characters. (Some

characters require four bytes, which complicates matters considerably for Java

but fortunately is irrelevant to this discussion.) However, 16-bit Unicode is not

necessarily the best way to encode files. Many text editors use an encoding

such as ASCII, which assumes a smaller character set that requires only one

byte per character. A Java program that reads and writes files needs to be able

to interact with multiple character encodings.

The Java library has the class Charset, whose objects denote character

encodings. The class supports several standard encodings, each of which

has a name. For example, the encodings for ASCII, 8-bit Unicode, and 16-bit

Unicode are named “US-ASCII,” “UTF-8,” and “UTF-16.” Its forName method

is a static factory method that returns the Charset object corresponding to

the specified name.

The OutputStreamWriter class has two constructors. The first

constructor has an argument that specifies the name of the desired charset.

The second constructor uses a predetermined default charset.

The Charset method newEncoder returns a CharsetEncoder object.

CharsetEncoder has the method encode, which performs the encoding.

The argument to encode is a CharBuffer object. A CharBuffer is similar

to a ByteBuffer except that it uses an underlying array of chars instead

of bytes. The encode method encodes those characters and places their

encoded bytes into a ByteBuffer object, whose bytes can then be written

to the output stream.

 The Adapter InputStreamReader
The correspondence between the Reader and InputStream classes is

analogous to that between Writer and OutputStream. In particular, the

Java library contains the adapter class InputStreamReader that wraps

Chapter 7 adapters

251

InputStream and extends Reader. FileReader is a convenience class

that extends InputStreamReader. The FileReader code is analogous to

FileWriter and appears in Listing 7-7.

Listing 7-7. The FileReader Class

public class FileReader extends InputStreamReader {

 public FileReader(String f) throws IOException {

 super(new FileInputStream(f));

 }

}

The code for the InputStreamReader adapter class appears in

Listing 7-8. It is more complex than OutputStreamWriter because

decoding bytes is trickier than encoding chars. The problem is that the

characters in some encodings need not encode to the same number

of bytes, which means that you cannot know how many bytes to read

to decode the next character. The InputStreamReader class solves this

problem by buffering the input stream. It reads ahead some number of

bytes and stores those bytes in a ByteBuffer object. The read method

gets its input from that buffer.

The read method performs the conversion from bytes to chars by

calling the method decode of class CharDecoder. Two of the arguments

it provides to decode are the input byte buffer and the output char

buffer. The decode method reads bytes from the byte buffer and places

the decoded characters into the char buffer. It stops either when the

char buffer is full or the byte buffer is empty. The situation when the

char buffer is full is called overflow. In this case the read method can

stop, retaining the remaining input bytes for the next call to read. The

situation when the byte buffer is empty is called underflow. In this case

the read method must refill the byte buffer and call decode again, so that

it can fill the remainder of the char buffer.

Chapter 7 adapters

252

Listing 7-8. A Simplified InputStreamReader Class

public class InputStreamReader extends Reader {

 public static int BUFF_SIZE = 10;

 private ByteBuffer bb = ByteBuffer.allocate(BUFF_SIZE);

 private InputStream is;

 private CharsetDecoder decoder;

 private boolean noMoreInput;

 public InputStreamReader(InputStream is,

 String charsetname) throws IOException {

 this.is = is;

 decoder = Charset.forName(charsetname).newDecoder();

 bb.position(bb.limit()); //indicates an empty buffer

 noMoreInput = fillByteBuffer();

 }

 public InputStreamReader(InputStream is)

 throws IOException {

 this(is, Charset.defaultCharset().name());

 }

 public int read(char cbuf[], int offset, int len)

 throws IOException {

 int howmany = len;

 while (true) {

 CharBuffer cb = CharBuffer.wrap(cbuf, offset, len);

 CoderResult result = decoder.decode(bb, cb,

 noMoreInput);

 if (result == CoderResult.OVERFLOW)

 return howmany;

Chapter 7 adapters

253

 else if (result == CoderResult.UNDERFLOW

 && noMoreInput)

 return (cb.position() > 0) ? cb.position() : -1;

 else if (result == CoderResult.UNDERFLOW) {

 // Get more bytes and repeat the loop

 // to fill the remainder of the char buffer.

 noMoreInput = fillByteBuffer();

 offset = cb.position();

 len = howmany - cb.position();

 }

 else

 result.throwException();

 }

 }

 public void close() throws IOException {

 is.close();

 }

 private boolean fillByteBuffer() throws IOException {

 bb.compact(); //move leftover bytes to the front

 int pos = bb.position();

 int amtToRead = bb.capacity() - pos;

 int result = is.read(bb.array(), pos, amtToRead);

 int amtActuallyRead = (result < 0) ? 0 : result;

 int newlimit = pos + amtActuallyRead;

 bb.limit(newlimit);

 bb.position(0); //indicates a full buffer

 return (amtActuallyRead < amtToRead);

 }

}

Chapter 7 adapters

254

 The Adapter StringReader
The class StringReader is another example of a text stream adapter from

the Java library. The job of the class is to create a reader from a string. Each

call to its read method returns the next character(s) from the string. A

simplified version of its code appears in Listing 7-9.

Listing 7-9. A Simplified StringReader Class

public class StringReader extends Reader {

 private String s;

 private int pos = 0;

 public StringReader(String s) throws IOException {

 this.s = s;

 }

 public int read(char[] cbuf, int off, int len)

 throws IOException {

 if (pos >= s.length())

 return -1; // end of stream

 int count=0;

 while (count<len && pos<s.length()) {

 cbuf[off+count] = s.charAt(pos);

 pos++; count++;

 }

 return count;

 }

 public void close() {

 // strings don't need to be closed

 }

}

Chapter 7 adapters

255

Unlike InputStreamReader, the code for StringReader is short and

straightforward. The specified string acts as the input buffer. The read

method puts a character from the string into the next slot of cbuf, stopping

when len chars have been written (“overflow”) or the string is exhausted

(“underflow”). In either case, the method returns the number of chars

written.

The StringReader class conforms to the adapter pattern, as illustrated

by the class diagram of Figure 7-5.

 Object Streams
The classes InputStream and OutputStream let you read and write byte

streams, and Reader and Writer let you read and write character streams.

The Java library provides two additional level of read/write. The interfaces

DataInput and DataOutput let you read and write primitive values, and the

interfaces ObjectInput and ObjectOutput let you read and write objects.

Listing 7-10 gives the declaration of these four interfaces.

Figure 7-5. StringReader as an adapter

Chapter 7 adapters

256

Listing 7-10. The DataInput, DataOutput, ObjectInput, and

ObjectOutput Interfaces

public interface DataInput {

 int readInt() throws IOException;

 double readDouble() throws IOException;

 ... // a method for each primitive type

}

public interface DataOutput {

 void writeInt(int i) throws IOException;

 void writeDouble(double d) throws IOException;

 ... // a method for each primitive type

}

public interface ObjectInput extends DataInput {

 Object readObject() throws IOException;

}

public interface ObjectOutput extends DataInput {

 void writeObject(Object obj) throws IOException;

}

The Java library classes ObjectInputStream and ObjectOutputStream

implement ObjectInput and ObjectOutput, and consequently also

DataInput and DataOutput. These two classes are thus able to manage

streams that contain a mixture of objects and primitive values.

Listing 7-11 gives code for the class ObjectStreamTest, which

demonstrates the use of these classes. The program shows two ways to

write a list of strings to an object stream and read them back.

Chapter 7 adapters

257

Listing 7-11. The ObjectStreamTest Class

public class ObjectStreamTest {

 public static void main(String[] args) throws Exception {

 List<String> L = Arrays.asList("a", "b", "c");

 // Write the list to a file, in two ways.

 try (OutputStream os = new FileOutputStream("sav.dat");

 ObjectOutput oos = new ObjectOutputStream(os)) {

 oos.writeObject(L); // Write the list.

 oos.writeInt(L.size()); // Write the list size,

 for (String s : L) // and then its elements.

 oos.writeObject(s);

 }

 // Read the lists from the file.

 try (InputStream is = new FileInputStream("sav.dat");

 ObjectInput ois = new ObjectInputStream(is)) {

 List<String> L1 = (List<String>) ois.readObject();

 List<String> L2 = new ArrayList<>();

 int size = ois.readInt(); // Read the list size.

 for (int i=0; i<size; i++) { // Read the elements.

 String s = (String) ois.readObject();

 L2.add(s);

 }

 // L, L1, and L2 are equivalent.

 System.out.println(L + ", " + L1 + ", " + L2);

 }

 }

}

Chapter 7 adapters

258

Reading an object stream is different from reading a byte or text

stream. An object stream can contain an arbitrary sequence of objects

and primitive values, and the client needs to know exactly what to expect

when reading it. For example, in ObjectStreamTest the code to read the

stream must know that the file “sav.dat” contains the following: a list of

strings, an int, and as many individual strings as the value of the

preceding int.

Consequently, a client should never need to read past the end of an

object stream. This is very different from byte steams, where the client

typically reads bytes until the end-of-stream sentinel value -1 is returned.

As the object returned by readObject is of type Object, the client must

cast this object to the appropriate type.

The ObjectStreamTest demo illustrates two ways to write a list to the

stream: you can write the entire list as a single object, or you can write the

elements individually. Writing the entire list is clearly preferable because

it avoids the need to loop through the list elements. The code becomes

easier to write and easier to read.

The classes ObjectInputStream and ObjectOutputStream are

adapter classes. Figure 7-6 shows the class diagram that illustrates how

ObjectInputStream conforms to the adapter pattern. The class diagram

for ObjectOutputStream is analogous.

Chapter 7 adapters

259

The class ObjectInputStream is implemented similarly to the

adapter class InputStreamReader. An ObjectInputStream object holds

a reference to the InputStream object it wraps, and uses the methods

of that object to implement its methods. The implementation of

ObjectOutputStream is similar.

The implementation of the DataInput and DataOutput methods is

straightforward. For example, the writeInt method extracts the four

bytes from the given int value and writes them to the byte stream. The

readInt method reads four bytes from the byte stream and converts

them to an int.

Figure 7-6. ObjectInputStream as an adapter

Chapter 7 adapters

260

The implementation of readObject and writeObject is much more

difficult. The writeObject method needs to encode enough information

about the object to enable it to be reconstructed. This information includes

metadata about the object’s class and the values of its state variables. If the

object references another object z then the information about z must also

be written to the byte stream. And if the object has multiple references to z

(either directly or indirectly) then the method must ensure that z is written

only once to the stream. This process of encoding an object as a sequence

of bytes is called object serialization.

In general, the algorithm to serialize an object may need to write several

objects to the byte stream. The writeObject method first creates a graph

of all the objects reachable from the given object; it then systematically

traverses the graph, writing the byte representation of each object to the

stream. The readObject method performs the reverse operation. Further

details of the writeObject and readObject algorithms are well beyond the

scope of this book.

 Saving State in the Banking Demo
Object streams are a particularly good way to save the state of a program.

Recall that the banking demo currently saves the bank’s account

information to a file. The class that manages the reading and writing to

the file is SavedBankInfo, whose code appeared in Listing 3-14. That class

wrote the account information byte by byte; the coding was difficult and

tedious.

The use of object streams can dramatically simplify the code for

SavedBankInfo. Instead of writing (and reading) each byte of each value

of each account to the file, it is now possible to write the entire account

map with just a single call to writeObject. Listing 7-12 gives the new code,

which is in version 16 of the banking demo.

Chapter 7 adapters

261

Listing 7-12. The Version 16 SavedBankInfo Class

public class SavedBankInfo {

 private String fname;

 private Map<Integer,BankAccount> accounts;

 private int nextaccount;

 public SavedBankInfo(String fname) {

 this.fname = fname;

 File f = new File(fname);

 if (!f.exists()) {

 accounts = new HashMap<Integer,BankAccount>();

 nextaccount = 0;

 }

 else {

 try (InputStream is = new FileInputStream(fname);

 ObjectInput ois = new ObjectInputStream(is)) {

 accounts =

 (Map<Integer,BankAccount>) ois.readObject();

 nextaccount = ois.readInt();

 }

 catch (Exception ex) {

 throw new RuntimeException("file read exception");

 }

 }

 }

 public Map<Integer,BankAccount> getAccounts() {

 return accounts;

 }

 public int nextAcctNum() {

 return nextaccount;

 }

Chapter 7 adapters

262

 public void saveMap(Map<Integer,BankAccount> map,

 int nextaccount) {

 try (OutputStream os = new FileOutputStream(fname);

 ObjectOutput oos = new ObjectOutputStream(os)) {

 oos.writeObject(map);

 oos.writeInt(nextaccount);

 }

 catch (IOException ex) {

 throw new RuntimeException("file write exception");

 }

 }

}

The saved file will contain two objects: the account map and the next

account number. The constructor reads the map and account number

from the saved file if they exist; otherwise it creates an empty map and sets

the account number to 0. The method saveMap writes the specified map

and number to the saved file, overwriting any previous file contents.

The writeObject method has one additional requirement: The object

that it writes and all objects referenced by that object must be serializable.

That is, they must implement the interface Serializable. Most classes

from the Java library are serializable. If you want your classes to be

serializable, you must declare them to implement Serializable.

The Serializable interface is unusual in that it has no methods. The

point of the interface is to act as an “ok to write” flag. The issue is that

a class may contain sensitive information in its private fields (such as

passwords, salaries, or bank balances). Serializing that object will make

that private information visible to anyone having access to the file, which

could have unintended consequences. Thus the programmer is required to

“sign off” on the serialization.

Chapter 7 adapters

263

Returning to the version 16 banking demo, note that the argument to

the writeObject method is the account map. The HashMap and Integer

classes are already serializable. The only other components of the map are

the bank account classes. You can make them be serializable by having

BankAccount implement Serializable, as shown in Listing 7-13.

Listing 7-13. The Version 16 BankAccount Interface

public interface BankAccount

 extends Comparable<BankAccount>, Serializable {

 ...

}

In addition, any object referenced by a bank account must also

be serializable. The AbstractBankAccount class has a reference to

OwnerStrategy objects, and so you should also declare the OwnerStrategy

interface to be serializable. Currently the only thing that implements

OwnerStrategy is the enum Owners. Enums are serializable in Java by

default, so technically OwnerStrategy does not need to be explicitly

serializable. But it is good practice to declare it anyway, in case you modify

the implementation of OwnerStrategy in the future.

 Adapters for the Banking Demo
Another use of adapters is to combine information from different classes

into a single list, even though the classes might have no common interface.

The idea is to create an adapter for each class such that the adapters

implement the same interface. The resulting adapted objects can then be

placed into a list.

Chapter 7 adapters

264

As an example, consider the following scenario related to the banking

demo. Suppose that the FBI is investigating money laundering, and wants

to see information about foreign-owned accounts having a balance over

$10,000. Moreover, the FBI is interested in loans as well as bank accounts,

where the “balance” of a loan is considered to be its remaining principal.

The FBI wants this information to be stored as a list of FBIAcctInfo

objects, where FBIAcctInfo is the interface shown in Listing 7-14.

Listing 7-14. The FBIAcctInfo Interface

interface FBIAcctInfo {

 int balance(); // in dollars

 boolean isForeign();

 String acctType(); // "deposit" or "loan"

}

For the purposes of this example, version 16 of the banking demo needs

to have a class Loan, which contains some rudimentary information about

the bank’s loans. Listing 7-15 gives its code. The class has methods to return

the current status of the loan—its balance, remaining payments, and the

monthly payment amount—as well as a method to make the next payment.

Listing 7-15. The Loan Class

public class Loan {

 private double balance, monthlyrate, monthlypmt;

 private int pmtsleft;

 private boolean isdomestic;

 public Loan(double amt, double yearlyrate,

 int numyears, boolean isdomestic) {

 this.balance = amt;

 pmtsleft = numyears * 12;

 this.isdomestic = isdomestic;

Chapter 7 adapters

265

 monthlyrate = yearlyrate / 12.0;

 monthlypmt = (amt*monthlyrate) /

 (1-Math.pow(1+monthlyrate, -pmtsleft));

 }

 public double remainingPrincipal() {

 return balance;

 }

 public int paymentsLeft() {

 return pmtsleft;

 }

 public boolean isDomestic() {

 return isdomestic;

 }

 public double monthlyPayment() {

 return monthlypmt;

 }

 public void makePayment() {

 balance = balance + (balance*monthlyrate) - monthlypmt;

 pmtsleft--;

 }

}

To handle the FBI request, the bank needs to combine the bank account

and the loan data under the FBIAcctInfo interface. The problem, of course,

is that neither BankAccount nor Loan objects implement FBIAcctInfo.

BankAccount has an isForeign method, but the corresponding Loan method

is isDomestic. In addition, FBIAcctInfo wants its balance method to return

a value in dollars, but BankAccount and Loan use different names for the

corresponding method and store values in pennies. And neither class has a

method corresponding to the acctType method.

Chapter 7 adapters

266

The way to address this issue is to create adapter classes for

BankAccount and Loan that implement FBIAcctInfo. You can then wrap

the BankAccount and Loan objects with these adapters, and place the

resulting FBIAcctInfo objects in a list for the FBI to analyze.

The adapter for BankAccount is called BankAccountAdapter and the

adapter for Loan is called LoanAdapter. Their code appears in listings 7-16

and 7-17.

Listing 7-16. The BankAccountAdapter Class

public class BankAccountAdapter implements FBIAcctInfo {

 private BankAccount ba;

 public BankAccountAdapter(BankAccount ba) {

 this.ba = ba;

 }

 public int balance() {

 return ba.getBalance() / 100;

 }

 public boolean isForeign() {

 return ba.isForeign();

 }

 public String acctType() {

 return "deposit";

 }

}

Chapter 7 adapters

267

Listing 7-17. The LoanAdapter Class

public class LoanAdapter implements FBIAcctInfo {

 private Loan loan;

 public LoanAdapter(Loan loan) {

 this.loan = loan;

 }

 public int balance() {

 return (int) (loan.principalRemaining() / 100);

 }

 public boolean isForeign() {

 return !loan.isDomestic();

 }

 public String acctType() {

 return "loan";

 }

}

Figure 7-7 shows the class diagram corresponding to these adapters.

This figure also shows a class FBIClient, which creates an adapted

FBIAcctInfo object for each account and loan and stores them in a list.

Then it can process the list as needed; for simplicity, this code just counts

the affected accounts. The code appears in Listing 7-18.

Chapter 7 adapters

268

Figure 7-7. The class diagam of the FBI scenario

Listing 7-18. The FBIClient Class

public class FBIClient {

 public static void main(String[] args) {

 Bank b = getBank();

 // put account info into a single list

 List<FBIAcctInfo> L = new ArrayList<>();

 for (BankAccount ba : b)

 L.add(new BankAccountAdapter(ba));

 for (Loan ln : b.loans())

 L.add(new LoanAdapter(ln));

Chapter 7 adapters

269

 // then process the list

 int count = 0;

 for (FBIAcctInfo a : L)

 if (a.isForeign() && a.balance() > 1000.0)

 count++;

 System.out.println("The count is " + count);

 }

 private static Bank getBank() {

 SavedBankInfo info = new SavedBankInfo("bank16.info");

 Map<Integer,BankAccount> accounts = info.getAccounts();

 int nextacct = info.nextAcctNum();

 return new Bank(accounts, nextacct);

 }

}

 Summary
A class is called a wrapper class if it has a dependency to a class D and

implements its methods by calling D’s methods to do most (or all) of the

work. One common use of a wrapper class is as an adapter. An adapter

class uses its wrapped class to help it implement a similar interface. For

example, the ArrayAsList class of Figure 7-3 implements a list by wrapping

an array. The relationship between the adapter class, the class it wraps, and

the interface it implements, is called the adapter pattern.

The byte stream classes in the Java library illustrate the value of

adapters. The classes InputStream, OutputStream, and their subclasses

provide ways to read and write bytes between various kinds of inputs and

outputs. But byte-level operations are often too low-level to be practical, so

Java has classes that support higher-level operations. The classes Reader,

Writer, and their subclasses read and write characters, and the interfaces

Chapter 7 adapters

270

ObjectInput and ObjectOutput read and write objects and primitive

values. The best way to implement these higher level operations is to use

adapters.

In particular, the class InputStreamReader wraps any InputStream

object and enables it to be read as a sequence of characters. Similarly, the

adapter class ObjectInputStream enables any InputStream object to be

read as a sequence of objects and values. These adapters only need to know

how to encode a character (in the case of InputStreamReader) or an object

(in the case of ObjectInputStream) as a sequence of bytes. Each adapter

class can then let its wrapped InputStream object perform the rest of the

work. The adapter classes OutputStreamWriter and ObjectOutputStream

work similarly for their wrapped ObjectStream object.

Chapter 7 adapters

271© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_8

CHAPTER 8

Decorators
A decorator is a wrapper that implements the same interface as the object

it wraps. Decorator methods enhance the methods of the wrapped object,

in contrast to adapter methods, which replace the methods of the wrapped

object.

This chapter examines several useful applications of decorators.

They can be used to create immutable versions of objects, coordinate the

execution of complex tasks, and implement collection streams. The Java

library class InputStream uses decorators prominently. The chapter also

examines the design issues that the writers of decorator classes must

confront.

 Decorator Classes
Let’s begin with the banking demo. Recall from Chapter 6 that the Bank

class has the method iterator, which enables clients to examine its

BankAccount objects. For example, the code in Listing 8-1 prints the

accounts having a balance of less than $1.

272

Listing 8-1. A Reasonable Use of the Bank’s Iterator Method

Iterator<BankAccount> iter = bank.iterator();

while (iter.hasNext()) {

 BankAccount ba = iter.next();

 if (ba.getBalance() < 100)

 System.out.println(ba);

}

The problem with this iterator method is that a client can also use

it to modify BankAccount objects, and even delete them. For example, the

code in Listing 8-2 deletes all accounts having a balance of less than $1

and doubles the balance of all other accounts.

Listing 8-2. An Unreasonable Use of the Bank’s Iterator Method

Iterator<BankAccount> iter = bank.iterator();

while (iter.hasNext()) {

 BankAccount ba = iter.next();

 int balance = ba.getBalance();

 if (balance < 100)

 iter.remove();

 else

 ba.deposit(balance);

}

Suppose that this is not your intent and that you want the iterator

method to give read-only access to the bank accounts. Two issues need to

be addressed. First, the iterator method gives the client complete access

to each BankAccount object; you want it to deny access to the modification

methods of BankAccount. Second, iterators have the method remove, which

deletes the object currently being examined; you want to ensure that clients

cannot call this method. The solution to both issues is to use wrapping.

Chapter 8 DeCorators

273

A way to ensure that BankAccount objects are not modifiable is to

create a class that wraps BankAccount. The nonmodification methods of

the wrapper will call the corresponding methods of the wrapped object

and its modification methods will throw an exception. Listing 8-3 gives

the code for such a class, called UnmodifiableAccount. To save space, the

listing omits the code for the methods getBalance, isForeign, compareTo,

hasEnoughCollateral, toString, equals, and fee, as they are similar to

the code for getAcctNum.

Listing 8-3. A Proposed UnmodifiableAccount Class

public class UnmodifiableAccount implements BankAccount {

 private BankAccount ba;

 public UnmodifiableAccount(BankAccount ba) {

 this.ba = ba;

 }

 public int getAcctNum() {

 return ba.getAcctNum();

 }

 ... // code for the other read-only methods goes here

 public void deposit(int amt) {

 throw new UnsupportedOperationException();

 }

 public void addInterest() {

 throw new UnsupportedOperationException();

 }

 public void setForeign(boolean isforeign) {

 throw new UnsupportedOperationException();

 }

}

Chapter 8 DeCorators

274

The same technique can be used to ensure that an iterator is read-only.

You create a class that wraps the iterator and throws an exception when

the remove method is called. Listing 8-4 gives the code for such a class,

named UnmodifiableBankIterator. Note that the next method takes the

BankAccount object it receives from the wrapped iterator, wraps it as an

UnmodifiableAccount object, and returns the wrapper.

Listing 8-4. The Version 17 UnmodifiableBankIterator Class

public class UnmodifiableBankIterator

 implements Iterator<BankAccount> {

 private Iterator<BankAccount> iter;

 public UnmodifiableBankIterator(

 Iterator<BankAccount> iter) {

 this.iter = iter;

 }

 public boolean hasNext() {

 return iter.hasNext();

 }

 public BankAccount next() {

 BankAccount ba = iter.next();

 return new UnmodifiableAccount(ba);

 }

 public void remove() {

 throw new UnsupportedOperationException();

 }

}

Listing 8-5 gives the revised code for the bank’s iterator method.

The code wraps the iterator in an UnmodifiableBankIterator object

before returning it to the client.

Chapter 8 DeCorators

275

Listing 8-5. The Iterator Method of Bank

public Iterator<BankAccount> iterator() {

 Iterator<BankAccount> iter = accounts.values().iterator();

 return new UnmodifiableBankIterator(iter);

}

Let’s pause for a moment to look at how these changes affect the

banking demo. The iterator returned by the bank’s iterator method is

an unmodifiable iterator of unmodifiable BankAccount objects. However,

from the client’s point of view nothing has changed. The client still

sees an iterator of BankAccount objects. Consequently, classes such as

IteratorAccountStats do not need to be modified.

What makes this feat possible is that the wrapper classes

UnmodifiableAccount and UnmodifiableBankIterator implement the

same interface as the objects that they wrap. This feature enables the

wrapped objects to be used in place of the unwrapped objects. Such a

wrapper is called a decorator.

The purpose of a decorator is to change the behavior of one or more

methods of a class without changing its interface. The behavioral changes

are the “decorations” to the class.

A class can have multiple decorator subclasses. For an example,

suppose that the bank wants to be able to flag individual accounts as

suspicious. A suspicious account changes its behavior in two ways:

it writes a message to the console each time the deposit method is

called, and its toString method prepends “##” to the front of the

returned string. The class SuspiciousAccount implements this behavior.

Its code appears in Listing 8-6.

Chapter 8 DeCorators

276

Listing 8-6. A Proposed SuspiciousAccount Class

public class SuspiciousAccount implements BankAccount {

 private BankAccount ba;

 public SuspiciousAccount(BankAccount ba) {

 this.ba = ba;

 }

 public int getAcctNum() {

 return ba.getAcctNum();

 }

 ... // other methods go here

 public void deposit(int amt) {

 Date d = new Date();

 String msg = "On " + d + " account #" +

 ba.getAcctNum() + " deposited " + amt;

 System.out.println(msg);

 ba.deposit(amt);

 }

 public String toString() {

 return "## " + ba.toString();

 }

}

Listing 8-6 omits several methods from the BankAccount interface. As in

Listing 8-3, the code for these omitted methods are similar to getAcctNum—

they simply call the corresponding method of the wrapped object.

One way to make use of the SuspiciousAccount class is to modify Bank to

have the method makeSuspicious. The code for the method appears in

Listing 8-7. It retrieves the specified bank account, wraps it as a Suspicious

Account, and then writes the new BankAccount object to the map, replacing

the old one. Note that the accounts map will contain a mixture of suspicious

and nonsuspicious accounts, although clients will not be aware of this fact.

Chapter 8 DeCorators

277

Listing 8-7. The Bank’s makeSuspicious Method

public void makeSuspicious(int acctnum) {

 BankAccount ba = accounts.get(acctnum);

 ba = new SuspiciousAccount(ba);

 accounts.put(acctnum, ba);

}

 The Decorator Pattern
The classes UnmodifiableAccount in Listing 8-3 and SuspiciousAccount

in Listing 8-6 have a lot of code in common. They both wrap BankAccount

and hold a reference to the wrapped object in a local variable. In addition,

several of their methods do nothing but call the corresponding method of

the wrapped object. You can remove this duplication by creating an abstract

class to hold the common code. This class is called BankAccountWrapper,

and is part of the version 17 banking demo. Its code appears in Listing 8-8.

Listing 8-8. The Version 17 BankAccountWrapper Class

public abstract class BankAccountWrapper

 implements BankAccount {

 protected BankAccount ba;

 protected BankAccountWrapper(BankAccount ba) {

 this.ba = ba;

 }

 public int getAcctNum() {

 return ba.getAcctNum();

 }

 ... //similar code for all the other methods of BankAccount

}

Chapter 8 DeCorators

278

BankAccountWrapper implements each BankAccount method by calling

the corresponding method of its wrapped object. By itself, this class does

nothing. Its value is that it simplifies the writing of other BankAccount

wrapper classes. This explains why BankAccountWrapper is an abstract

class even though it has no abstract methods. It depends on subclasses to

override its methods with interesting behavior.

Version 17 of the banking demo contains the UnmodifiableAccount

and SuspiciousAccount classes, rewritten to extend BankAccountWrapper.

Their code appears in Listing 8-9 and Listing 8-10. Note that the code is

much more straightforward than what originally appeared in listings 8-3

and 8-6.

Listing 8-9. The Version 17 UnmodifiableAccount Class

public class UnmodifiableAccount

 extends BankAccountWrapper {

 public UnmodifiableAccount(BankAccount ba) {

 super(ba);

 }

 public void deposit(int amt) {

 throw new UnsupportedOperationException();

 }

 public void addInterest() {

 throw new UnsupportedOperationException();

 }

 public void setForeign(boolean isforeign) {

 throw new UnsupportedOperationException();

 }

}

Chapter 8 DeCorators

279

Listing 8-10. The Version 17 SuspiciousAccount Class

public class SuspiciousAccount

 extends BankAccountWrapper {

 public SuspiciousAccount(BankAccount ba) {

 super(ba);

 }

 public void deposit(int amt) {

 Date d = new Date();

 String msg = "On " + d + " account #" +

 ba.getAcctNum() + " deposited " + amt;

 System.out.println(msg);

 ba.deposit(amt);

 }

 public String toString() {

 return "## " + ba.toString();

 }

}

A class diagram for the BankAccount classes appears in Figure 8-1. The

decorator classes are shaded. Their dependency on BankAccount is held by

BankAccountWrapper.

Chapter 8 DeCorators

280

The decorator classes in this class diagram are organized according to

the decorator pattern. The decorator pattern asserts that the decorations

for an interface form a hierarchy. The root of the hierarchy is an abstract

wrapper class that holds a reference to its wrapped class and provides

default implementations of the interface methods. The decorator classes

are the subclasses of the wrapper class. The nondecorator classes of the

interface are called its base classes. Figure 8-2 depicts the class diagram for

the decorator pattern.

Figure 8-1. The decorated BankAccount hierarchy

Chapter 8 DeCorators

281

A decorator class, like an adapter, can be thought of as transforming

an input object into an output object. The difference is that the output

of a decorator has the same type as its input. This feature means that

decorators can be composed.

For example, consider the banking demo. The Bank class holds a map

of BankAccount objects. Some of them will be undecorated and some

will be decorated with SuspiciousAccount. If a client calls the bank’s

iterator method then all objects in the iterator will be decorated with

UnmodifiableAccount. This implies that the suspicious accounts will now

have two decorations.

A good way to understand the composition of decorator objects is to

examine their representation in memory. Consider the code of Listing 8-11.

The first three statements create three different BankAccount objects and

bind them to variables x, y, and z.

Figure 8-2. The decorator pattern

Chapter 8 DeCorators

282

Listing 8-11. Using Composed Decorators

BankAccount x = new SavingsAccount(5);

BankAccount y = new SuspiciousAccount(x);

BankAccount z = new UnmodifiableAccount(y);

int a = x.getAcctNum();

int b = y.getAcctNum();

int c = z.getAcctNum();

x.deposit(4); y.deposit(4);

Although x, y, and z are different BankAccount objects, they each refer

to account 5. Objects y and z are just different decorations of that account.

The fourth statement in Listing 8-11 sets the variable a to 5. The

next statement also sets variable b to 5 because y.getAcctNum calls

x.getAcctNum. Similarly, variable c also gets set to 5 because z.getAcctNum

calls y.getAcctNum which calls x.getAcctNum.

The call to x.deposit increases x’s balance by 4. The call to y.deposit

increases x’s balance by another 4, because y.deposit calls x.deposit. It

also writes a message to the console because y is suspicious. Listing 8-11

deliberately does not call z.deposit because that call would throw an

exception due to the fact that z is unmodifiable.

Figure 8-3 depicts the memory contents of these variables after the

code has executed. Each variable’s rectangle shows the value of its state

variables. An AbstractBankAccount object has three state variables:

acctnum, balance, and owner. For simplicity, this figure does not show the

object that owner refers to. A BankAccountWrapper object has one state

variable, ba, which references the object being wrapped.

Chapter 8 DeCorators

283

Figure 8-3 illustrates how a decorated object can be thought of as a

chain of objects. The head of the chain is the most recent decoration. The

tail of the chain is the undecorated version of the object. When a method is

called, the method execution starts at the head of the chain and proceeds

down the chain.

This situation is a form of recursion. The decorator classes are the

recursive classes. A method call can be thought of as recursively traversing

the chain of decorators. For example, z.getAcctNum recursively calls

y.getAcctNum, which recursively calls x.getAcctNum, which returns its value.

 The Chain of Command Pattern
The chain of command pattern is a special case of the decorator pattern

where the decorators perform tasks instead of calculating values. Each

decorator understands some part of the task. A request to perform the task

is sent to the first decorator in the chain and is passed down the chain until

it encounters a decorator that can perform that task. If no decorator is able

to perform the task then the base class performs a default action.

For an example, version 17 of the banking demo uses the chain of

command pattern to implement loan authorization. Recall that in earlier

versions, the bank authorized a loan only if the specified account had

a sufficiently high balance. In version 17 the bank uses two additional

criteria, based on the customer’s financial history and the bank’s previous

experience with the customer. These criteria are given in Listing 8-12.

. . .

Figure 8-3. The relationship of three BankAccount objects

Chapter 8 DeCorators

284

Listing 8-12. Revised Loan Authorization Criteria

• If the bank has had no prior problems with the

customer and the loan is less than $2,000 then approve.

• Otherwise if the customer’s credit rating is under 500,

then deny. If the credit rating is over 700 and the loan

amount is less than $10,000, then approve.

• Otherwise if the specified account balance is

sufficiently high, then approve, else deny.

These criteria are obviously a simplified version of what a real bank

would use. But the point is that loan approval requires the coordination

of very different kinds of data—such as customer history, financial

creditworthiness, and assets—that are often the responsibility of different

departments. You could combine these criteria into a single method but

then the entire method would need to be modified if any of the criteria

changed. The Single Responsibility rule suggests that a better design is to

create a separate class for each kind of criterion. These separate classes

can then be implemented as decorators and organized according to the

chain of command pattern. Figure 8-4 illustrates this organization. The

interface is LoanAuthorizer, which has the method authorizeLoan.

The classes GoodCustomerAuthorizer, CreditScoreAuthorizer, and

CollateralAuthorizer implement each of the three criteria.

Chapter 8 DeCorators

285

The class CollateralAuthorizer is the base class. It authorizes the

loan if the balance of the specified bank account is sufficiently high, and

denies the loan otherwise. Its code appears in Listing 8-13. This code is

very similar to the loan authorization code from previous versions.

Listing 8-13. The Version 17 CollateralAuthorizer Class

public class CollateralAuthorizer implements LoanAuthorizer {

 private BankAccount ba;

 public CollateralAuthorizer(BankAccount ba) {

 this.ba = ba;

 }

 public boolean authorizeLoan(int amt) {

 return ba.hasEnoughCollateral(amt);

 }

}

The AuthorizerWrapper class is the standard default wrapper

associated with the decorator pattern. Its code appears in Listing 8-14.

Figure 8-4. The version 17 LoanAuthorizer hierarchy

Chapter 8 DeCorators

286

Listing 8-14. The Version 17 AuthorizerWrapper Class

public abstract class AuthorizerWrapper

 implements LoanAuthorizer {

 protected LoanAuthorizer auth;

 protected AuthorizerWrapper(LoanAuthorizer auth) {

 this.auth = auth;

 }

 public boolean authorizeLoan(int amt) {

 return auth.authorizeLoan(amt);

 }

}

The CreditScoreAuthorizer and GoodCustomerAuthorizer classes

are the decorators. Their code appears in Listings 8-15 and 8-16. For

these classes to be realistic the banking demo would have to be expanded

to include customer information. To keep things simple, the code uses

random numbers to mock up the credit rating and customer status.

Listing 8-15. The Version 17 CreditScoreAuthorizer Class

public class CreditScoreAuthorizer extends AuthorizerWrapper {

 private int score;

 public CreditScoreAuthorizer(LoanAuthorizer auth) {

 super(auth);

 // For simplicity, mock up the credit score

 // associated with the owner of the bank account.

 Random rnd = new Random();

 this.score = 300 + rnd.nextInt(500);

 }

Chapter 8 DeCorators

287

 public boolean authorizeLoan(int amt) {

 if (score > 700 && amt < 100000)

 return true;

 else if (score < 500)

 return false;

 else

 return auth.authorizeLoan(amt);

 }

}

Listing 8-16. The Version 17 GoodCustomerAuthorizer Class

public class GoodCustomerAuthorizer

 extends AuthorizerWrapper {

 private boolean isgood;

 public GoodCustomerAuthorizer(LoanAuthorizer auth) {

 super(auth);

 // For simplicity, mock up the customer status

 // associated with the owner of the bank account.

 Random rnd = new Random();

 isgood = rnd.nextBoolean();

 }

 public boolean authorizeLoan(int amt) {

 if (isgood && amt < 200000)

 return true;

 else

 return auth.authorizeLoan(amt);

 }

}

Chapter 8 DeCorators

288

Listing 8-17 gives the code for the authorizeLoan method of class Bank. It

gets a LoanAuthorizer object from the static factory method getAuthorizer

defined in the LoanAuthorizer interface.

The code for LoanAuthorizer appears in Listing 8-18. Its

getAuthorizer method creates a chain of approvers. Outermost is the

GoodCustomerAuthorizer decorator, followed by CreditScoreAuthorizer and

then CollateralAuthorizer. This ordering implies that a loan authorization

will proceed as shown in Listing 8-12.

Listing 8-17. The Bank’s Version 17 AuthorizeLoan Method

public boolean authorizeLoan(int acctnum, int loanamt) {

 BankAccount ba = accounts.get(acctnum);

 LoanAuthorizer auth = LoanAuthorizer.getAuthorizer(ba);

 return auth.authorizeLoan(loanamt);

}

Listing 8-18. The Version 17 LoanAuthorizer Interface

public interface LoanAuthorizer {

 boolean authorizeLoan(int amt);

 static LoanAuthorizer getAuthorizer(BankAccount ba) {

 LoanAuthorizer auth = new CollateralAuthorizer(ba);

 auth = new CreditScoreAuthorizer(auth);

 return new GoodCustomerAuthorizer(auth);

 }

}

 Decorated Iterators
The end of Chapter 6 discussed collection streams and how their filter and

map methods transform one stream to another. You can use decorators to

do something similar with iterators. In particular, you can create decorator

Chapter 8 DeCorators

289

classes MapIterator and FilterIterator that transform one iterator

into another one. MapIterator transforms the value of each element in

its component iterator, returning an iterator of those transformed values.

FilterIterator filters its component iterator, returning an iterator

containing the elements that satisfy the given predicate.

Before looking at the code for these classes it will be helpful to examine

how they will be used. The IteratorTest class of Listing 8-19 contains two

examples. The first example converts the strings having length between

2 and 3 to uppercase and prints them. The second example prints the

maximum length of the strings having length between 2 and 3.

Listing 8-19. The IteratorTest Class

public class IteratorTest {

 public static void main(String[] args) {

 Collection<String> c = Arrays.asList("a", "bb",

 "ccc", "dddd");

 // Print the strings whose length is between 2 and 3

 // in uppercase.

 Iterator<String> i1, i2, i3, i4;

 i1 = c.iterator();

 i2 = new FilterIterator<String>(i1, s->s.length() > 1);

 i3 = new FilterIterator<String>(i2, s->s.length() < 4);

 i4 = new MapIterator<String,String>(i3,

 s->s.toUpperCase());

 while (i4.hasNext()) {

 String s = i4.next();

 System.out.println(s);

 }

Chapter 8 DeCorators

290

 // Print the maximum length of those strings.

 Iterator<String> j1, j2, j3;

 Iterator<Integer> j4;

 j1 = c.iterator();

 j2 = new FilterIterator<String>(j1, s->s.length() > 1);

 j3 = new FilterIterator<String>(j2, s->s.length() < 4);

 j4 = new MapIterator<String,Integer>(j3, s->s.length());

 int max = -1;

 while (j4.hasNext()) {

 Integer n = j4.next();

 if (n > max)

 max = n;

 }

 System.out.println("The max length is " + max);

 }

}

In the first example, the iterator denoted by variable i1 contains the

four strings {“a,” “bb,” “ccc,” “dddd”}. The iterator i2 restricts i1 to strings

that are more than one character long, that is {“bb,” “ccc,” “dddd”}. Iterator

i3 restricts i2 to strings that are less than four characters long, that is {“bb,”

“ccc”}. Iterator i4 converts those values to uppercase, that is {“BB,” “CCC”}.

The code then uses the standard idiom to traverse i4 and print its elements.

The second example is similar. Iterator j4 contains the lengths of those

strings whose length is between two and three. The code traverses j4 to

find the maximum length and prints it.

It is now time to look at the code for the two iterator classes. The code

for MapIterator appears in Listing 8-20. Note how this class makes use

of its component iterator. The hasNext method calls the component’s

hasNext method and returns the value it returned. The next method calls

the component’s next method, uses the given function to transform that

value, and returns the transformed value.

Chapter 8 DeCorators

291

Listing 8-20. The MapIterator Class

public class MapIterator<T,R> implements Iterator<R> {

 private Iterator<T> iter;

 private Function<T,R> f;

 public MapIterator(Iterator<T> iter, Function<T,R> f) {

 this.iter = iter;

 this.f = f;

 }

 public boolean hasNext() {

 return iter.hasNext();

 }

 public R next() {

 T t = iter.next();

 return f.apply(t);

 }

}

The code for FilterIterator appears in Listing 8-21. This class uses

its component iterator a bit more intricately. The issue is that its hasNext

method must read ahead through the component iterator in order to

determine if there is another value that satisfies the filter. If a satisfying

value is found then hasNext stores it in the variable nextvalue, which will

be returned when the next method is called.

Listing 8-21. The FilterIterator Class

public class FilterIterator<T> implements Iterator<T> {

 private Iterator<T> iter;

 private Predicate<T> pred;

 private T nextvalue;

 private boolean found = false;

Chapter 8 DeCorators

292

 public FilterIterator(Iterator<T> iter,

 Predicate<T> pred) {

 this.iter = iter;

 this.pred = pred;

 }

 public boolean hasNext() {

 while (!found && iter.hasNext()) {

 T t = iter.next();

 if (pred.test(t)) {

 nextvalue = t;

 found = true;

 }

 }

 return found;

 }

 public T next() {

 hasNext(); // just to be safe

 if (!found)

 throw new NoSuchElementException();

 found = false;

 return nextvalue;

 }

}

These decorated iterators are remarkably efficient. This efficiency

stems from the fact that the FilterIterator and MapIterator objects do

not pre-calculate their values. Instead, they get their values on demand

by querying their component iterators. Note that each decorator class

traverses its component iterator once. Consequently, traversing any

decorated iterator will traverse its base iterator exactly once, no matter

how many decorations it has!

Chapter 8 DeCorators

293

For an example, consider iterator i4 in Listing 8-19. The loop that

prints its elements requires just a single pass through the underlying

collection of strings. The sequence diagram shown in Figure 8-5 can help

to clarify this fact. This diagram displays the four communicating iterators

of Listing 8-19, one per column. The rows denote a timeline of the method

calls between these iterators.

This diagram shows the sequence of calls required to retrieve the first

value from iterator i4. The main method begins by calling hasNext at step 1

and receives the return value true at step 16. It then calls next at step 17

and receives “BB” at step 20.

Figure 8-5. Sequence diagram for Listing 8-19

Chapter 8 DeCorators

294

The behavior of each iterator can be observed by following the

sequence of arrows attached to its column. The behavior of i2 is especially

interesting. In order to respond to the hasNext method, it needs to

repeatedly call i1.next() until i1 returns a value that satisfies i2’s

predicate. The diagram shows that the first value returned, “a,” did not

satisfy the predicate, but the second value “bb” did.

As an aside, you might have noticed that FilterIterator and

MapIterator do not have a common abstract wrapper class and thus

do not strictly conform to the decorator pattern. MapIterator is the

culprit because it wraps an object of type Iterator<T> but implements

Iterator<R>. Since the elements of the mapped iterator have a different

type from its component iterator, there is no way to choose a type for

the common wrapper class.

 Implementing Collection Streams
The FilterIterator class transforms an iterator into another iterator that

generates a subset of its elements. This transformation is reminiscent of

the filter method of the Stream interface from Listing 6-35. Similarly,

the MapIterator class is reminiscent of the map method of Stream. This

resemblance is not coincidental. This section shows how decorated

iterators form the foundation of Stream implementations.

The designers of the Java library did an amazing job of hiding the

implementation of collection streams. Consider for example the stream

code in Listing 8-22. The collection’s stream method returns an object

that implements Stream but whose class is unknown. Similarly, the results

of the filter and map methods are also objects of unknown classes that

implement Stream.

Chapter 8 DeCorators

295

Listing 8-22. Example Stream Code

Collection<String> c = Arrays.asList("a", "bb", "ccc");

Stream<String> s = c.stream()

 .filter(s->s.length() == 2)

 .map(s->s.toUpperCase());

s.forEach(v -> System.out.println(v)); // prints "BB"

The Java library implementation of the Stream classes is to be

commended for its encapsulation. However, this encapsulation makes

it difficult to study the techniques used to implement streams.

Consequently, I have written a stripped-down version of Stream, called

SimpleStream. The class SimpleStream contains five of the methods

described in Chapter 6: iterator, forEach, filter, map, and reduce.

SimpleStream differs from Stream in that it is a class, not an interface. It

has a single constructor, whose argument is an iterator.

The class SimpleStreamTest illustrates the use of the SimpleStream

class. Its code appears in Listing 8-23. It performs the same two tasks as in

Listing 8-19, using streams instead of iterators. The first stream selects the

strings having length between two and three, converts them to uppercase,

and prints them. The second stream selects the strings having length

between two and three, converts each to its length, finds the maximum,

and prints it.

Listing 8-23. The SimpleStreamTest Class

public class SimpleStreamTest {

 public static void main(String[] args) {

 Collection<String> c = Arrays.asList("a", "bb",

 "ccc", "dddd");

Chapter 8 DeCorators

296

 new SimpleStream<String>(c.iterator())

 .filter(s->s.length() > 1)

 .filter(s->s.length() < 4)

 .map(s->s.toUpperCase())

 .forEach(s->System.out.println(s));

 Integer max =

 new SimpleStream<String>(c.iterator())

 .filter(s->s.length() > 1)

 .filter(s->s.length() < 4)

 .map(s->s.length())

 .reduce(0, (i1, i2)->Math.max(i1, i2));

 System.out.println("The max length is " + max);

 }

}

The code for SimpleStream appears in Listing 8-24. Each SimpleStream

object wraps an iterator. (In other words, SimpleStream is an adapter class

that transforms an iterator to a collection stream.) The filter and map

methods decorate the iterator and return a new SimpleStream object that

wraps the decorated iterator. The forEach and reduce methods perform

their actions by traversing the iterator. The reduce method uses the

reduction algorithm of Listing 6-43.

Listing 8-24. The SimpleStream Class

public class SimpleStream<T> {

 Iterator<T> iter;

 public SimpleStream(Iterator<T> iter) {

 this.iter = iter;

 }

Chapter 8 DeCorators

297

 public SimpleStream<T> filter(Predicate<T> pred) {

 Iterator<T> newiter =

 new FilterIterator<T>(iter, pred);

 return new SimpleStream<T>(newiter);

 }

 public <R> SimpleStream<R> map(Function<T,R> f) {

 Iterator<R> newiter = new MapIterator<T,R>(iter, f);

 return new SimpleStream<R>(newiter);

 }

 public void forEach(Consumer<T> cons) {

 while (iter.hasNext()) {

 T t = iter.next();

 cons.accept(t);

 }

 }

 public T reduce(T identity, BinaryOperator<T> f) {

 T result = identity;

 while (iter.hasNext()) {

 T t = iter.next();

 result = f.apply(result, t);

 }

 return result;

 }

}

The efficiency of the decorated iterators carries over to the

SimpleStream methods. The filter and map methods construct a new

decorated iterator and do not perform any traversal. The forEach and

reduce methods traverse the wrapped decorated iterator, which will

always entail just a single iteration through the underlying collection.

Chapter 8 DeCorators

298

 Decorated Input Streams
Decorators also play a prominent role in the Java byte-stream classes

(which, you should recall, are completely unrelated to the collection streams

of the previous section). Consider again the abstract class InputStream.

This class was discussed in Chapter 3, along with its subclasses

FileInputStream, PipedInputStream, and ByteArrayInputStream. This

chapter examines some of the decorator subclasses of InputStream.

The class FilterInputStream is the abstract InputStream

wrapper. Three of its decorator subclasses are BufferedInputStream,

ProgressMonitorInputStream, and CipherInputStream. Figure 8-6 gives the

corresponding class diagram. Note how it conforms to the decorator pattern.

The following subsections discuss these FilterInputStream subclasses.

Figure 8-6. The InputStream decorator classes

Chapter 8 DeCorators

299

 Buffered Input Streams
Listing 8-25 gives the code for a class InputStreamEfficiency that

illustrates three ways to read a file. Each of these ways is implemented by a

method that returns the number of milliseconds it took to read the file.

Listing 8-25. The InputStreamEfficiency Class

public class InputStreamEfficiency {

 public static void main(String[] args) throws IOException {

 String src = "mobydick.txt";

 long t1 = readFileUnbuffered(src);

 long t2 = readFileArrayBuffer(src);

 long t3 = readFileDecoratorBuffer(src);

 System.out.println("Unbuffered time: " + t1);

 System.out.println("Array Buffer time: " + t2);

 System.out.println("Decorator Buffer time: " + t3);

 }

 ... // code for the three methods goes here

}

The code for the method readFileUnbuffered appears in Listing 8-26.

The method reads the input stream according to the standard idiom, using

the no-arg read method to read each byte individually. Unfortunately, this

idiom is a very inefficient way to read bytes from a file. The issue is that

each call to read results in a call to the operating system, and OS calls are

time consuming.

Listing 8-26. The readFileUnbuffered Method

public static long readFileUnbuffered(String src)

 throws IOException {

 long begintime = System.currentTimeMillis();

Chapter 8 DeCorators

300

 try (InputStream is = new FileInputStream(src)) {

 int x = is.read();

 while (x >= 0) {

 byte b = (byte) x;

 // process b ...

 x = is.read();

 }

 }

 return System.currentTimeMillis() - begintime;

}

The readFileArrayBuffer method addresses this issue by reading the

bytes of its underlying stream an array at a time. This technique is called

buffering and the array is called a buffer. The code for the method appears

in Listing 8-27. It has two nested loops. The outer loop calls the 1-arg read

method to fill its array with bytes, repeating until the underlying stream

has been completely read. The inner loop processes each byte in the array.

This use of buffering results in a remarkable increase in efficiency. On my

computer and using a 100-byte array, this method is about 100 times faster

than readFileUnbuffered.

Listing 8-27. The readFileArrayBuffer Method

public static long readFileArrayBuffer(String src)

 throws IOException {

 long begintime = System.currentTimeMillis();

 try (InputStream is = new FileInputStream(src)) {

 byte[] a = new byte[100];

 int howmany = is.read(a);

 while (howmany > 0) {

 for (int pos=0; pos<howmany; pos++) {

Chapter 8 DeCorators

301

 byte b = a[pos];

 // process b ...

 }

 howmany = is.read(a);

 }

 }

 return System.currentTimeMillis() - begintime;

}

Although buffering can significantly improve execution time, it also

adds complexity to the code. In particular, the readFileArrayBuffer

method needs two nested loops to read bytes from the input stream and

its code needs to be carefully crafted to ensure that the buffer is managed

correctly.

The readFileDecoratorBuffer method in Listing 8-28 uses the

decorator class BufferedInputStream from the Java library to perform the

buffering automatically. A BufferedInputStream object stores an array

of bytes internally. It initially fills the array with bytes from its component

stream by using a single call to read. When a client calls a read method,

the BufferedInputStream object extracts the next byte(s) from the array. If

the array runs out of bytes then the object automatically refills it.

The interesting feature of Listing 8-28 is that it uses the standard

idiom to read its input stream. The code is simple, but also efficient. The

BufferedInputStream decorator performs the buffering without the

client’s knowledge. The running time of this method on my computer is

comparable to that of readFileArrayBuffer.

Chapter 8 DeCorators

302

Listing 8-28. The readFileDecoratorBuffer Method

public static long readFileDecoratorBuffer(String src)

 throws IOException {

 long begintime = System.currentTimeMillis();

 try (InputStream is = new FileInputStream(src);

 InputStream bis = new BufferedInputStream(is)) {

 int x = bis.read();

 while (x >= 0) {

 byte b = (byte) x;

 // process b ...

 x = bis.read();

 }

 }

 return System.currentTimeMillis() - begintime;

}

 Progress Monitoring
Another InputStream decorator subclass is ProgressMonitorInputStream.

This decorator does not affect how the bytes are read. Instead, its

“decoration” is to display a window containing a progress bar. Listing

8-29 gives code for the class ProgressMonitorFileRead, which uses a

ProgressMonitorInputStream to decorate a FileInputStream.

Listing 8-29. The ProgressMonitorFileRead Class

public class ProgressMonitorFileRead {

 public static void main(String[] args) throws IOException {

 String src = "mobydick.txt";

 String msg = "reading " + src;

Chapter 8 DeCorators

303

 try (InputStream is = new FileInputStream(src);

 InputStream pis = new ProgressMonitorInputStream(

 null, msg, is)) {

 int x = pis.read();

 while (x >= 0) {

 byte b = (byte) x;

 // process b ...

 x = pis.read();

 }

 }

 }

}

The ProgressMonitorInputStream constructor has three arguments.

The first is a pointer to the parent window of the progress monitor window.

The value is null in Listing 8-29 because the program is not running in a

GUI environment. The second argument is the label to be displayed with

the progress bar. In this example the label is “reading mobydick.txt.” The

third is a reference to the input stream being decorated. Figure 8-7 displays

a screenshot of the progress monitor window from my computer.

Figure 8-7. A progress monitor window

Chapter 8 DeCorators

304

The ProgressMonitorInputStream decorator is responsible for

monitoring the progress of reading its wrapped input stream and

displaying a progress bar if warranted. Its constructor calls the available

method of the wrapped stream, which returns its best guess as to the total

number of bytes remaining in the stream. Each call to read repeats the

call to available and compares its current value to the initial value. If that

ratio is sufficiently high, it redisplays the progress window.

 Cipher Input Streams
Consider the program EncryptDecrypt from Listing 3-12. Its encrypt method

implemented a simple Caesar cipher: It read each byte of its input stream,

added a fixed offset, and wrote the resulting byte to the output stream.

There are two reasons why this program is unsatisfactory. First,

Caesar ciphers are easy to crack; any practical situation would require a

more sophisticated algorithm. Second, the programmer must write the

encryption code explicitly, and code for sophisticated cipher algorithms

can be difficult to write. The Java library class CipherInputStream solves

both of these problems.

CipherInputStream is a decorator class. Its constructor has an

argument that specifies the desired cipher algorithm. If you wrap

an input stream with a CipherInputStream then its bytes will be

encrypted (or decrypted) as they are read. That is, the encryption

occurs as part of the decoration. Listing 8-30 gives the code for the class

DecoratedEncryptDecrypt, which illustrates the use of a cipher input

stream. Differences from EncryptDecrypt are in bold.

Listing 8-30. The DecoratedEncryptDecrypt Class

public class DecoratedEncryptDecrypt {

 public static void main(String[] args) throws Exception {

 KeyGenerator kg = KeyGenerator.getInstance("DES");

 kg.init(56); // DES uses 56-bit keys

Chapter 8 DeCorators

305

 SecretKey key = kg.generateKey();

 encrypt("mobydick.txt", "encrypted.txt", key,

 Cipher.ENCRYPT_MODE);

 encrypt("encrypted.txt", "decrypted.txt", key,

 Cipher.DECRYPT_MODE);

 }

 private static void encrypt(String source, String output,

 SecretKey key, int mode) throws Exception {

 Cipher c = Cipher.getInstance("DES");

 c.init(mode, key);

 try (InputStream is = new FileInputStream(source);

 InputStream cis = new CipherInputStream(is, c);

 OutputStream os = new FileOutputStream(output)) {

 int x = cis.read();

 while (x >= 0) {

 byte b = (byte) x;

 os.write(b);

 x = cis.read();

 }

 }

 }

}

The CipherInputStream constructor requires a Cipher object, which

embodies the encryption algorithm. Different cipher algorithms require

different specifications. The class SecretKey creates the 56-byte key

required by the DES algorithm.

Note that the encrypt method once again uses the standard idiom to

read the file. The CiphierInputStream decorator automatically transforms

its input bytes by either encrypting or decrypting them, depending on the

value of the mode parameter.

Chapter 8 DeCorators

306

 Decorator Transparency
Another way that a decorator class can enhance the functionality of

its component object is to implement new methods. For example, the

decorator classes PushbackInputStream and PushbackReader implement

the method unread. This method puts a specified byte (or character)

onto the input stream so that the next call to read will return it before

continuing with the rest of the stream.

As an example, Listing 8-31 gives the code for a method openAndSkip,

which opens a text file and skips over any leading whitespace. The problem

with writing such a method is that the only way to know that you have

finished reading the whitespace is to read a non-whitespace character. You

need the pushback reader to put that non-whitespace character back on

the stream for you.

Listing 8-31. A Method to Open a File, Skipping Initial Whitespace

public Reader openAndSkip(String f) throws IOException {

 Reader r = new FileReader(f);

 PushbackReader pr = new PushbackReader(r);

 skipWhitespace(pr);

 return pr;

}

private void skipWhitespace(PushbackReader pr) {

 int x = pr.read();

 while (x >= 0) {

 char c = (char) x;

 if (!Character.isWhitespace(c)) {

 pr.unread(c); // put c back on the input stream

 return;

 }

Chapter 8 DeCorators

307

 x = pr.read();

 }

}

The unread method is not defined in Reader. Consequently, the

variable pr in Listing 8-31 must have the type PushbackReader. (If it had

the type Reader, then its call to unread would not compile.) The helper

method skipWhitespace is therefore not transparent because it needs to

know that the reader being passed to it is a pushback reader.

For another example of decorator classes that implement new

methods, consider again BufferedInputStream and BufferedReader.

These classes implement two methods for rereading portions of a stream:

the method mark, which marks a location in the stream; and the method

reset, which repositions the stream at the marked location.

For an example use of these methods, consider the following task:

given a text file and an integer N, write a program DoubledChars that finds

a character that appears twice in the file separated by N characters. For

example, if N=0 then the program is looking for doubled characters in the

text, as in “...aa...”; if N=1 then the program is looking for doubled characters

with one character in between, as in “...aba...”.

The code for DoubledChars appears in Listing 8-32. The main method

reads the characters from the file, passing each one to the check method.

The check method reads the next N+1 characters. If the last character read

matches the given one then the method prints that segment of the file.

Note how the check method marks the position of the stream when it is

called and resets the stream to that position when it returns.

Listing 8-32. The DoubledChars Class

public class DoubledChars {

 public static final int N = 1;

 public static void main(String[] args) throws IOException {

Chapter 8 DeCorators

308

 try (Reader r = new FileReader("mobydick.txt");

 Reader br = new BufferedReader(r)) {

 int x = br.read(); // For each char,

 while (x >= 0) {

 char c = (char) x;

 check(br, c); // check the N+1st char after it.

 x = br.read();

 }

 }

 }

 private static void check(Reader r, char c)

 throws IOException {

 char[] a = new char[N+1];

 r.mark(N+1);

 int howmany = r.read(a);

 if (howmany == N+1 && a[N] == c) {

 System.out.print(c); System.out.println(a);

 }

 r.reset();

 }

}

Many Reader classes (such as FileReader) are only able to read their

characters once, and so they cannot implement mark and reset. However,

the decorator class BufferedReader can use its buffer to get around this

limitation. A call to its mark method sets the “mark location” to be the

current position in the buffer and a call to reset sets the buffer position

back to the saved mark location. Consequently, when characters are reread

following a reset, they will be taken from the buffer and not the underlying

reader. The argument to the mark method specifies the maximum size of

the buffer array. Without this limit, the buffer array could become too large

and generate unintended memory exceptions.

Chapter 8 DeCorators

309

Note that the argument to the check method in Listing 8-32 has the type

Reader and not BufferedReader. That is, the check method is transparent.

This transparency is possible because mark and reset are defined by

Reader.

But how can that be, given that some readers (such as file readers)

do not support mark and reset? The answer is that all readers must have

mark and reset methods; it is just that many of those methods throw an

exception if called. This possibility of throwing an exception is the price

the Java designers paid for achieving transparency.

The Java library has the method markSupported to help clients avoid

these exceptions. If a class can implement the mark and reset methods

then a call to markSupported returns true. If a class cannot implement

them then markSupported returns false and the mark and reset methods

throw exceptions. A client can call markSupported if it has any doubts

about whether a reader supports the methods.

For example, Listing 8-33 gives a variation of Listing 8-32 in which

the main method is replaced by a method printDoubleChars that takes

a Reader as an argument. Since printDoubleChars does not know what

kind of reader it has, it calls markSupported. If markSupported returns

false then the method wraps the reader in a BufferedReader object before

proceeding.

Listing 8-33. A Variant of the DoubledChars Class

public class DoubledChars {

 public static final int N = 1;

 public static void printDoubledChars(Reader r)

 throws IOException {

 if (!r.markSupported())

 r = new BufferedReader(r);

 int x = r.read(); // For each char,

Chapter 8 DeCorators

310

 while (x >= 0) {

 char c = (char) x;

 check(r, c); // check the N+1st char after it.

 x = r.read();

 }

 }

 // ... the check method is unchanged

}

Let’s stop to review the design implications of PushbackReader

and BufferedReader. Although both decorator classes implement new

methods, the Java library treats them very differently. The PushbackReader

method unread is not recognized by Reader, and clients that use

the method must do so non-transparently. On the other hand, the

BufferedReader methods mark and reset are part of Reader, and clients

can call the methods transparently. The downside to this transparency is

that a client must be careful to avoid generating exceptions.

These two design decisions can be summarized as a choice between

transparency and safety. There is no general rule that a designer can use to

make this choice; you have to consider each situation individually.

The Java library usually opts for safety. A big reason why the

library chose transparency for mark and reset is that those methods

are also supported by some of the nondecorator base classes, such as

ByteArrayInputStream, CharArrayReader, and StringReader. Each

of these classes store the stream in an underlying array. In effect, their

values are already buffered, so mark and reset are easily implemented.

Since mark and reset are supported by multiple classes, the designers

likely decided that they deserved inclusion in the InputStream API.

A final aspect of transparency concerns the order in which the

decorators of an object are composed. In a fully transparent design each

decorator class is independent of every other decorator class, and so the

order in which they are composed should not affect the correctness of

Chapter 8 DeCorators

311

the code. In practice however, a decorator class may have requirements

that cause certain orderings to fail. For example, suppose that you want to

create an input stream that supports the mark, reset, and unread methods.

Consider the following two statements:

 InputStream bis = new BufferedInputStream(is);

 PushbackInputStream pis = new PushbackInputStream(bis);

The class PushbackInputStream does not support mark and reset,

even if its underlying input stream does. Thus variable pis will support

unread but not mark and reset. On the other hand, if you interchange the

declarations of bis and pis then bis will support mark and reset but not

unread. In fact, there is no way for an input stream (or reader) to support

mark, reset, and unread.

For another example, suppose that you want to add a progress monitor

to a buffered input stream. You write the following statements:

 InputStream bis = new BufferedInputStream(is);

 InputStream pmis = new ProgressMonitorInputStream(bis);

The class ProgressMonitorInputStream, unlike PushbackInputStream,

supports mark and reset when its underlying input stream does. Thus

variable pmis supports mark and reset. Interchanging the declarations of bis

and pmis does not change the functionality of the decorated input stream.

On the other hand, suppose that you want to add a progress monitor to

a cipher input stream. In this case, the following ordering works.

 InputStream pmis = new ProgressMonitorInputStream(is);

 InputStream cis = new CipherInputStream(pmis, cipher);

However, the following ordering, which interchanges the declarations

of pmis and cis, will not work.

 InputStream cis = new CipherInputStream(is, cipher);

 InputStream pmis = new ProgressMonitorInputStream(cis);

Chapter 8 DeCorators

312

The problem is that ProgressMonitorInputStream calls the available

method of its underlying stream, which tells it how many bytes remain.

But CipherInputStream cannot accurately know how many characters will

result from its encoding, so its available method always returns 0. Thus,

pmis believes that the reading has finished and will not display the monitor

window.

The lesson here is that decorator transparency is an elusive goal. At

first glance the enhancements provided by the input stream decorators

seem to be independent of each other, but they interact in subtle ways. If

a programmer is not aware of these interactions then “mysterious” bugs

are likely to occur. The more that a designer can approach decorator

transparency, the easier it will be for the users of these classes.

 Summary
A decorator class is a wrapper that implements the same interface as the

class that it wraps. The purpose of this wrapping is to alter the functionality

of the wrapped object, either by enhancing the behavior of its existing

methods or providing new ones. Decorators embrace the spirit of the

Open/Closed rule—by decorating a class, you can change how the class

works without having to make any modifications to it.

The decorator pattern indicates how to organize the decorators

for a given interface. All decorators should have a common abstract

superclass to manage the wrapping and provide default implementations

of the interface methods. Each decorator class will extend this common

superclass and provide implementations of the methods that it wishes

to enhance. The chain of command pattern is a special instance of the

decorator pattern in which the decorators perform tasks instead of calculate

values.

Chapter 8 DeCorators

313

When designing decorator classes, you must consider the issue of

transparency. Ideally, a client should be able to use an InputStream or

Reader object without knowing its class, and should be able to compose

decorators without having to consider their possible interactions. A

designer must recognize the possibility of conflict between different

decorators so as to better analyze the tradeoffs involved.

Chapter 8 DeCorators

315© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_9

CHAPTER 9

Composites
Chapter 8 examined decorators, which are wrappers that implement the

same interface as the object they wrap. This chapter examines composite

objects. A composite object is similar to a decorator except that it wraps

multiple objects, each of which implements the same interface as itself.

This seemingly small distinction makes a big difference in the structure of

a composite and how it is used. Composite objects correspond to trees and

composite methods tend to involve tree traversals.

This chapter presents three examples of composites: predicates,

graphical user interfaces (GUIs), and cookbook recipes. These examples

share a common class design known as the composite pattern. They also

have some functional differences that illustrate the different choices a

designer faces.

 Predicates as Composites
A predicate is a mathematical expression that evaluates to true or false.

Given two predicates, you can create another, larger predicate by applying

the operator and or or to them. This larger predicate is called a composite

and the two smaller predicates are its components. You can continue this

process for as long as you like, building up larger and larger composite

predicates. A noncomposite predicate is called a basic predicate.

316

For example, Listing 9-1 displays a composite predicate that is

composed of three basic predicates. It returns true if n is less than 20 and

divisible by 2 or 3.

Listing 9-1. A Composite Predicate

n<20 and (n%2=0 or n%3=0)

A composite predicate can be represented as a tree whose internal

nodes are the operators {and, or} and whose leaves are basic predicates.

Figure 9-1 depicts the predicate tree for Listing 9-1.

A Java predicate is an object that implements the interface Predicate,

as discussed in Chapter 6. A basic predicate is typically created via a

lambda expression. For example, Listing 9-2 gives Java statements to

implement the three basic predicates in Listing 9-1.

Listing 9-2. Basic Predicates in Java

Predicate<Integer> pred1 = n -> n < 20;

Predicate<Integer> pred2 = n -> n%2 == 0;

Predicate<Integer> pred3 = n -> n%3 == 0;

One way to support composite predicates in Java is to create a class

for each operator. Call these classes AndPredicate and OrPredicate. Each

class wraps two component predicates and implements Predicate. The

test method for AndPredicate returns true if both components return

Figure 9-1. The predicate tree for Listing 9-1

Chapter 9 Composites

317

true, and the test method for OrPredicate returns true if at least one

component returns true. For coding convenience I will also create the

class CompositePredicate to be the common superclass of AndPredicate

and OrPredicate that manages their wrapped objects. Listing 9-3 gives

the code for CompositePredicate and Listing 9-4 gives the code for

AndPredicate. The code for OrPredicate is similar and is omitted.

Listing 9-3. The CompositePredicate Class

public abstract class CompositePredicate<T>

 implements Predicate<T> {

 protected Predicate<T> p1, p2;

 protected CompositePredicate(Predicate<T> p1,

 Predicate<T> p2) {

 this.p1 = p1;

 this.p2 = p2;

 }

 public abstract boolean test(T t);

}

Listing 9-4. The AndPredicate Class

public class AndPredicate<T> extends CompositePredicate<T> {

 public AndPredicate(Predicate<T> p1, Predicate<T> p2) {

 super(p1, p2);

 }

 public boolean test(T t) {

 return p1.test(t) && p2.test(t);

 }

}

Chapter 9 Composites

318

Figure 9-2 contains a class diagram that shows the relationship

between these Predicate classes. The three “BasicPredicate” classes

correspond to the anonymous classes created for pred1, pred2, and pred3

in Listing 9-2.

The class diagram looks very much like the decorator pattern. The

difference is that the wrapper class CompositePredicate wraps two objects

instead of one. To highlight this difference, the dependency arrow is

annotated with the optional cardinality label “2.”

The class CompositePredicateTest in Listing 9-5 illustrates the use

of composite predicates in Java. This code begins by creating the basic

predicates pred1, pred2, and pred3 as in Listing 9-2. It then implements

the composite predicate of Listing 9-1 in three different ways.

Listing 9-5. The CompositePredicateTest Class

public class CompositePredicateTest {

 public static void main(String[] args) {

 Predicate<Integer> pred1 = n -> n < 20;

Figure 9-2. The class diagram for Predicate

Chapter 9 Composites

319

 Predicate<Integer> pred2 = n -> n%2 == 0;

 Predicate<Integer> pred3 = n -> n%3 == 0;

 // First: use AndPredicate and OrPredicate objects

 Predicate<Integer> pred4 =

 new OrPredicate<Integer>(pred2, pred3);

 Predicate<Integer> pred5 =

 new AndPredicate<Integer>(pred1, pred4);

 printUsing(pred5);

 // Second: use the 'or' and 'and' methods separately

 Predicate<Integer> pred6 = pred2.or(pred3);

 Predicate<Integer> pred7 = pred1.and(pred6);

 printUsing(pred7);

 // Third: compose the 'or' and 'and' methods

 Predicate<Integer> pred8 = pred1.and(pred2.or(pred3));

 printUsing(pred8);

 }

 private static void printUsing(Predicate<Integer> p) {

 for (int i=1; i<100; i++)

 if (p.test(i))

 System.out.print(i + " ");

 System.out.println();

 }

}

The first way uses the AndPredicate and OrPredicate classes.

Predicate pred4 is an OrPredicate object and predicate pred5 is an

AndPredicate object. The diagram of Figure 9-3 depicts these five

Predicate objects in memory. The diagram is similar to the memory

diagram of Figure 8-3, in that each object is represented by a rectangle and

Chapter 9 Composites

320

the values of its global variables are shown within its rectangle. Note how

the object references form a tree that corresponds exactly to the predicate

tree of Figure 9-1.

After creating the predicate pred5, the code of Listing 9-5 passes pred5

to its printUsing method, which calls the predicate’s test method on

the integers from 1 to 100. Figure 9-4 depicts a sequence diagram that

traces the execution of the expression pred5.test(9). Step 2 calls the

test method of pred5’s first component, pred1, which returns true. Step

4 then calls test on its second component, pred4. In order to determine

its response, pred4 calls test on its two components. Component pred2

returns false but pred3 returns true; thus pred4 can return true. Since both

components of pred5 have now returned true, pred5 returns true.

Figure 9-3. The memory representation of a composite predicate

Chapter 9 Composites

321

Note how the call to test(9) gets passed from the root of the predicate

tree down to its leaves. In fact, this sequence of method calls corresponds

to a postorder traversal of the tree.

The classes AndPredicate and OrPredicate are not part of the Java

library. Instead, the Predicate interface has the default methods and and

or, which make it possible to create composite predicates without having

to create the composite objects yourself.

The use of these methods is illustrated in the second and third parts of

Listing 9-5. The variable pred6 returns true if either pred2 or pred3 is true,

and is functionally equivalent to pred4. Similarly, the variable pred7 is

functionally equivalent to pred5. The calls to the and and or methods can

also be composed, as shown by variable pred8.

Listing 9-6 shows how the and and or methods can be implemented.

The and method creates and returns an AndPredicate object that wraps

two objects: the current object and the object passed into the method. The

implementation of the or method is similar.

Figure 9-4. A sequence diagram for the expression pred5.test(9)

Chapter 9 Composites

322

Listing 9-6. A Reasonable Implementation of Predicate

public interface Predicate<T> {

 boolean test(T t);

 default Predicate<T> and(Predicate<T> other) {

 return new AndPredicate(this, other);

 }

 default Predicate<T> or(Predicate<T> other) {

 return new OrPredicate(this, other);

 }

}

The actual Java library implementation of these methods is slightly

different from Listing 9-6, and appears in Listing 9-7. The lambda

expressions define anonymous inner classes that are equivalent to

AndPredicate and OrPredicate. This code is quite elegant, as it eliminates

the need for explicit AndPredicate and OrPredicate classes.

Listing 9-7. The Actual Implementation of Predicate

public interface Predicate<T> {

 boolean test(T t);

 default Predicate<T> and(Predicate<T> other) {

 return t -> test(t) && other.test(t);

 }

 default Predicate<T> or(Predicate<T> other) {

 return t -> test(t) || other.test(t);

 }

}

Chapter 9 Composites

323

 Composite Objects in JavaFX
For a second example of composite objects, consider a library for building

GUI applications. When you create an application window, you often

structure its contents as a composite object. For an example, Figure 9-5

depicts a window that I created using the JavaFX library.

In JavaFX, a window’s content is constructed of nodes. The JavaFX

library has classes to implement several types of node. This example

window uses two types of node: controls and panes.

A control is a node that can be manipulated by the user. All controls

in JavaFX extend the abstract class Control. The controls in the example

window belong to the classes Label, ChoiceBox, CheckBox, and Button.

A pane is a node that can contain other nodes, called its children. Each

pane is responsible for determining where its child nodes are placed on

the screen. This is called the pane’s layout strategy.

The JavaFX library has several pane classes, each with its own layout

strategy. They all extend the class Pane. The example window uses two of

them: HBox and VBox. An HBox pane lays out its children horizontally.

A VBox pane lays out its children vertically.

The window of Figure 9-5 has nine nodes: five controls and four panes.

Figure 9-6 depicts their layout.

Figure 9-5. A JavaFX window

Chapter 9 Composites

324

An alternative way to depict the structure of a window is to use a tree

whose interior nodes are the panes and whose leaf nodes are the controls.

This tree is called the window’s node hierarchy. Figure 9-7 depicts the node

hierarchy corresponding to Figure 9-6. The labels on these nodes correspond

to the variable names in the JavaFX class AccountCreationWindow, which is

the code that implements the window.

Figure 9-6. The nodes of Figure 9-5

Figure 9-7. The node hierarchy of Figure 9-6

Chapter 9 Composites

325

Listing 9-8 gives the code for AccountCreationWindow. As this code is

your first introduction to a JavaFX program, it is worth examining in detail.

JavaFX programs extend the library class Application and follow the

template pattern. The template class is Application, which has the public

method launch and the abstract strategy method start. The strategy class

that implements start is AccountCreationWindow.

Listing 9-8. The AccountCreationWindow Class

public class AccountCreationWindow extends Application {

 public void start(Stage stage) {

 Pane root = createNodeHierarchy();

 stage.setScene(new Scene(root));

 stage.setTitle("Bank Account Demo");

 stage.show();

 }

 public static void main(String[] args) {

 Application.launch(args);

 }

 private Pane createNodeHierarchy() {

 // see Listing 9-9

 }

}

This technique is very similar to the way that Thread uses the template

pattern (as you may recall from the end of Chapter 3). The difference is

that unlike Thread, a client cannot create an Application object by simply

calling the Application constructor. Instead, the static factory method

launch is responsible for creating the Application object and running it

in a new thread. The advantage of using a factory method is that it hides

the application thread from the client, thereby shielding the thread from

improper use.

Chapter 9 Composites

326

The launch method also creates a Stage object, which manages the

window’s frame. For example, the Stage method setTitle specifies the

string to be displayed in the window’s title bar. The launch method then calls

the application’s start method, passing the Stage object as the argument.

The start method of Listing 9-8 calls createNodeHierarchy to create

the node hierarchy. It passes the root of that hierarchy to a new Scene

object, and then sends that object to the stage via the setScene method.

Most of the code in AccountCreationWindow is devoted to creating the

node hierarchy. The code for the createNodeHierarchy method appears in

Listing 9-9.

Listing 9-9. The createNodeHierarchy Method

private Pane createNodeHierarchy() {

 VBox p3 = new VBox(8);

 p3.setAlignment(Pos.CENTER);

 p3.setPadding(new Insets(10));

 p3.setBackground(

 new Background(

 new BackgroundFill(Color.SKYBLUE,

 new CornerRadii(20), new Insets(0))));

 Label type = new Label("Select Account Type:");

 ChoiceBox<String> chbx = new ChoiceBox<>();

 chbx.getItems().addAll("Savings", "Checking",

 "Interest Checking");

 p3.getChildren().addAll(type, chbx);

 VBox p4 = new VBox(8);

 p4.setAlignment(Pos.CENTER);

 p4.setPadding(new Insets(10));

 CheckBox ckbx = new CheckBox("foreign owned?");

 Button btn = new Button("CREATE ACCT");

 p4.getChildren().addAll(ckbx, btn);

Chapter 9 Composites

327

 HBox p2 = new HBox(8);

 p2.setAlignment(Pos.CENTER);

 p2.setPadding(new Insets(10));

 p2.getChildren().addAll(p3, p4);

 VBox p1 = new VBox(8);

 p1.setAlignment(Pos.CENTER);

 p1.setPadding(new Insets(10));

 Label title = new Label("Create a New Bank Account");

 double size = title.getFont().getSize();

 title.setFont(new Font(size*2));

 title.setTextFill(Color.GREEN);

 p1.getChildren().addAll(title, p2);

 btn.setOnAction(event -> {

 String foreign = ckbx.isSelected() ? "Foreign " : "";

 String acct = chbx.getValue();

 title.setText(foreign + acct + " Account Created");

 });

 return p1;

}

The controls behave as follows. A Label object displays a string.

The string’s initial value is specified in the constructor, but its value

can be changed at any time by calling the setText method. A CheckBox

object displays a check box and a descriptive string. Its isSelected

method returns true if the box is currently selected and false otherwise.

A ChoiceBox object allows a user to select from a list of objects. The

getItems method returns that list, and the getValue method returns the

object chosen.

Chapter 9 Composites

328

A Button object has a label and performs an action when fired. Its

constructor specifies the label. The method setOnAction specifies its action.

The argument to setOnAction is an EventHandler object. Chapter 10 will

examine event handlers in more detail. For now, it suffices to know that this

event handler is specified by a lambda expression whose body contains the

code to execute when the button is clicked.

The lambda expression in Listing 9-9 calls the check box’s

isSelected and the choice box’s getValue methods to obtain the type

of the new account and its foreign ownership status. It then constructs

a message describing these choices and sets the text of the title label to

that message. In particular, if a user chooses the type “Checking,” checks

“is foreign,” and clicks the button, the title label will display “Foreign

Checking Account Created.”

You might be disappointed that clicking the button does not actually

create an account. The problem is that the window cannot create an

account without having a reference to a Bank object. Chapter 11 will

discuss the proper way to connect banking information to a window, so

you will need to wait until then.

Panes behave as follows. Each Pane object has the method

getChildren, which returns the list of its child nodes. A client can modify

the contents of the list at any time. Its setPadding method specifies the

number of pixels in the margin around the pane.

A pane’s setBackground method specifies its background. Pane p3

of AccountCreationWindow demonstrates its use. The BackgroundFill

object specifies a solid-colored background. (Another possibility is to use

a BackgroundImage object, which specifies an image as the background.)

The three arguments to BackgroundFill specify the color, the roundedness

of the corners, and the size of the margin around the background.

The constructors shown for VBox and HBox take one argument, which is

the number of pixels between their children. Their setAlignment method

specifies how the children should be aligned. Since not all Pane subclasses

support this method, it must be defined nontransparently in VBox and in HBox.

Chapter 9 Composites

329

Figure 9-8 shows the class diagram for the JavaFX Node classes

described in this section. This diagram deliberately omits a lot of JavaFX

classes, which makes it appear far simpler than it is in reality. This

simplicity makes it easier to understand the design principles underlying

JavaFX. A full discussion of the JavaFX node classes is outside the scope of

this book.

Figure 9-8. The Node class hierarchy

Chapter 9 Composites

330

Note how this class diagram is similar to the Predicate class diagram

of Figure 9-2. The base classes are the subclasses of Control. The wrapper

class is Pane and its subclasses are the recursive classes. The dependency

arrow from Pane to Node has the label “*” to indicate that a pane can wrap

an arbitrary number of nodes.

The Node interface declares many methods; the class diagram of

Figure 9-8 shows just three of them. Every node holds a string that can be

used as its id. By default, the id is the empty string. The method setId sets

the id and the method getId returns it.

Every node also needs to know its size and location. The method

getLayoutBounds returns a value of type Bounds. A Bounds object contains

the height and width of the node, as well as the coordinates of its top left

corner.

Controls and panes calculate their sizes differently. The size of a control

is determined by its properties. For example, a label’s size depends on the

text to be displayed and the size and type of its font. The size of a pane is

based on the sizes of its children plus any additional space determined by

the layout algorithm (such as the space between the children).

The getLayoutBounds method can be implemented as a postorder

traversal of the node hierarchy. The size of the root pane depends on the

sizes of its children, which depend on the sizes of their children, and so on

until the Control objects are reached.

For an illustration of the getLayoutBounds method, consider the class

PrintNodeInformation. Its code appears in Listing 9-10.

Listing 9-10. The Class PrintNodeInformation

public class PrintNodeInformation extends Application {

 private Label label;

 private ChoiceBox<String> chbx;

 private Button btn;

 private Pane p1, p2;

Chapter 9 Composites

331

 public void start(Stage stage) {

 createNodeHierarchy();

 stage.setScene(new Scene(p1));

 stage.setTitle("Bank Account Demo");

 stage.show();

 System.out.println("NODE\tWID HT");

 printNodeSize(label);

 printNodeSize(chbx);

 printNodeSize(p2);

 printNodeSize(btn);

 printNodeSize(p1);

 }

 public static void main(String[] args) {

 Application.launch(args);

 }

 private void printNodeSize(Node n) {

 Bounds b = n.getLayoutBounds();

 int w = (int) b.getWidth();

 int h = (int) b.getHeight();

 System.out.println(n.getId() + "\t" + w + " " + h);

 }

 private void createNodeHierarchy() {

 p2 = new VBox(10);

 p2.setId("p2");

 label = new Label("Select Account Type:");

 label.setId("label");

 chbx = new ChoiceBox<>();

 chbx.setId("chbox");

 chbx.getItems().addAll("Savings", "Checking",

 "Interest Checking");

Chapter 9 Composites

332

 p2.getChildren().addAll(label, chbx);

 p1 = new HBox(10);

 p1.setId("p1");

 btn = new Button("CREATE ACCT");

 btn.setId("button");

 p1.setPadding(new Insets(10));

 p1.getChildren().addAll(p2, btn);

 }

}

This code is a stripped-down version of AccountCreationWindow,

containing only two panes and three controls. It creates the window shown

in Figure 9-9.

Figure 9-9. The window created by PrintNodeInformation

The start method calls the method printNodeSize for each node in

the window. The printNodeSize method prints the id, height, and width

of the given node, based on the value returned by getLayoutBounds. The

output of the program appears in Listing 9-11.

Listing 9-11. The Output of PrintNodeInformation

NODE WID HT
label 132 17
chbox 149 27
p2 149 54
button 108 27

p1 287 74

Chapter 9 Composites

333

Let’s make sense of this output. First consider pane p2 and its children

label and chbox. These controls calculate their own sizes. The program

output asserts that chbox is a bit higher and wider than label, which

is borne out by the screenshot. Pane p2 is a VBox, which means that its

width should be the same as its widest child, which in this case is chbox.

The height of p2 is the sum of the heights of its children plus 10 pixels

to account for the space between them. These values are verified by the

program output.

Now consider pane p1 and its children p2 and btn. Pane p1 has 10-pixel

margins on all four sides. Thus its height and width will be an additional

20 pixels larger than the values calculated for its children. Pane p1 is an

HBox, so its height will be the maximum height of its children (which in this

case is the height of p2) plus 20 pixels for the margins. The width of p1 is

the sum of the widths of its children plus 10 pixels for the space between

them plus 20 pixels for the margins. These values are also verified by the

program output.

 The Composite Pattern
You have so far seen two examples of composite objects: Java predicates

and JavaFX nodes. Although these objects come from wildly different

domains, their class diagrams—as pictured in Figures 9-2 and 9-8—are

remarkably similar. This similarity is known as the composite pattern.

The composite pattern expresses the preferred way to create tree-

structured objects. Its class diagram appears in Figure 9-10. A tree

consists of objects of type Component. These components are either of

type CompositeComponent or BaseComponent. A BaseComponent object

has no children and will be a leaf of its tree. A CompositeComponent object

can have any number of children (thus the “*” label on its dependency

arrow) and will be in the interior of the tree.

Chapter 9 Composites

334

The Component interface specifies the methods that all

components will have; these methods are not shown in the diagram.

CompositeComponent is an abstract class that contains methods to modify a

composite object’s list of children.

The class diagram of the composite pattern is similar to that of the

decorator pattern. Their only difference is that a decorator class wraps

only one object, whereas a composite class can wrap multiple objects.

Consequently, decorators form a chain and composites form a tree.

This difference has a profound impact on how decorators and composites

are used. A decorator chain has a single endpoint, which is treated as

the primary object of the chain. The remaining objects on the chain are

“decorators” that enhance the behavior of this primary object. On the other

hand, a composite tree has multiple leaves, none of which is primary.

Instead, its primary object is the root of the tree. The root treats its children as

“assistants,” relying on them to help compute the answer to its methods. That

is why composite methods are often implemented as tree traversals.

Figure 9-10. The composite pattern

Chapter 9 Composites

335

The class CompositeComponent in Figure 9-10 contains two methods

for managing the children of a composite object. This design is one out of

many possible designs. For example, the JavaFX Pane class has the single

method getChildren to manage its children.

Moreover, the Predicate hierarchy has no child-management

methods. When a composite Predicate object is created, its children are

assigned by the constructor and there is no way to change those children

afterwards. Such a design is called static. Composite designs that have

methods to add and remove children are called dynamic.

A designer of a dynamic composite can decide to place the child-

management methods either in the composite interface or in the abstract

wrapper class. The choice shown in Figures 9-8 and 9-10 is to place the

methods in the wrapper class. This decision causes the methods to be

nontransparent. For example, consider the getChildren method in

JavaFX. This method is defined in Pane, which means that it cannot be

called by variables of type Node. Note that variables p1, p2, p3, and p4 in

Listing 9-9 belong to classes VBox and HBox, and not Node.

The alternative design is to move the modification methods to the

Component interface. This design achieves transparency, but at the cost of

safety. With such a design, a client could add a child to a base object even

though doing so would have no legitimate meaning.

Such a design is occasionally adopted, but usually as a last resort. One

such example occurs in the Java Swing library, which is a precursor to

JavaFX. In order to support legacy software, the control classes in Swing

were specified to be subclasses of Container, which is the class that

defines the add method. Consequently, the following code is legal Java:

 JButton b1 = new JButton("push me");

 JButton b2 = new JButton("where am I?");

 b1.add(b2);

Chapter 9 Composites

336

The add method places button b2 in the list of b1’s children. But since

b1 (justifiably) ignores this list, b2 will never be displayed. This sort of bug

can be quite difficult to uncover.

 A Cookbook Example
For a third example of the composite pattern, consider the task of writing a

program to manage the recipes in a cookbook. A recipe consists of a list of

ingredients and some directions. An ingredient can be a “basic food” such

as carrot, apple, or milk; alternatively, it can be the result of another recipe.

Figure 9-11 displays an example recipe.

The first order of business is to design the recipe classes. Since a recipe

can include other recipes as well as basic foods, the composite pattern

is indicated. Figure 9-12 gives a reasonable class diagram. It contains a

class for basic foods and a class for recipes. Both classes implement the

FoodItem interface. The Recipe class also has a dependency on FoodItem,

which denotes its list of ingredients.

Figure 9-11. An example recipe

Chapter 9 Composites

337

The FoodItem interface appears in Listing 9-12. It declares the three

abstract methods that BasicFood and Recipe must implement. The first

two methods denote properties of the food item: the method name returns

the name of the item and the method isVegan returns true if the food

contains no animal products. Each basic food has an explicit flag indicating

whether it is vegan; a recipe is vegan if all of its ingredients are vegan.

Listing 9-12. The FoodItem Interface

public interface FoodItem extends Iterable<FoodItem> {

 String name();

 boolean isVegan();

 Iterator<FoodItem> childIterator();

 default Iterator<FoodItem> iterator() {

 return new FoodIterator(this);

 }

}

Figure 9-12. The Cookbook class diagram

Chapter 9 Composites

338

The last two methods of FoodItem enable clients to examine the

components of a food item. The childIterator method returns an iterator

that contains the children of the given food item. If the item is a recipe then

the iterator contains its ingredients; if the item is a basic food then the iterator

will be empty. The iterator method returns an iterator that performs a

complete traversal of the tree rooted at a given object. The iterator method

is implemented as a default method of the interface, in terms of the class

FoodIterator. That class will be examined in the next section.

Listing 9-13 gives the code for BasicFood. The name of the food and its

vegan flag are passed to its constructor and the name and isVegan methods

return those values. The childIterator method returns an empty iterator

because basic foods do not have children.

Listing 9-13. The BasicFood Class

public class BasicFood implements FoodItem {

 private String name;

 private boolean isvegan;

 public BasicFood(String name, boolean isvegan) {

 this.name = name;

 this.isvegan = isvegan;

 }

 public String name() {

 return name;

 }

 public boolean isVegan() {

 return isvegan;

 }

 public Iterator<FoodItem> childIterator() {

 return Collections.emptyIterator();

 }

Chapter 9 Composites

339

 public String toString() {

 String veg = isvegan ? " (vegan)" : "";

 return name + veg;

 }

}

Listing 9-14 gives the code for Recipe. A Recipe object is a composite

whose children are the ingredients used in the recipe. The ingredients are

held in a map. The key of the map is the FoodItem object and its value is

the associated quantity. The method addIngredient adds the specified

ingredient to the map. I chose to put this method in Recipe (and not

FoodItem) because I preferred safety over transparency. The isVegan

method computes its value by checking the recipe’s ingredients. If it finds

an ingredient that is not vegan then it returns false; otherwise it returns

true. Note how the recursion causes this method to perform a tree traversal

though the recipe’s ingredient hierarchy. Finally, the childIterator

method returns the iterator associated with the map’s keys.

Listing 9-14. The Recipe Class

public class Recipe implements FoodItem {

 private String name;

 private Map<FoodItem,Integer> ingredients = new HashMap<>();

 private String directions;

 public Recipe(String name, String directions) {

 this.name = name;

 this.directions = directions;

 }

 public void addIngredient(FoodItem item, int qty) {

 ingredients.put(item, qty);

 }

Chapter 9 Composites

340

 public String name() {

 return name;

 }

 public boolean isVegan() {

 Iterator<FoodItem> iter = childIterator();

 while (iter.hasNext())

 if (!iter.next().isVegan())

 return false;

 return true;

 }

 public Iterator<FoodItem> childIterator() {

 return ingredients.keySet().iterator();

 }

 public int getQuantity(FoodItem item) {

 return ingredients.get(item);

 }

 public String toString() {

 String veg = isVegan() ? " (vegan)" : "";

 String result = "Recipe for " + name + veg + "\n";

 result += "Ingredients:";

 for (FoodItem item : ingredients.keySet()) {

 int qty = ingredients.get(item);

 result += "\t" + qty + " " + item.name() + "\n";

 }

 return result + "Directions: " + directions + "\n";

 }

}

Chapter 9 Composites

341

Listing 9-15 shows the code for a method addRecipes that illustrates

recipe creation. To create a recipe you first call the Recipe constructor,

passing in the recipe’s name and directions. Then you call the

addIngredient method for each ingredient. Note that the ingredient can

be either a BasicFood object or a Recipe object. The code assumes a global

variable cbook, which maps a String object to its associated Recipe object.

Listing 9-15. The addRecipes Method

private static void addRecipes() {

 Recipe dressing = new Recipe("dressing", "Mix well.");

 dressing.addIngredient(new BasicFood("oil", true), 4);

 dressing.addIngredient(new BasicFood("vinegar", true), 2);

 cbook.put("dressing", dressing);

 Recipe salad = new Recipe("salad",

 "Chop lettuce, add bacon. Pour dressing over it.");

 salad.addIngredient(new BasicFood("lettuce", true), 1);

 salad.addIngredient(new BasicFood("bacon", false), 6);

 salad.addIngredient(dressing, 1);

 cbook.put("salad", salad);

}

 Traversing a Composite Object
A composite object typically has methods that traverse the object’s

components. Examples are the method test in Predicate, the method

getLayoutBounds in Node, and the method isVegan in FoodItem. These

methods are called internal tree traversals because the traversal occurs

inside the methods without the knowledge or control of the client. The

concept is analogous to the concept of internal iteration discussed in

Chapter 6. These internal tree traversals, like internal iterators, are task

specific.

Chapter 9 Composites

342

This section is concerned with the question of whether the clients

of a composite should be able to perform customized tree traversals,

and if so, how. The Predicate interface, for example, was designed so

that customized traversals are not possible. The designers omitted any

method that would enable a client to examine the structure of a predicate,

meaning that there is no way to determine the base predicates of a given

Predicate object or even to tell if it is composite. The only way to traverse

a Predicate object is to call its test method.

On the other hand, a JavaFX client can perform customized

traversals of a Pane object by using its getchildren method. The class

NodeTraversal in Listing 9-16 provides an example. The class first

constructs the same JavaFX window as in Figure 9-9. It then calls two

methods that traverse the window's hierarchy: printAllNodes, which

prints the height and width of each node; and getWidestControl, which

returns the node corresponding to the widest control.

Listing 9-16. The NodeTraversal Class

public class NodeTraversal extends Application {

 ...

 public void start(Stage stage) {

 createNodeHierarchy(); // as in Listing 9-9 with root p1

 stage.setScene(new Scene(p1));

 stage.setTitle("Bank Account Demo");

 stage.show();

 System.out.println("NODE\tWID HT");

 printAllNodes(p1);

 Node n = getWidestControl(p1);

 System.out.println("The widest control is "+ n.getId());

 }

 ...

Chapter 9 Composites

343

 private void printAllNodes(Node n) {

 // see listing 9-17

 }

 private Node getWidestControl(Node n) {

 // see listing 9-18

 }

}

Listing 9-17 gives the code for printAllNodes. Its argument is a node

n, and it prints every node in the composite hierarchy rooted at n. It does

so by performing a preorder traversal of n. That is, it first prints the size

of n; then, if n is a pane, it calls printAllNodes recursively on each of n’s

children.

Listing 9-17. Printing the Components of a Node

private void printAllNodes(Node n) {

 // first print the node

 printNodeSize(n); // same as in Listing 9-10

 // then print its children, if any

 if (n instanceof Pane) {

 Pane p = (Pane) n;

 for (Node child : p.getChildren())

 printAllNodes(child);

 }

}

Listing 9-18 gives the code for getWidestControl. The structure of this

method is similar to printAllNodes. If the argument n is a control then it

is clearly the only control in its tree and thus the widest. If n is a pane then

the code calls getWidestControl recursively on its children and chooses

the widest of the returned objects.

Chapter 9 Composites

344

Listing 9-18. Calculating a Node’s Widest Control

private Node getWidestControl(Node n) {

 if (n instanceof Control)

 return n;

 Node widest = null;

 double maxwidth = -1;

 Pane p = (Pane) n;

 for (Node child : p.getChildren()) {

 Node max = getWidestControl(child);

 double w = max.getLayoutBounds().getWidth();

 if (w > maxwidth) {

 widest = max;

 maxwidth = w;

 }

 }

 return widest;

}

Although the getChildren method can be used in this way for

customized traversals of Node objects, it is somewhat unsuited for that

purpose. The method is defined in Pane, which means that it cannot be

used transparently. The result is that the code in listings 9-17 and 9-18

require if-statements and awkward type casts.

The traversal methods childIterator and iterator in the cookbook

example are defined in the FoodItem interface, and are thus better suited to

the writing of customized tree traversals. The Cookbook code in Listing 9-19

illustrates the use of these methods. Its main method creates some Recipe

objects and saves them in a map keyed by their name. It then calls methods

that perform traversals of the recipes.

Chapter 9 Composites

345

Listing 9-19. The Cookbook Class

public class Cookbook {

 private static Map<String,Recipe> cbook = new HashMap<>();

 public static void main(String[] args) {

 addRecipes(); // from Listing 9-15

 System.out.println("\n---VEGAN RECIPES---");

 printRecipes(r->r.isVegan());

 System.out.println("\n---RECIPES USING 4+ ITEMS---");

 printRecipes(r -> foodsUsed1(r)>=4);

 printRecipes(r -> foodsUsed2(r)>=4);

 printRecipes(r -> foodsUsed3(r)>=4);

 System.out.println("\n---RECIPES COMPRISING SALAD---");

 printRecipesUsedIn1(cbook.get("salad"));

 printRecipesUsedIn2(cbook.get("salad"));

 System.out.println("\n---SHOPPING LIST FOR SALAD---");

 printShoppingList(cbook.get("salad"));

 }

 ... // the remaining methods are in listings 9-20 to 9-26

}

Listing 9-20 shows the printRecipes method. For each recipe in

the cookbook, it prints the recipe if it satisfies the given predicate. The

Cookbook class calls printRecipes four times, each with a different

predicate. The first predicate calls the recipe’s isVegan method, which

performs an internal tree traversal. The remaining three predicates call

variations of the method foodsUsed, which use an external tree traversal

to count the basic foods used in a recipe. The code for those methods

appears in Listings 9-21 to 9-23.

Chapter 9 Composites

346

Listing 9-20. The printRecipes Method

private static void printRecipes(Predicate<Recipe> pred) {

 for (Recipe r : cbook.values())

 if (pred.test(r))

 System.out.println(r);

}

The code for method foodsUsed1 appears in Listing 9-21. It calls

the childIterator method to explicitly examine the ingredients of the

specified food item. If the ingredient is a basic food then it increments

the count. If an ingredient is a recipe then it recursively calls foodsUsed1

on that recipe. Note how the transparency of the childIterator method

simplifies the code compared with the methods in the JavaFX example.

Listing 9-21. The foodsUsed1 Method

private static int foodsUsed1(FoodItem r) {

 int count = 0;

 if (r instanceof BasicFood)

 count = 1;

 else {

 Iterator<FoodItem> iter = r.childIterator();

 while (iter.hasNext())

 count += foodsUsed1(iter.next());

 }

 return count;

}

The method foodsUsed2 uses the iterator method to examine the

entire composite tree rooted at the specified recipe. This code is simpler than

foodsUsed1 because the code can perform a single loop through the iterator

with no need for recursion. Its code appears in Listing 9-22.

Chapter 9 Composites

347

Listing 9-22. The foodsUsed2 Method

private static int foodsUsed2(FoodItem r) {

 int count = 0;

 Iterator<FoodItem> iter = r.iterator();

 while (iter.hasNext())

 if (iter.next() instanceof BasicFood)

 count++;

 return count;

}

The method foodsUsed3 is essentially the same as foodsUsed2. The

difference is that the iterator method is called implicitly, via the for-

each loop.

Listing 9-23. The foodsUsed3 Method

private static int foodsUsed3(FoodItem r) {

 int count = 0;

 for (FoodItem item : r)

 if (item instanceof BasicFood)

 count++;

 return count;

}

The two printRecipesUsedIn methods in the Cookbook class print the

name of all the recipes needed to make a given recipe. For example, the

recipes required to make a salad are “salad” and “dressing.” The code for

both methods takes advantage of the fact that FoodItem is an iterable. The

method printRecipesUsedIn1 uses the iterator method to loop through

the recipe’s composite tree, printing the name of any food item that is a

recipe. Its code appears in Listing 9-24.

Chapter 9 Composites

348

Listing 9-24. The printRecipesUsedIn1 Method

private static void printRecipesUsedIn1(Recipe r) {

 for (FoodItem item : r) {

 if (item instanceof Recipe)

 System.out.println(item.name());

 }

}

The code for printRecipesUsedIn2 appears in Listing 9-25. It uses the

method forEach and the visitor pattern.

Listing 9-25. The printRecipesUsedIn2 Method

private static void printRecipesUsedIn2(Recipe r) {

 r.forEach(item -> {

 if (item instanceof Recipe) {

 System.out.println(item.name());

 }});

}

Listing 9-26 gives the code for printShoppingList. This method prints

the name and quantity needed for each basic item used in a recipe. The

second argument to the method is the number of portions of the recipe

that will be made. One complexity to the code is that the quantity of each

item in the recipe must be multiplied by the number of portions of its

recipe that are being made.

This method is unlike the others because its code needs to know the

structure of the composite tree. In particular, the code needs to know

which recipe an ingredient belongs to and how many portions of that

recipe will be made. The code therefore must use the childIterator to

manually traverse the ingredients of a recipe and perform the recursion for

subrecipes. The iterator method is not useful here.

Chapter 9 Composites

349

Listing 9-26. The printShoppingList Method

private static void printShoppingList(Recipe r, int howmany) {

 Iterator<FoodItem> iter = r.childIterator();

 while (iter.hasNext()) {

 FoodItem item = iter.next();

 int amt = r.getQuantity(item) * howmany;

 if (item instanceof BasicFood)

 System.out.println(item.name() + " " + amt);

 else

 printShoppingList((Recipe) item, amt);

 }

}

The final topic of this section concerns how to implement the

iterator method. Recall from Listing 9-12 that the code for this method

was declared in the FoodItem interface as follows:

 default Iterator<FoodItem> iterator() {

 return new FoodIterator(this);

 }

Listing 9-27 gives the code for the FoodIterator class. It implements

Iterator<FoodItem>. The argument to its constructor is a food item f.

Successive calls to next will return every item in the composite hierarchy

rooted at f, beginning with f itself.

Listing 9-27. The FoodIterator Class

public class FoodIterator implements Iterator<FoodItem> {

 private Stack<Iterator<FoodItem>> s = new Stack<>();

 public FoodIterator(FoodItem f) {

 Collection<FoodItem> c = Collections.singleton(f);

 s.push(c.iterator());

 }

Chapter 9 Composites

350

 public boolean hasNext() {

 return !s.isEmpty();

 }

 public FoodItem next() {

 FoodItem food = s.peek().next(); // return this value

 if (!s.peek().hasNext())

 s.pop(); // pop the iterator when it is empty

 Iterator<FoodItem> iter = food.childIterator();

 if (iter.hasNext())

 s.push(iter); // push the child iterator if non-empty

 return food;

 }

}

The next method essentially performs a nonrecursive tree traversal

using a stack of iterators. Each call to next removes an item from the

topmost iterator. If that iterator has no more elements then it is popped

from the stack. If the retrieved item has children then its child iterator gets

pushed onto the stack. The hasNext method returns true if the stack is not

empty. The constructor primes the stack by adding an iterator containing

the root of the composite hierarchy.

 Summary
A composite object has a hierarchical structure. Each object in the

hierarchy implements the same interface, called the composite interface.

The composite pattern describes the preferred way to organize the classes

of a composite object. These classes form two categories: base classes,

whose objects are the leaves of the composite hierarchy, and recursive

classes, whose objects form the interior of the hierarchy. Each recursive

object wraps one or more objects that implement the composite interface.

These wrapped objects are called its children.

Chapter 9 Composites

351

Syntactically, a composite object is very similar to a decorator object;

the only difference is that a composite can have multiple children whereas

a decorator can have just one. This difference, however, completely changes

their purpose. A decorator is a chain, where the recursive objects serve to

enhance the methods of the base object at the end of the chain. A composite

is a tree, whose nonroot objects combine to execute the methods of the root.

A composite method is often implemented as a tree traversal.

When designing classes that conform to the composite pattern,

you need to consider the transparency of their methods. A method

that modifies a composite’s list of children should not be defined in the

composite interface, as it will allow clients to perform meaningless (and

potentially dangerous) operations on base objects. It is better to define

such methods in the wrapper class and use them nontransparently. On the

other hand, it is possible to design methods for the composite interface

that enable clients to transparently traverse the composite hierarchy. This

chapter presented two such methods: childIterator, which returns an

iterator containing the object’s children, and iterator, which returns

an iterator containing the entire composite hierarchy. Implementing

the iterator method also lets the composite interface extend Iterable,

which means that clients can use the forEach method and the for-each

loop to examine composite objects.

Chapter 9 Composites

353© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_10

CHAPTER 10

Observers
The state of a program changes over time, as new objects get created

and existing objects are modified. The program may respond to some

of these change events. For example, a large deposit to a foreign-owned

bank account might initiate a process that checks for illegal activity. The

program may also respond to certain input events such as mouse actions

and keyboard entries. For example, a mouse click on a button is normally

responded to, but a mouse click on a label is often ignored.

The use of observers is a general-purpose technique for managing a

program’s responses to events. An object can maintain a list of observers

and notify them when a notable event occurs. This chapter introduces the

observer pattern, which is the preferred way to incorporate observers into

your code. The chapter gives practical examples of its use and examines

various design issues and tradeoffs.

 Observers and Observables
Consider the banking demo. Suppose that the bank wants to perform some

actions whenever a new account gets created. For example, the marketing

department wants to send a “welcome to the bank” information packet to

the account owner and the auditing department wants to do background

checks on new foreign-owned accounts.

354

To implement this capability, the Bank class will need a reference to

each object that wants to be informed about a new account, so that its

newAccount method can notify those objects. The code in Listing 10-1 is a

straightforward implementation of this idea, in which the Bank class holds

a reference to a MarketingRep and an Auditor object.

Listing 10-1. Adding Observers to the Bank Class

public class Bank implements Iterable<BankAccount> {

 private Map<Integer,BankAccount> accounts;

 private int nextacct;

 private MarketingRep rep;

 private Auditor aud;

 public Bank(Map<Integer,BankAccount> accounts, int n,

 MarketingRep r, Auditor a) {

 this.accounts = accounts;

 nextacct = n;

 rep = r; aud = a;

 }

 public int newAccount(int type, boolean isforeign) {

 int acctnum = nextacct++;

 BankAccount ba =

 AccountFactory.createAccount(type, acctnum);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

 rep.update(acctnum, isforeign);

 aud.update(acctnum, isforeign);

 return acctnum;

 }

 ...

}

Chapter 10 Observers

355

The MarketingRep and Auditor classes are called observer classes,

and their objects are called observers. The Bank class is known as the

observable class. It notifies its observers when a new account is created. By

convention, the notification method is named “update” to denote that the

observable is telling its observers that an update has occurred.

The observable-observer relationship is analogous to the relationship

between publishers and their subscribers. When a publisher has new

material to distribute, it notifies its subscribers. Consequently, the use of

observers in a program is also known as the publish-subscribe technique.

The Twitter application is a well-known example of publish-subscribe.

A Twitter user has a list of followers. When someone tweets (i.e., publishes)

a message, that message is sent to each follower (subscriber) on the list.

The publish-subscribe technique is also used by message boards and

listservs. If someone sends a message to a listserv, then all subscribers to

the listserv receive the message.

The problem with the Bank code in Listing 10-1 is that the bank knows

exactly which objects are observing it. In other words, the observable class

is tightly coupled to its observer classes. This tight coupling will make it

necessary to modify Bank each time the observers change.

For example, suppose that the bank decides to use multiple marketing

agents, say one for foreign accounts and another for domestic accounts.

The bank will then have two MarketingRep objects observing it. Or

suppose that the bank decides to add an observer that logs information

about each new account to a file. In this case, Bank would need to hold an

additional observer object, this time of type AccountLogger.

The proper way to address this problem is to note that the bank doesn’t

really care how many observer objects it has, nor does it care what their

classes are. It is sufficient for the bank to simply hold a list of observers.

When a new account gets created, it can notify each object in the list.

Chapter 10 Observers

356

For this idea to work, the observer classes must implement a common

interface. Call this interface BankObserver. It will have a single method,

named update, as shown in Listing 10-2.

Listing 10-2. The BankObserver Interface

public interface BankObserver {

 void update(int acctnum, boolean isforeign);

}

The Bank code would then look like Listing 10-3. Note how this design

has drastically reduced the coupling between the observable and its

observers.

Listing 10-3. An Improved Bank Class

public class Bank implements Iterable<BankAccount> {

 private Map<Integer,BankAccount> accounts;

 private int nextacct;

 private List<BankObserver> observers;

 public Bank(Map<Integer,BankAccount> accounts,

 int n, List<BankObserver> L) {

 this.accounts = accounts;

 nextacct = n;

 observers = L;

 }

 public int newAccount(int type, boolean isforeign) {

 int acctnum = nextacct++;

 BankAccount ba =

 AccountFactory.createAccount(type, acctnum);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

Chapter 10 Observers

357

 observers.forEach(obs->obs.update(acctnum, isforeign));

 return acctnum;

 }

 ...

}

The list provided to the Bank constructor can contain any number

of observers, and these observers can belong to any of the classes that

implement BankObserver. For a concrete example, consider a simple

version of the Auditor class that writes the account number of each new

foreign-owned account to the console. Its code might look like Listing 10-4.

Listing 10-4. The Auditor Class

public class Auditor implements BankObserver {

 public void update(int acctnum, boolean isforeign) {

 if (isforeign)

 System.out.println("New foreign acct" + acctnum);

 }

}

The class diagram of Figure 10-1 depicts this relationship between the

Bank class and its observers.

Figure 10-1. The Bank class and its observers

Chapter 10 Observers

358

 The Observer Pattern
This relationship between Bank and its observers is an example of the

observer pattern. The basic idea is that an observable object holds a list

of observers. When the observable decides to publicize a change to its

state, it notifies its observers. This idea is expressed in the class diagram of

Figure 10-2.

This class diagram is very similar to the diagram of Figure 10-1. The

Bank class is the observable, BankObserver is the observer interface, and

Auditor, MarketingRep, and AccountLogger are the observer classes.

Although Figure 10-2 describes the overall architecture of the

observer pattern, it is somewhat short on practical details. What should

the arguments to the update method be? How does the observable get its

list of observers? It turns out that there are several ways to answer these

questions, which lead to multiple variations of the observer pattern. The

following subsections examine some of the design possibilities.

Figure 10-2. The observer pattern

Chapter 10 Observers

359

 Push vs. pull
The first issue is to consider the arguments to the update method. In the

BankObserver interface of Listing 10-2, update has two arguments, which

are the values of the newly created bank account that are of interest to its

observers. In a more realistic program, the method might need to have

many more arguments. For example, a realistic Auditor class would want

to know the owner’s account number, foreign status, and tax id number;

whereas the MarketingRep class would want the owner’s account number,

name, and address.

This design technique is called push, because the observable “pushes”

the values to its observers. The difficulty with the push technique is that

the update method must send all values that could possibly be needed

by any observer. If the observers require many different values then the

update method becomes unwieldy. Moreover, the observable has to

guess what values any future observer might need, which can cause the

observable to push many unnecessary values “just in case.”

Another design technique, called pull, alleviates these problems. In the

pull technique, the update method contains a reference to the observable.

Each observer can then use that reference to “pull” the values it wants from

the observable.

Listing 10-5 shows the code for BankObserver, revised to use the pull

technique. Its update method passes a reference to the Bank object. It also

passes the account number of the new account so that the observer can

pull the information from the proper account.

Listing 10-5. Revising the BankObserver Interface to Use Pull

public interface BankObserver {

 void update(Bank b, int acctnum);

}

Chapter 10 Observers

360

Listing 10-6 shows the revised code for the Auditor observer. Note how its

update method pulls the foreign-status flag from the supplied Bank reference.

Listing 10-6. The Revised Auditor Class

public class Auditor implements BankObserver {

 public void update(Bank b, int acctnum) {

 boolean isforeign = b.isForeign(acctnum);

 if (isforeign)

 System.out.println("New foreign acct" + acctnum);

 }

}

The pull technique has a certain elegance, in that the observable

provides each observer with tools that enable it to extract the information

it needs. One problem with the pull technique is that the observer must go

back to the observable to retrieve the desired values, and this time lag can

potentially affect correctness.

For example, suppose that a user creates a new domestic account,

but soon afterward calls the setForeign method to change it to a foreign

owner. If an observer pulls the account information from the bank after

setForeign was executed then it will incorrectly assume that the account

was created as a foreign account.

Another problem is that the pull technique can only be used when the

observable keeps the information the observer wants. For example, suppose

that a bank observer wants to be notified each time the deposit method is

executed, so it can investigate unusually large deposits. If the bank does not

save the amount of each deposit, then pull is not viable. Instead, the bank

will need to push the deposit amount via its update method.

Hybrid push-pull designs can be used to balance the tradeoffs between

push and pull. For example, the update method could push some values

as well as a reference to the observable. Or the update method could push

a reference to a relevant object that the observers could then pull from.

Chapter 10 Observers

361

Listing 10-7 gives an example of this latter interface. In it, the observable

pushes a reference to the new BankAccount object, from which the

observers can pull the information they need.

Listing 10-7. A Hybrid Push-Pull BankObserver Interface

public interface BankObserver {

 void update(BankAccount ba);

}

 Managing the Observer List
The second issue that needs to be examined is how an observable gets its

list of observers. In Listing 10-3, the list was passed to the observable via its

constructor and remained unchanged throughout the life of the program.

However, such a design cannot handle situations in which observers come

and go dynamically.

For example, suppose you want an observer to log all bank transactions

that occur outside of normal banking hours. One option is for the observer

to be continually active. Upon each event notification, the observer checks

the current time. If the bank is closed then it logs the event.

The problem is that banking activity is typically heaviest during

business hours, which means that the observer will spend a lot of time

ignoring most of the notifications it gets. A better idea is to add the

observer to the observer list when the bank closes for the evening and

remove it when the bank reopens in the morning.

To accommodate this need, observables must provide methods to

explicitly add and remove observers from the observer list. These methods

are typically called addObserver and removeObserver. With these

changes, the Bank code would look like Listing 10-8.

Chapter 10 Observers

362

Listing 10-8. Another Revision to the Bank Class

public class Bank implements Iterable<BankAccount> {

 private Map<Integer,BankAccount> accounts;

 private int nextacct;

 private List<BankObserver> observers = new ArrayList<>();

 public Bank(Map<Integer,BankAccount> accounts, int n) {

 this.accounts = accounts;

 nextacct = n;

 }

 public void addObserver(BankObserver obs) {

 observers.add(obs);

 }

 public void removeObserver(BankObserver obs) {

 observers.remove(obs);

 }

 ...

}

This technique of dynamically adding an observer to an observable

list is a form of dependency injection. The observable has a dependency

on each observer, and this dependency is injected into the observable

through its addObserver method. This form of dependency injection is

known as method injection (as opposed to the constructor injection of

Listing 10-3).

There are two ways to perform method injection. The first way is for

another class (such as BankProgram) to add the observers to the list; the

other way is for each observer to add itself. The BankProgram code of

Listing 10-9 illustrates the first form of method injection.

Chapter 10 Observers

363

Listing 10-9. One Way to perform Method Injection

public class BankProgram {

 public static void main(String[] args) {

 ...

 Bank bank = new Bank(accounts, nextacct);

 BankObserver auditor = new Auditor();

 bank.addObserver(auditor);

 ...

 }

}

One advantage to this form of method injection is that the observer

object can be expressed as a lambda expression, thereby eliminating the

need for an explicit observer class. This idea is shown in Listing 10-10,

assuming the BankObserver interface of Listing 10-7.

Listing 10-10. Revising BankProgram to Use a Lambda Expression

public class BankProgram {

 public static void main(String[] args) {

 ...

 Bank bank = new Bank(accounts, nextacct);

 bank.addObserver(ba -> {

 if (ba.isForeign())

 System.out.println("New foreign acct: "

 + ba.getAcctNum());

 });

 ...

 }

}

Chapter 10 Observers

364

Listing 10-11 illustrates the second form of method injection. The

Auditor observer receives a reference to the observable Bank object via its

constructor, and adds itself to the bank’s observer list.

Listing 10-11. A Second Way to Perform Method Injection

public class BankProgram {

 public static void main(String[] args) {

 ...

 Bank bank = new Bank(accounts, nextacct);

 BankObserver auditor = new Auditor(bank);

 ...

 }

}

public class Auditor implements BankObserver {

 public Auditor(Bank b) {

 b.addObserver(this);

 }

 ...

}

This technique results in a very interesting relationship between an

observable and its observers. The observable calls the update method of

its observers, yet knows nothing about them. The observers, on the other

hand, know which object is calling them. This situation is completely

backwards from typical method calls, in which the caller of a method

knows who it is calling, and the callee does not know who calls it.

Chapter 10 Observers

365

 The Generic Observer Pattern in Java
The Java library contains the interface Observer and the class Observable,

which are intended to simplify the implementation of the observer pattern.

Observer is an all-purpose observer interface, whose code appears in

Listing 10-12. Its update method has two arguments, which support hybrid

push-pull designs.

Listing 10-12. The Observer Interface

interface Observer {

 public void update(Observable obs, Object obj);

}

The first argument to update is a reference to the observable making

the call, for use by the pull technique. The second argument is an object

that contains the values sent by the push technique. If the observable

wants to push multiple values then it embeds them in a single object. If

the observable wants to push no values then it sends null as the second

argument.

Observable is an abstract class that implements the list of observers

and its associated methods. An observable extends this abstract class in

order to inherit this functionality. Its code appears in Listing 10-13.

Listing 10-13. The Observable Class

public abstract class Observable {

 private List<Observer> observers = new ArrayList<>();

 private boolean changed = false;

 public void addObserver(Observer obs) {

 observers.add(obs);

 }

Chapter 10 Observers

366

 public void removeObserver(Observer obs) {

 observers.remove(obs);

 }

 public void notifyObservers(Object obj) {

 if (changed)

 for (Observer obs : observers)

 obs.update(this, obj);

 changed = false;

 }

 public void notifyObservers() {

 notifyObservers(null);

 }

 public void setChanged() {

 changed = true;

 }

 ...

}

Note the two different notifyObservers methods. The one-argument

version passes the argument to the observer as the second argument to

update. The zero-argument version sends null as the second argument to

update.

Note also that the notifyObservers methods do nothing until the client

first calls setChanged. The purpose of setChanged is to support programs

that perform notification periodically, instead of immediately after each

change. In such programs, the code doing the periodic notification can

call notifyObservers at any time, confident that it will have no effect

unless setChanged has been called since the previous notification.

Listing 10-14 shows how to rewrite the banking demo using the

Observer and Observable classes and the push technique. The listing

contains the relevant code for Bank (the observable) and Auditor

Chapter 10 Observers

367

(the observer). Note how Bank no longer needs code to manage its

observer list and associated methods, because its superclass Observable

handles them.

Listing 10-14. Rewriting Bank and Auditor Using Observable and

Observer

public class Bank extends Observable

 implements Iterable<BankAccount> {

 ...

 public int newAccount(int type, boolean isforeign) {

 int acctnum = nextacct++;

 BankAccount ba =

 AccountFactory.createAccount(type, acctnum);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

 setChanged();

 ObserverInfo info =

 new ObserverInfo(acctnum, isforeign);

 notifyObservers(info);

 return acctnum;

 }

 ...

}

public class Auditor implements Observer {

 public Auditor(Bank bank) {

 bank.addObserver(this);

 }

 public void update(Observable obs, Object obj) {

 ObserverInfo info = (ObserverInfo) obj;

 if (info.isForeign())

Chapter 10 Observers

368

 System.out.println("New foreign account: "

 + info.getAcctNum());

 }

}

The second argument to the update method is an object of type

ObserverInfo. This class embeds the account number and the foreign-

status flag in a single object. Its code appears in Listing 10-15.

Listing 10-15. The ObserverInfo Class

public class ObserverInfo {

 private int acctnum;

 private boolean isforeign;

 public ObserverInfo(int a, boolean f) {

 acctnum = a;

 isforeign = f;

 }

 public int getAcctNum() {

 return acctnum;

 }

 public boolean isForeign() {

 return isforeign;

 }

}

Although Observable and Observer implement the basics of the

observer pattern, their general-purpose nature has some drawbacks.

Observable is an abstract class, not an interface, which implies that the

observable is unable to extend any other class. The update method is “one

size fits all,” in that an application has to squeeze its pushed data in and

Chapter 10 Observers

369

out of an object such as ObserverInfo. Because of these drawbacks, and

the fact that it’s rather simple to write the code that they provide, it is often

better to skip the use of Observable and Observer.

 Events
The previous sections have focused on how the Bank class can notify its

observers when a new bank account is created. The creation of a new

account is an example of an event. In general, an observable may wish

to notify its observers about multiple types of event. For example, the

version 18 Bank class has four event types. These types correspond to the

four methods that affect its bank accounts, namely newAccount, deposit,

setForeign, and addInterest. The version 18 bank demo defines these

four event types as constants of the enum BankEvent. See Listing 10-16.

Listing 10-16. The Version 18 BankEvent Enum

public enum BankEvent {

 NEW, DEPOSIT, SETFOREIGN, INTEREST;

}

The question is how an observable such as Bank can manage

notifications for four different events. There are two issues: how many

observer lists the observable should keep, and how many update methods

the observer interface should have. It is also possible to create a separate

observer interface for each event.

Consider the observer lists. Keeping a single list is simpler, but would

mean that every observer would be notified for every event. It is usually

better if the observable can keep an observer list for each event, so that its

observers can register for only the events that they care about.

Chapter 10 Observers

370

Now consider update methods. One option is for the observer interface

to have an update method for each event. The advantage is that you can

design each method so that its arguments are customized for its event. The

disadvantage is that an observer would have to provide an implementation

for every method, even if it is interested in just one of them.

The alternative is for the interface to have a single update method.

The first argument of the method could identify the event, and the

remaining arguments would communicate enough information to satisfy

all observers. The downside is that it might be difficult to pack all of that

information into a single set of argument values.

For the version 18 bank demo, I chose to use a single update method.

Listing 10-17 gives the version 18 BankObserver interface. The update

method has three arguments: the event, the affected bank account, and

an integer denoting the deposit amount. Not all arguments apply to each

event. For example, DEPOSIT observers will use all of the arguments; the

NEW and SETFOREIGN observers will use only the event and bank account;

and the INTEREST observers will use only the event.

Listing 10-17. The Version 18 BankObserver Interface

public interface BankObserver {

 void update(BankEvent e, BankAccount ba, int depositamt);

}

The version 18 Bank class has an observer list for each of the four event

types. For convenience, it bundles those lists into a single map keyed on

the event type. Its addObserver method adds an observer to the specified

list. The removeObserver method would be similar, but its code was

omitted for convenience. Bank also has a notifyObservers method that

notifies the observers on the specified list.

Chapter 10 Observers

371

Bank has four methods that generate events: newAccount, deposit,

setForeign, and addInterest. Version 18 modifies these methods to call

the notifyObservers method. Listing 10-18 gives the relevant portion of

the code. Note that the third argument to notifyObservers is 0 for all but

the deposit method because DEPOSIT is the only event where that value is

relevant. The other events ignore that value.

Listing 10-18. The Version 18 Bank Class

public class Bank implements Iterable<BankAccount> {

 private Map<Integer,BankAccount> accounts;

 private int nextacct;

 private Map<BankEvent,List<BankObserver>> observers

 = new HashMap<>();

 public Bank(Map<Integer,BankAccount> accounts, int n) {

 this.accounts = accounts;

 nextacct = n;

 for (BankEvent e : BankEvent.values())

 observers.put(e, new ArrayList<BankObserver>());

 }

 public void addObserver(BankEvent e, BankObserver obs) {

 observers.get(e).add(obs);

 }

 public void notifyObservers(BankEvent e, BankAccount ba,

 int depositamt) {

 for (BankObserver obs : observers.get(e))

 obs.update(e, ba, depositamt);

 }

Chapter 10 Observers

372

 public int newAccount(int type, boolean isforeign) {

 int acctnum = nextacct++;

 BankAccount ba =

 AccountFactory.createAccount(type, acctnum);

 ba.setForeign(isforeign);

 accounts.put(acctnum, ba);

 notifyObservers(BankEvent.NEW, ba, 0);

 return acctnum;

 }

 public void setForeign(int acctnum, boolean isforeign) {

 BankAccount ba = accounts.get(acctnum);

 ba.setForeign(isforeign);

 notifyObservers(BankEvent.SETFOREIGN, ba, 0);

 }

 public void deposit(int acctnum, int amt) {

 BankAccount ba = accounts.get(acctnum);

 ba.deposit(amt);

 notifyObservers(BankEvent.DEPOSIT, ba, amt);

 }

 public void addInterest() {

 forEach(ba->ba.addInterest());

 notifyObservers(BankEvent.INTEREST, null, 0);

 }

 ...

}

The version 18 code for class Auditor appears in Listing 10-19. The

class is an observer of two events: NEW and SETFOREIGN. Because it

observes two events, it checks the first argument of its update method to

determine which event occurred.

Chapter 10 Observers

373

Listing 10-19. The Version 18 Auditor Class

public class Auditor implements BankObserver {

 public Auditor(Bank bank) {

 bank.addObserver(BankEvent.NEW, this);

 bank.addObserver(BankEvent.SETFOREIGN, this);

 }

 public void update(BankEvent e, BankAccount ba,

 depositamt amt) {

 if (ba.isForeign()) {

 if (e == BankEvent.NEW)

 System.out.println("New foreign account: "

 + ba.getAcctNum());

 else

 System.out.println("Modified foreign account: "

 + ba.getAcctNum());

 }

 }

}

The version 18 BankProgram code appears in Listing 10-20. The

class creates two observers: an instance of Auditor and a lambda

expression that observes DEPOSIT events. This observer calls the bank’s

makeSuspicious method if it detects a deposit greater than $100,000.

Listing 10-20. The Version 18 BankProgram Class

public class BankProgram {

 public static void main(String[] args) {

 SavedBankInfo info = new SavedBankInfo("bank18.info");

 Map<Integer,BankAccount> accounts = info.getAccounts();

 int nextacct = info.nextAcctNum();

 Bank bank = new Bank(accounts, nextacct);

Chapter 10 Observers

374

 Auditor aud = new Auditor(bank);

 bank.addObserver(BankEvent.DEPOSIT,

 (event,ba,amt) -> {

 if (amt > 10000000)

 bank.makeSuspicious(ba.getAcctNum());

 });

 ...

 }

}

 Observers in JavaFX
Events and event observers play an important role in GUI applications. In

JavaFX, a user’s interaction with a screen causes a sequence of input events

to occur. The JavaFX library specifies several types of input event. Each

event type is an object in a class that extends the class Event. Three such

classes are MouseEvent, KeyEvent, and ActionEvent. Listing 10-21 shows

some common event types for these classes.

Listing 10-21. Four Common JavaFX Event Types

MouseEvent.MOUSE_CLICKED

MouseEvent.MOUSE_ENTERED

KeyEvent.KEY_TYPED

ActionEvent.ACTION

An event type indicates the kind of event that was generated. The target

of an event is the node that is responsible for handling it. For example,

if the user mouse-clicks at a particular location on the screen, then the

topmost node at that location will be the target of a MOUSE_CLICKED event.

Chapter 10 Observers

375

Every JavaFX Node object is an observable. A node keeps a separate

observer list for each event type. That is, a node will have a list for mouse-click

observers, mouse-enter observers, key-typed observers, and so on.

In JavaFX, event observers are called event handlers. Each node has the

method addEventHandler, which adds an observer to the node’s observer

list for a given event type. This method takes two arguments: the event type

of interest, and the reference to the event handler.

An event handler belongs to a class that implements the interface

EventHandler. The interface has a single method, named handle. Its code

appears in Listing 10-22.

Listing 10-22. The EventHandler Interface

public interface EventHandler {

 void handle(Event e);

}

Listing 10-23 gives the code for the event handler class

ColorLabelHandler, whose handle method changes the text of a specified

label to have a specified color.

Listing 10-23. The ColorLabelHandler Class

public class ColorLabelHandler

 implements EventHandler<Event> {

 private Label lbl;

 private Color color;

 public ColorLabelHandler(Label lbl, Color color) {

 this.lbl = lbl;

 this.color = color;

 }

Chapter 10 Observers

376

 public void handle(Event e) {

 lbl.setTextFill(color);

 }

}

For an example use of event handlers, consider again the

AccountCreationWindow program from Listing 9-8 and 9-9. Figure 10-3

displays its initial screen.

Listing 10-24 revises the program to have four event handlers:

• A MOUSE_ENTERED handler on the title label that turns its

text red when the mouse enters the region of the label.

• A MOUSE_EXITED handler on the title label that turns

its text back to green when the mouse exits the

region of the label. The combination of these two

handlers produces a “rollover” effect, where the label

temporarily turns red as the mouse rolls over it.

• A MOUSE_CLICKED handler on the outermost pane that

resets the screen by unchecking the check box, setting

the value of the choice box to null, and changing the text

of the title label back to “Create a new bank account.”

Figure 10-3. The initial AccountCreationWindow screen

Chapter 10 Observers

377

• A MOUSE_CLICKED handler on the button that uses the

values of the check box and choice box to change the

text of the title label.

Listing 10-24. A Revised AccountCreationWindow Class

public class AccountCreationWindow extends Application {

 public void start(Stage stage) {

 ...

 Label title = ... // the label across the top

 title.addEventHandler(MouseEvent.MOUSE_ENTERED,

 new ColorLabelHandler(title, Color.RED));

 title.addEventHandler(MouseEvent.MOUSE_EXITED,

 e -> title.setTextFill(Color.GREEN));

 Pane p1 = ... // the outermost pane

 p1.addEventHandler(MouseEvent.MOUSE_CLICKED,

 e -> {

 ckbx.setSelected(false);

 chbx.setValue(null);

 title.setText("Create a New Bank Account");

 });

 Button btn = ... // the CREATE ACCT button

 btn.addEventHandler(MouseEvent.MOUSE_CLICKED,

 e -> {

 String foreign = ckbx.isSelected() ?

 "Foreign " : "";

 String acct = chbx.getValue();

Chapter 10 Observers

378

 title.setText(foreign + pref + acct

 + " Account Created");

 stage.sizeToScreen();

 });

 ...

 }

}

The first handler uses the ColorLabelHandler class from Listing 10-23.

Its handle method will be executed when the mouse enters the region of

the title label. The second handler uses a lambda expression to define the

handle method. One of the features of a lambda expression (or an inner

class) is that it can reference variables (such as title) from its surrounding

context. This avoids the need to pass those values into the constructor, as is

done in ColorLabelHandler.

The third handler observes mouse clicks on pane p1, and the fourth

handler observes mouse clicks on the button. Both of these handlers

define their handle method via a lambda expression.

A common way to specify a button handler is to replace the event type

MouseEvent.MOUSE_CLICKED with ActionEvent.ACTION. An ACTION event

signifies a “submit” request from the user. Buttons support several kinds

of submit request, such as a mouse-clicking on the button, touching the

button via a touch screen, and pressing the space key when the button has

the focus. Using an ACTION event for a button handler is usually better than

using a MOUSE_CLICKED event, because a single ACTION event handler will

support all these requests.

The Button class also has a method setOnAction, which further

simplifies the specification of a button handler. For example, the button

handler in Listing 9-9 used setOnAction instead of addEventHandler. The

following two statements have the same effect.

 btn.addEventHandler(ActionEvent.ACTION, h);

 btn.setOnAction(h);

Chapter 10 Observers

379

 JavaFX Properties
The state of a JavaFX node is represented by various properties. For

example, two properties of the class ChoiceBox are items, which denotes

the list of items the choice box should display, and value, which denotes

the currently selected item. For each of a node’s properties, the node has a

method that returns a reference to that property. The name of the method

is the property name followed by “Property.” For example, ChoiceBox has

methods itemsProperty and valueProperty.

Formally, a property is an object that implements the interface Property.

Three of its methods are shown in Listing 10-25. Based on these methods, you

can rightfully infer that a Property object is both a wrapper and an observable.

The methods getValue and setValue get and set the wrapped value, and the

method addListener adds a listener to its observer list. These two aspects of a

property are examined in the following subsections.

Listing 10-25. Methods of the Property Interface

public interface Property<T> {

 T getValue();

 void setValue(T t);

 void addListener(ChangeListener<T> listener);

 ...

}

 Properties as Wrappers
A property’s getValue and setValue methods are rarely used because

each node has substitute convenience methods. In particular, if a

node has a property named p, then it has convenience methods getP

and setP. For an example, Listing 10-26 shows the beginning of the

createNodeHierarchy method from Listing 9-9. The calls to the getP and

setP methods are in bold.

Chapter 10 Observers

380

Listing 10-26. The Beginning of the AccountCreationWindow Class

private Pane createNodeHierarchy() {

 VBox p3 = new VBox(8);

 p3.setAlignment(Pos.CENTER);

 p3.setPadding(new Insets(10));

 p3.setBackground(...);

 Label type = new Label("Select Account Type:");

 ChoiceBox<String> chbx = new ChoiceBox<>();

 chbx.getItems().addAll("Savings", "Checking",

 "Interest Checking");

 ...

}

These methods are all convenience methods, and result from the fact

that class VBox has properties alignment, padding, and background, and

ChoiceBox has the property items. To demonstrate this point, Listing 10-27

gives an alternative version of the code that doesn’t use these convenience

methods.

Listing 10-27. Revising Listing 10-26 to Use Explicit Property Objects

private Pane createNodeHierarchy() {

 VBox p3 = new VBox(8);

 Property<Pos> alignprop = p3.alignmentProperty();

 alignprop.setValue(Pos.CENTER);

 Property<Insets> padprop = p3.paddingProperty();

 padprop.setValue(new Insets(10));

 Property<Background> bgprop = p3.backgroundProperty();

 bgprop.setValue(...);

 Label type = new Label("Select Account Type:");

 ChoiceBox<String> chbx = new ChoiceBox<>();

Chapter 10 Observers

381

 Property<String> itemsprop = chbx.itemsProperty();

 itemsprop.getValue().addAll("Savings", "Checking",

 "Interest Checking");

 ...

}

 Properties as Observables
A property is an observable, and maintains a list of observers. When

its wrapped object changes state, the property notifies its observers.

A property observer is called a change listener, and implements the

interface ChangeListener as shown in Listing 10-28.

Listing 10-28. The ChangeListener Interface

public interface ChangeListener<T> {

 void changed(Property<T> obs, T oldval, T newval);

}

The interface consists of one method, named changed. Note that

changed is a hybrid push-pull observer method. The second and third

arguments push the old and new values to the observer. The first argument

is the observable itself, from which the observer can pull additional

information. (Technically, this first argument is of type ObservableValue,

which is a more general interface than Property. But for simplicity I am

ignoring that issue.)

The easiest way to create a change listener is to use a lambda

expression. For example, Listing 10-29 gives the code for a listener that you

can add to the AccountCreationWindow class. This listener observes the

check box ckbx. Executing its code causes the label’s text to turn green if

the box becomes selected, and red if the box becomes unselected.

Chapter 10 Observers

382

Listing 10-29. A Check Box Change Listener

ChangeListener<Boolean> checkboxcolor =

 (obs, oldval, newval) -> {

 Color c = newval ? Color.GREEN : Color.RED;

 ckbx.setTextFill(c);

 };

To get the change listener to execute, you must add it to the property’s

observer list by calling the property’s addListener method, as shown in

Listing 10-30. The result is that the check box label will change color from

red to green and back again as it is selected and unselected.

Listing 10-30. Attaching a Change Listener to a Property

ChangeListener<Boolean> checkboxcolor = ... // Listing 10-29

Property<Boolean> p = ckbx.selectedProperty();

p.addListener(checkboxcolor);

Listings 10-29 and 10-30 required three statements to create a listener

and add it to the observer list of the desired property. I wrote it this way

to show you what needs to occur, step by step. In reality, most JavaFX

programmers would write the entire code as a single statement, as shown

in Listing 10-31.

Listing 10-31. Revising the Check Box Change Listener

ckbx.selectedProperty().addListener(

 (obs, oldval, newval) -> {

 Color c = newval ? Color.GREEN : Color.RED;

 ckbx.setTextFill(c);

 });

Chapter 10 Observers

383

Change listeners can also be used to synchronize the

behavior of JavaFX controls. Consider again the initial screen of

AccountCreationWindow shown in Figure 10-3. Note that the choice box

is unselected. If a user clicked the CREATE ACCT button at this point, a

runtime error would occur if the code actually tried to create an account.

To eliminate the possibility of error, you can design the screen so that

the button is initially disabled and becomes enabled only when an account

type is selected. This design calls for adding a change listener to the choice

box. Its code is shown in Listing 10-32.

Listing 10-32. Adding Change Listener for the Choice Box

public class AccountCreationWindow extends Application {

 public void start(Stage stage) {

 ...

 chbx.valueProperty().addListener(

 (obj, oldval, newval) ->

 btn.setDisable(newval==null));

 ...

 }

}

The variable chbx references the choice box. The change listener disables

the button if the new value of the choice box becomes null, and enables

it otherwise. The result is that the enabled/disabled status of the button is

synchronized with the selected/unselected status of the choice box.

Event listeners and change listeners can interact. Recall from Listing 10-24

that the outermost pane p1 of AccountCreationWindow has an event

listener that sets the value of the choice box to null when the pane is clicked.

This change will cause the change listener of the choice box to fire, which

will then disable the button. That is, selecting an item from the choice box

Chapter 10 Observers

384

enables the button, and clicking on the outer pane disables the button. A

user can repeatedly enable and disable the button by selecting an account

type from the choice box and then clicking on the outer pane. Try it.

 JavaFX Bindings
JavaFX supports the notion of a computed property, which is called a

binding. Bindings implement the interface Binding, two of whose methods

are shown in Listing 10-33. Note that the primary difference between a

binding and a property is that a binding does not have a setValue method.

Bindings do not have setValue because their values are computed and

cannot be set manually.

Listing 10-33. The Binding Interface

public interface Binding<T> {

 public T getValue();

 public void addListener(ChangeListener<T> listener);

 ...

}

Bindings can be created in several ways, but easiest is to use the

methods associated with the type of property you have. For example,

properties that wrap objects extend the class ObjectProperty and inherit

the method isNull. Listing 10-34 shows how to create a binding for the

value property of a choice box.

Listing 10-34. An example Binding

ChoiceBox chbx = ...

ObjectProperty<String> valprop = chbx.valueProperty();

Binding<Boolean> nullvalbinding = valprop.isNull();

Chapter 10 Observers

385

The variable nullvalbinding references a Binding object that wraps

a boolean. The value of this boolean is computed from the choice box’s

value property–in particular, if value wraps a null then the boolean will be

true and otherwise false.

When a Binding object is created, it adds itself to the observer list of

its property. Consequently, a change to the property value will notify the

binding, which can then change its value correspondingly. To help you

visualize the situation, look at the diagram of Figure 10-4, which depicts a

memory diagram of the three variables of Listing 10-34.

Figure 10-4. The relationship between a binding and its property

Chapter 10 Observers

386

The chbk object represents the choice box. It has a reference to each of

its properties. The diagram shows only the reference to value and hints at

the reference to items. The valprop object represents the value property. It

has a reference to its wrapped object (which is the string “savings”) and to its

observer list. The diagram shows that the list has at least one observer, which

is the binding nullvalbinding. Note that the binding has a similar structure

to a property. Its wrapped object is a boolean that has the value false.

When the chbx node changes its wrapped object, say by executing the

code valueProperty().setValue(null), the value property will send

a change notification to its observers. When the binding receives the

notification, it will notice that the new value of the property is null and set

the value of its wrapped object to true.

The code of Listing 10-32 created a change listener for the choice box.

Listing 10-35 rewrites that code to use a binding. Note how the change

listener sets the value of the button’s disable property to be whatever the

value of the binding is. There is no need to explicitly check for null as in

Listing 10-32, because that check is being performed by the binding.

Listing 10-35. Rewriting the Choice Box Change Listener

public class AccountCreationWindow extends Application {

 public void start(Stage stage) {

 ...

 ObjectProperty<String> valprop = chbx.valueProperty();

 Binding<Boolean> nullvalbinding = valprop.isNull();

 nullvalbinding.addListener(

 (obj, oldval, newval) -> btn.setDisable(

 nullvalbinding.getValue()));

 ...

 }

}

Chapter 10 Observers

387

The code of Listing 10-35 is somewhat difficult to read (and to write!).

To simplify things, Property objects have the method bind, which

performs the binding for you. Listing 10-36 is equivalent to the code of

Listing 10-35.

Listing 10-36. Using the Bind Method to Create an Implicit Change

Listener

public class AccountCreationWindow extends Application {

 public void start(Stage stage) {

 ...

 btn.disableProperty()

 .bind(chbx.valueProperty().isNull());

 ...

 }

}

The bind method has one argument, which is a binding (or property).

Here, the method’s argument is the binding created by the isNull method.

The bind method adds a change listener to that binding so that when

its wrapped value changes, the value of the button’s disable property

changes to match it. The behavior is exactly the same as in Listing 10-35.

The code of Listing 10-36 is extraordinarily beautiful. The bind method

and the isNull method both create change listeners, and these listeners

interact via the observer pattern (twice!) to enable the two controls to

synchronize their values. And all this occurs behind the scenes, without

the client’s knowledge. It is a wonderful example of the usefulness and

applicability of the observer pattern.

Chapter 10 Observers

388

 Summary
An observer is an object whose job is to respond to one of more events.

An observable is an object that recognizes when certain events occur, and

keeps a list of observers interested in those events. When an event occurs it

informs its observers.

The observer pattern specifies this general relationship between

observers and observables. But the pattern leaves multiple design issues

unaddressed. One issue concerns the update method: what values should

an observable push to its observers, and what values should the observers

pull from the observable? A second issue concerns how the observable

handles multiple types of events: should it treat each event independently,

with separate update methods and observer lists, or can it combine event

processing somehow? There is no best solution to these issues. A designer

must consider the various possibilities for a given situation, and weigh

their tradeoffs.

The observer pattern is especially useful for the design of GUI

applications. In fact, JavaFX is so infused with the observer pattern that it

is practically impossible to design a JavaFX application without making

extensive use of observers and observables. And even if an application

does not explicitly use observers, the class libraries used by the application

almost certainly do.

JavaFX nodes support two kinds of observer: event handlers and

change listeners. An event handler responds to input events, such as mouse

clicks and key presses. Each event handler belongs to the observer list of

some node. A change listener responds to changes in the state of a node.

Each change listener belongs to the observer list of some property of a

node. By designing event handlers and change listeners appropriately, a

JavaFX screen can be given remarkably sophisticated behavior.

Chapter 10 Observers

389© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1_11

CHAPTER 11

Model, View, and
Controller
This last chapter of the book takes up the issue of how to separate a

program’s computation-related responsibilities from its presentation-

related ones. You may recall that Chapter 1 first addressed this issue when

it created version 2 of the banking demo. Version 2 contained the new

classes BankClient, which embodied the presentational responsibilities,

and Bank, which embodied the computational ones.

It turns out that Chapter 1 didn’t go far enough. This chapter argues

that programs should also isolate the computation classes from the

presentation classes, and for this you need classes to mediate between

them. The computation, presentation, and mediator classes are called

model, view, and controller. This chapter introduces the MVC pattern,

which is the preferred way to organize these classes in a program. The

chapter also discusses the advantages of using the MVC pattern and gives

several examples.

390

 The MVC Design Rule
A program has two general areas of interest. The first is how it interacts

with the user, requesting inputs and presenting outputs. The second is

how it computes the outputs from the inputs. Experience has shown that

well-designed programs keep the code for these two areas separate from

each other. The input/output portion is called the view. The computation

portion is called the model.

This idea is expressed by the design rule “Separate the model from

the view.” In an object-oriented environment, this rule implies that there

should be classes devoted to computing the results, and classes devoted to

presenting the results and requesting input. Moreover, there should not be

a class that does both.

The view and model have different concerns. The view needs to be a

visually attractive interface that is easy to learn and use. The model should

be functional and efficient. As these concerns have nothing in common, it

follows that the view and model should be designed independently of each

other. Consequently, the model should know nothing about how the view

displays its results and the view should know nothing about the meaning

of the values it displays.

In order to maintain this isolation, a program must have code that

connects the model with the view. This code is called the controller.

The controller understands the overall functionality of the program and

mediates between the view and the model. It knows which methods of the

model correspond to each view request and what values from the model to

display in the view.

These ideas are codified in the following Model-View-Controller design

rule, otherwise known as the MVC rule. This rule, which is a special case

of the Single Responsibility rule, asserts that a class should not combine

model, view, or controller responsibilities.

Chapter 11 Model, View, and Controller

391

The Model-View-Controller Rule

a program should be designed so that its model, view,

and controller code belong to distinct classes.

For example, consider the version 18 banking demo. The Bank class is

part of the model, as are the classes and interfaces it depends on. As these

classes contain no view or controller code, they satisfy the MVC rule. On

the other hand, the BankClient and InputCommands classes do not satisfy

the MVC rule because each of them combines view and controller code.

This situation is illustrated in Listings 11-1 and 11-2.

Listing 11-1 shows the portion of InputCommands that defines the

constant DEPOSIT. The lambda expression contains view code (the calls to

the scanner and System.out.print) as well as controller code (the call to

bank.deposit).

Listing 11-1. A Fragment of the Version 18 InputCommands Enum

public enum InputCommands implements InputCommand {

 ...

 DEPOSIT("deposit", (sc, bank, current)->{

 System.out.print("Enter deposit amt: ");

 int amt = sc.nextInt();

 bank.deposit(current, amt);

 return current;

 }),

 ...

}

Chapter 11 Model, View, and Controller

392

Listing 11-2 shows the beginning of the BankClient class and two of its

methods. To its credit, the class contains mostly view code. The only issue

is that two of its variables, bank and current, refer to the model. Although

the class does not use these variables in any significant way, they do not

belong in the view.

Listing 11-2. A Fragment of the Version 18 BankClient Class

public class BankClient {

 private Scanner scanner;

 private boolean done = false;

 private Bank bank;

 private int current = 0;

 ...

 private void processCommand(int cnum) {

 InputCommand cmd = commands[cnum];

 current = cmd.execute(scanner, bank, current);

 if (current < 0)

 done = true;

 }

}

The version 19 banking demo rectifies the problems with these classes

by moving their controller code to the new class InputController. Listing 11-3

gives some of its code.

Listing 11-3. The Version 19 InputController Class

public class InputController {

 private Bank bank;

 private int current = 0;

Chapter 11 Model, View, and Controller

393

 public InputController(Bank bank) {

 this.bank = bank;

 }

 public String newCmd(int type, boolean isforeign) {

 int acctnum = bank.newAccount(type, isforeign);

 current = acctnum;

 return "Your new account number is " + acctnum;

 }

 public String selectCmd(int acctnum) {

 current = acctnum;

 int balance = bank.getBalance(current);

 return "Your balance is " + balance;

 }

 public String depositCmd(int amt) {

 bank.deposit(current, amt);

 return "Amount deposited";

 }

 ...

}

The controller has a method for each input command. The view will

call these methods, supplying the appropriate argument values. The

controller is responsible for performing the necessary actions on the

model. It is also responsible for constructing a string describing the result

and returning it to the view. The controller also manages the variable

current, which holds the current account.

Listings 11-4 and 11-5 give the version 19 code for BankClient and

InputCommands. These classes constitute the view. They use the scanner

for input and System.out for output. BankClient passes the controller to

InputCommands, and InputCommands delegates all model-related activity to

the controller.

Chapter 11 Model, View, and Controller

394

Listing 11-4. The Version 19 BankClient Class

public class BankClient {

 private Scanner scanner;

 private InputController controller;

 private InputCommand[] commands = InputCommands.values();

 public BankClient(Scanner scanner, InputController cont) {

 this.scanner = scanner;

 this.controller = cont;

 }

 public void run() {

 String usermessage = constructMessage();

 String response = "";

 while (!response.equals("Goodbye!")) {

 System.out.print(usermessage);

 int cnum = scanner.nextInt();

 InputCommand cmd = commands[cnum];

 response = cmd.execute(scanner, controller);

 System.out.println(response);

 }

 }

 ...

}

Listing 11-5. The Version 19 InputCommands Enum

public enum InputCommands implements InputCommand {

 QUIT("quit", (sc, controller)->{

 sc.close();

 return "Goodbye!";

 }),

Chapter 11 Model, View, and Controller

395

 NEW("new", (sc, controller)->{

 printMessage();

 int type = sc.nextInt();

 boolean isforeign = requestForeign(sc);

 return controller.newCmd(type, isforeign);

 }),

 SELECT("select", (sc, controller)->{

 System.out.print("Enter acct#: ");

 int num = sc.nextInt();

 return controller.selectCmd(num);

 }),

 DEPOSIT("deposit", (sc, controller)->{

 System.out.print("Enter deposit amt: ");

 int amt = sc.nextInt();

 return controller.depositCmd(amt);

 }),

 ...

}

The main class BankProgram must be revised to accommodate the

view and controller classes. Its code appears in Listing 11-6. This class is

best understood as belonging to neither the model, controller, nor view.

Instead, its job is to create and configure the model, controller, and view

classes. The bold code in Listing 11-6 highlights the order in which these

classes are created. BankProgram first creates the model object (which is

of type Bank). It then creates the controller, passing it a reference to the

model. Finally, it creates the view, passing it a reference to the controller.

Listing 11-6. The Version 19 BankProgram Class

public class BankProgram {

 public static void main(String[] args) {

 SavedBankInfo info = new SavedBankInfo("bank19.info");

Chapter 11 Model, View, and Controller

396

 Map<Integer,BankAccount> accounts = info.getAccounts();

 int nextacct = info.nextAcctNum();

 Bank bank = new Bank(accounts, nextacct);

 ...

 InputController controller = new InputController(bank);

 Scanner scanner = new Scanner(System.in);

 BankClient client = new BankClient(scanner, controller);

 client.run();

 info.saveMap(accounts, bank.nextAcctNum());

 }

}

Figure 11-1 shows a class diagram depicting the relationship between

these model, view, and controller classes. Note that even though the view

and the model consist of multiple classes, there is one class that acts as

the “primary” class for the purposes of configuration. This situation is

generally true for all MVC designs.

Figure 11-1. A class diagram for the MVC-based banking demo

Chapter 11 Model, View, and Controller

397

Theoretically, the distinction between a model and a view is clear cut:

something belongs in the model if its functionality is independent of how

it is presented, and something belongs in the view if it is irrelevant to the

model. In practice, however, making these distinctions can require careful

analysis. The banking demo provides some examples.

One example is the notion of the current account. I argued earlier that

it should not be part of the view. But should it be part of the controller

or the model? The answer depends on whether the current account is

relevant to only the particular view or is inherent to the model. The key

for me was to realize that each session of the bank client could have a

different current account, and I didn’t want the model to be responsible

for managing session-specific data. This indicated to me that the current

account belongs in the controller and not the model.

For another example, consider the numbers that BankClient assigns

to input choices. Input commands are assigned a number from 0–7,

account types a number from 1–3, and the ownership specification is 1

for “domestic” and 2 for “foreign.” The view is responsible for assigning

numbers for the commands and the domestic/foreign selections, but the

model decides the account type numbers. Why?

The criterion is whether the meaning of an input value is relevant to

the model. If the model doesn’t care then the view should be responsible

for determining the meaning of the values. This is the case for the

command and ownership numbers, since the model never sees them. The

account types, on the other hand, are manipulated by the model and thus

must be decided by the model.

 Multiple Views for a Model
One advantage of separating model from view is that you can create

different programs that use the same model. For example, the banking

model could be used by a program for customers (e.g., online banking),

Chapter 11 Model, View, and Controller

398

another program for bank employees, and another for bank executives. To

write each program, it suffices to write the view plus a controller that hooks

the view into the existing model.

The separation between model and view also makes it easier to modify

a view so that it has a different user interface. For example, BankClient

could be modified to use command names instead of numbers, or to

support voice commands, or to have a GUI-based interface. This last

option will be considered later in the chapter.

The version 18 banking demo has four programs that use the

banking model: BankProgram, FBIClient, IteratorStatProgram, and

StreamStatProgram. The last three programs do not satisfy the MVC

rule. They are all quite simple—they have no input, and their output just

prints the result of some test queries. Does it make sense to rewrite their

code to use MVC? The simplest of the programs is StreamStatProgram,

which has the associated class StreamAccountStats. These classes were

initially discussed in Chapter 6. Let’s rewrite them and see what happens.

Listing 11-7 gives the first two methods of StreamAccountStats. It is

primarily model code; the only issue is that the methods call System.out.

println.

Listing 11-7. The Original StreamAccountStats Class

public class StreamAccountStats {

 private Bank bank;

 public StreamAccountStats(Bank b) {

 bank = b;

 }

 public void printAccounts6(Predicate<BankAccount> pred) {

 Stream<BankAccount> s = bank.stream();

 s = s.filter(pred);

 s.forEach(ba->System.out.println(ba));

 }

Chapter 11 Model, View, and Controller

399

 public void printAccounts7(Predicate<BankAccount> pred) {

 bank.stream()

 .filter(pred)

 .forEach(ba->System.out.println(ba));

 }

 ...

}

Listing 11-8 shows the version 19 revision, which is called

StreamStatModel. The two printAccounts methods have changed. The

prefix “print” in their name has been renamed “get” to reflect that their

return type is now String instead of void. In addition, their use of the

forEach method must be modified to use reduce, so that it can create a

single string from the individual calls to ba.toString.

Listing 11-8. The Revised StreamStatModel Class

public class StreamStatModel {

 private Bank bank;

 public StreamStatModel(Bank b) {

 bank = b;

 }

 public String getAccounts6(Predicate<BankAccount> pred) {

 Stream<BankAccount> s = bank.stream();

 s = s.filter(pred);

 Stream<String> t = s.map(ba->ba.toString());

 return t.reduce("", (s1,s2)->s1 + s2 + "\n");

 }

Chapter 11 Model, View, and Controller

400

 public String getAccounts7(Predicate<BankAccount> pred) {

 return bank.stream()

 .filter(pred)

 .map(ba->ba.toString())

 .reduce("", (s1,s2)->s1 + s2 + "\n");

 }

 ...

}

The original code for StreamStatProgram appears in Listing 11-9. It

contains both view and controller code. The controller code consists of

calling the model methods. The view code consists of printing their results.

Listing 11-9. The Original StreamStatProgram Class

public class StreamStatProgram {

 public static void main(String[] args) {

 ...

 StreamAccountStats stats = ...

 Predicate<BankAccount> pred = ba -> ba.fee() == 0;

 ...

 System.out.println("Here are the domestic accounts.");

 stats.printAccounts6(pred);

 System.out.println("Here are the domestic accounts

 again.");

 stats.printAccounts7(pred);

 }

}

Version 19 of the banking demo contains the view class StreamStatView.

Its code, shown in Listing 11-10, calls controller methods instead of model

methods. Note that the view is not aware of the predicate because the

predicate refers to the model.

Chapter 11 Model, View, and Controller

401

Listing 11-10. The Version 19 StreamStatView Class

public class StreamStatView {

 StreamStatController c;

 public StreamStatView(StreamStatController c) {

 this.c = c;

 }

 public void run() {

 ...

 System.out.println("Here are the domestic accounts.");

 System.out.println(c.getAccounts6());

 System.out.println("Here are the domestic accounts

 again.");

 System.out.println(c.getAccounts7());

 }

}

The StreamStatController class appears in Listing 11-11. It

implements each of the three view methods in terms of the model. It also

creates the predicate.

Listing 11-11. The Version 19 StreamStatController Class

public class StreamStatController {

 private StreamStatModel model;

 Predicate<BankAccount> pred = ba -> ba.fee() == 0;

 public StreamStatController (StreamStatModel model) {

 this.model = model;

 }

Chapter 11 Model, View, and Controller

402

 public String getAccounts6() {

 return model.getAccounts6(pred);

 }

 public String getAccounts7() {

 return model.getAccounts7(pred);

 }

 ...

}

Finally, Listing 11-12 gives the code for the version 19

StreamStatProgram class. The class configures the model, view, and

controller, and then calls the view’s run method.

Listing 11-12. The Version 19 StreamStatProgram Class

public class StreamStatProgram {

 public static void main(String[] args) {

 SavedBankInfo info = new SavedBankInfo("bank19.info");

 Map<Integer,BankAccount> accounts = info.getAccounts();

 int nextacct = info.nextAcctNum();

 Bank bank = new Bank(accounts, nextacct);

 StreamStatModel m = new StreamStatModel(bank);

 StreamStatController c = new StreamStatController(m);

 StreamStatView v = new StreamStatView(c);

 v.run();

 }

}

Compare the MVC versions of the StreamStatProgram classes to

their original code. You may be surprised at how much cleaner and better

organized the MVC version is. Although it contains more code than the

original version, each individual class is short and easily modified. The

moral is that even for small programs, an MVC design is worth considering.

Chapter 11 Model, View, and Controller

403

 MVC in Excel
Excel is an example of a commercial program that follows the MVC

design rule. The model consists of the cells of the spreadsheet. Each of the

spreadsheet’s charts is a view of the model. Figure 11-2 shows a screenshot

depicting a chart and its underlying cells.

Excel maintains a strict separation between the model and the views.

The cells don’t know about the charts. Each chart is an “object” that sits on

top of the cells.

The creation of an Excel chart has two aspects. The first aspect is

what the chart looks like. Excel has tools to specify different chart types,

colors, labels, and so on. These tools correspond to view methods; they

let you make the chart look attractive, independent of whatever data it

represents.

Figure 11-2. A spreadsheet’s model and view

Chapter 11 Model, View, and Controller

404

The second aspect is what data the chart displays. Excel has a tool

called “Select Data” for specifying the chart’s underlying cells. This

tool corresponds to the controller. Figure 11-3 gives a screenshot of the

controller window for Figure 11-2. The “Name” text field specifies the cell

that contains the chart title; “Y values” specifies the cells containing the

population values; and “Horizontal (Category) axis labels” specifies the

cells containing the years.

Figure 11-3. A chart’s controller

Chapter 11 Model, View, and Controller

405

Separating the model and view provides a lot of flexibility. A range of

cells can be the model for many different charts, and a chart can be the a

view for many different cell ranges. The controller links them together.

 JavaFX Views and Controllers
Consider again the AccountCreationWindow class that appeared in

Figure 10-3. This class displays JavaFX controls that let a user choose the

type of bank account to create. However, the class is not connected to

the bank model. Clicking the CREATE ACCT button has no effect except to

change the text of the title label. In other words, this program is purely view

code, which is entirely appropriate because JavaFX is for creating views.

How to create the controller that would connect the view to the bank

model? Before attacking this question, let’s begin with a simple JavaFX example

that illustrates the issues. The program Count1 displays a window containing

two buttons and a label, as shown in Figure 11-4. The label displays the value of

the variable count. The two buttons increment and decrement the count.

Listing 11-13 gives the code for Count1. This code does not satisfy the

MVC design rule. The model consists of the variable count. The updateBy

method updates the count (an operation on the model), but also changes

the text of the label (an operation on the view).

Figure 11-4. The initial screen of the Count1 program

Chapter 11 Model, View, and Controller

406

Listing 11-13. The Count1 Class

public class Count1 extends Application {

 private static int count = 0;

 private static Label lbl = new Label("Count is 0");

 public void start(Stage stage) {

 Button inc = new Button("Increment");

 Button dec = new Button("Decrement");

 VBox p = new VBox(8);

 p.setAlignment(Pos.CENTER);

 p.setPadding(new Insets(10));

 p.getChildren().addAll(lbl, inc, dec);

 inc.setOnAction(e -> updateBy(1));

 dec.setOnAction(e -> updateBy(-1));

 stage.setScene(new Scene(p));

 stage.show();

 }

 private static void updateBy(int n) {

 count += n; // model code

 lbl.setText("Count is " + count); // view code

 }

 public static void main(String[] args) {

 Application.launch(args);

 }

}

Version 2 of the counting demo separates the code into model, view,

and controller classes. The main class Count2 is responsible for creating

these classes and connecting them to each other. Its code appears in

Listing 11-14.

Chapter 11 Model, View, and Controller

407

Listing 11-14. The Count2 Class

public class Count2 extends Application {

 public void start(Stage stage) {

 CountModel model = new CountModel();

 CountController controller = new CountController(model);

 CountView view = new CountView(controller);

 Scene scene = new Scene(view.getRoot());

 stage.setScene(scene);

 stage.show();

 }

 public static void main(String[] args) {

 Application.launch(args);

 }

}

The structure of this class is similar to the structure of the Version 19

BankProgram and StreamStatProgram classes. First the model is created.

Then the controller is created, passing in the model. Then the view is

created, passing in the controller.

The class calls the view method getRoot, which returns the root of its

node hierarchy. This root is passed into the Scene constructor, and then to

the stage (via its setScene method).

The model consists of a single class named CountModel, whose code

appears in Listing 11-15. The class has a variable count that holds the

current count, and methods getCount and updateBy that get and update

the count.

Chapter 11 Model, View, and Controller

408

Listing 11-15. The CountModel Class

public class CountModel {

 private int count = 0;

 public void updateBy(int n) {

 count += n;

 }

 public int getCount() {

 return count;

 }

}

The view consists of a single class, called CountView. Its code appears

in Listing 11-16.

Listing 11-16. The CountView Class

class CountView {

 private Pane root;

 public CountView(CountController cont) {

 root = createNodeHierarchy(cont);

 }

 public Pane getRoot() {

 return root;

 }

 private Pane createNodeHierarchy(CountController cont) {

 Button inc = new Button("Increment");

 Button dec = new Button("Decrement");

 Label lbl = new Label("Count is 0");

Chapter 11 Model, View, and Controller

409

 VBox p = new VBox(8);

 p.setAlignment(Pos.CENTER);

 p.setPadding(new Insets(10));

 p.getChildren().addAll(lbl, inc, dec);

 inc.setOnAction(e -> {

 String s = cont.incrementButtonPressed();

 lbl.setText(s);

 });

 dec.setOnAction(e ->

 lbl.setText(cont.decrementButtonPressed()));

 return p;

 }

}

Most of the view code is devoted to the mundane task of creating

the node hierarchy. More interesting is how the view uses its two button

handlers to interact with the controller. The increment button handler

calls the controller’s incrementButtonPressed method. This method

does what it needs to do (which in this case is to tell the model to

increment the count), and then returns a string for the view to display in

its label. Similarly, the decrement button handler calls the controller’s

decrementButtonPressed method, and displays its return value.

Note that the two handlers have the same structure. I wrote their code

differently from each other simply to illustrate different coding styles.

The controller class is named CountController. Its code appears in

Listing 11-17. The controller is responsible for translating events on the

view into actions on the model, and translating return values from the

model to displayable strings on the view.

Chapter 11 Model, View, and Controller

410

Listing 11-17. The CountController Class

class CountController {

 private CountModel model;

 public CountController(CountModel model) {

 this.model = model;

 }

 public String incrementButtonPressed() {

 model.updateBy(1);

 return "Count is " + model.getCount();

 }

 public String decrementButtonPressed() {

 model.updateBy(-1);

 return "Count is " + model.getCount();

 }

}

Note how the controller mediates between the model and the view,

which enables the view to be unaware of the model. The view knows “hey,

my button got pushed,” but it doesn’t know what to do about it. So the view

delegates that job to the controller. Moreover, the view agrees to display

whatever value the controller returns.

In 2003, an Apple engineer sang a wonderful song about MVC at the

Apple developer’s conference, and his performance was recorded for

posterity. You can find the video by searching YouTube for “MVC song.”

As you watch the performance, you’ll probably get drawn in by the catchy

melody. But pay special attention to the lyrics, which succinctly convey the

true beauty of MVC.

Chapter 11 Model, View, and Controller

411

 Extending the MVC Architecture
This chapter has thus far presented three examples of MVC programs:

BankProgram (Listing 11-6), StreamStatProgram (Listing 11-12), and

Count2 (Listing 11-14). Each of these programs has a similar architecture,

in which the view talks to the controller who talks to the model. This

architecture is simple and straightforward.

Although this architecture handles single-view programs fine, it

fails miserably with programs that have multiple views. For an example,

consider version 3 of the counting demo, which adds a second view to the

version 2 demo. Figure 11-5 shows a screenshot of the program after a few

button clicks.

The two views each have a pane within the window. The second

view is a “watcher” view. It keeps track of how many times the count was

changed, and displays whether the count is even or odd. But how can the

watcher view know when the model has changed? The answer is to use

the observer pattern! The model needs to broadcast changes made by

the counting view so that the watcher view can observe them. The model

therefore needs to be modified to be an observable.

Figure 11-5. A screenshot of the Count3 program

Chapter 11 Model, View, and Controller

412

Define an observer interface, called CountObserver. This interface

will have one observer method, update, which pushes the new count to its

observers. Its code appears in Listing 11-18.

Listing 11-18. The CountObserver Interface

public interface CountObserver {

 public void update(int count);

}

The class CountModel needs to manage an observer list. Its updateBy

method will broadcast the new count to the observers on the list. Listing 11-19

shows the resulting changes to the class.

Listing 11-19. The CountModel Class

public class CountModel {

 private int count = 0;

 private Collection<CountObserver> observers

 = new ArrayList<>();

 public void addObserver(CountObserver obs) {

 observers.add(obs);

 }

 private void notifyObservers(int count) {

 for (CountObserver obs : observers)

 obs.update(count);

 }

 public void updateBy(int n) {

 count += n;

 notifyObservers(count);

 }

Chapter 11 Model, View, and Controller

413

 public int getCount() {

 return count;

 }

}

The watcher’s controller will be the model observer. When the

controller receives a notification from the model, it will determine the

changes that need to be made to its view and pass those changes to the

view. Unfortunately, this behavior is not currently possible because the

watcher controller does not know who its view is! To address this problem,

the watcher view and its controller need to be modified: the controller

needs a reference to the view, and the view needs to have a method that

the controller can call.

By giving the controller a reference to its view, the watcher view and

its controller will have references to each other. The view gets its reference

via constructor injection. But the controller cannot, because the view has

not yet been created when the controller is created. The solution is for the

controller to get its reference to the view via method injection. It defines

a method setView. When the view is created, it can call the controller’s

setView method, passing the controller a reference to itself.

The watcher view defines the method updateDisplay for the controller

to call. The method has three arguments, corresponding to three values

that the controller will want to pass to the view: the new message for its

label, and the desired values of the two checkboxes.

Listing 11-20 gives the code for the controller. Note that the controller

is responsible for keeping track of the number of times the model changes,

because I decided that this value is not relevant to the model. If you feel

otherwise, you should change the model so that it keeps that information.

Chapter 11 Model, View, and Controller

414

Listing 11-20. The WatcherController Class

public class WatcherController

 implements CountObserver {

 private WatcherView view;

 private int howmany = 0;

 public WatcherController(CountModel model) {

 model.addObserver(this);

 }

 // called by the view

 public void setView(WatcherView view) {

 this.view = view;

 }

 // called by the model

 public void update(int count) {

 howmany++;

 boolean isEven = (count%2 == 0);

 boolean isOdd = !isEven;

 String msg = "The count has changed "

 + howmany + " times";

 view.updateDisplay(msg, isEven, isOdd);

 }

}

Listing 11-21 gives the code for the watcher view. Its constructor

calls the controller’s setView method, thereby establishing the two-way

connection between the view and controller. The updateDisplay method

sets the value of the view’s three controls. Note that the view has no idea

what these values mean.

Chapter 11 Model, View, and Controller

415

Listing 11-21. The WatcherView Class

class WatcherView {

 private Label lbl

 = new Label("The count has not yet changed");

 private CheckBox iseven

 = new CheckBox("Value is now even");

 private CheckBox isodd = new CheckBox("Value is now odd");

 private Pane root;

 public WatcherView(WatcherController controller) {

 root = createNodeHierarchy();

 controller.setView(this);

 }

 public Pane root() {

 return root;

 }

 public void updateDisplay(String s, boolean even,

 boolean odd) {

 lbl.setText(s);

 iseven.setSelected(even);

 isodd.setSelected(odd);

 }

 private Pane createNodeHierarchy() {

 iseven.setSelected(true);

 isodd.setSelected(false);

 VBox p = new VBox(8);

 p.setAlignment(Pos.CENTER);

 p.setPadding(new Insets(10));

Chapter 11 Model, View, and Controller

416

 p.getChildren().addAll(lbl, iseven, isodd);

 return p;

 }

}

The main program, Count3, configures the two views into a single

window. In order to deal with the multiple views, the code places the node

hierarchies of the two views into a single HBox pane. Listing 11-22 gives the

code. The statements that combine the views are in bold.

Listing 11-22. The Count3 Class

public class Count3 extends Application {

 public void start(Stage stage) {

 CountModel model = new CountModel();

 // the first view

 CountController ccontroller

 = new CountController(model);

 CountView cview = new CountView(ccontroller);

 // the second view

 WatcherController wcontroller

 = new WatcherController(model);

 WatcherView wview = new WatcherView(wcontroller);

 // Display the views in a single two-pane window.

 HBox p = new HBox();

 BorderStroke bs = new BorderStroke(Color.BLACK,

 BorderStrokeStyle.SOLID,

 null, null, new Insets(10));

 Border b = new Border(bs);

 Pane root1 = cview.root(); Pane root2 = wview.root();

 root1.setBorder(b); root2.setBorder(b);

Chapter 11 Model, View, and Controller

417

 p.getChildren().addAll(root1, root2);

 stage.setScene(new Scene(p));

 stage.show();

 }

 public static void main(String[] args) {

 Application.launch(args);

 }

}

 The MVC Pattern
Although WatcherController needs to be a model observer,

CountController does not. Since it is the only view that can change the

model, it knows exactly when and how the model will change. At least for

now, that is. But what if the program happens to add another view that can

change the model? Then the value displayed by CountView can wind up

being incorrect. This kind of bug can be very difficult to detect. If we want

CountView to always display the current count, regardless of what other

views exist, then CountController also needs to be a model observer.

To be a model observer, CountController must implement the

update method. Its code for update will construct a message describing

the new count and send it to the view. Consequently, the button handler

methods incrementButtonPressed and decrementButtonPressed

should now be void, as they are no longer responsible for constructing

the message. In addition, the controller needs a reference to the view. It

therefore implements the method setView using the same technique as

WatcherController. Listing 11-23 gives the revised code.

Chapter 11 Model, View, and Controller

418

Listing 11-23. The Revised CountController Class

class CountController implements CountObserver {

 private CountModel model;

 private CountView view;

 public CountController(CountModel model) {

 this.model = model;

 model.addObserver(this);

 }

 // Methods called by the view

 public void setView(CountView view) {

 this.view = view;

 }

 public void incrementButtonPressed() {

 model.updateBy(1);

 }

 public void decrementButtonPressed() {

 model.updateBy(-1);

 }

 // Method called by the model

 public void update(int count) {

 view.setLabel("Count is " + count);

 }

}

The class CountView needs to be modified to correspond to the

changes in its controller. The view constructor calls the controller's

method setView, and the view implements the method setLabel for the

controller to call. The code appears in Listing 11-24.

Chapter 11 Model, View, and Controller

419

Listing 11-24. The revised CountView Class

class CountView {

 private Label lbl = new Label("Count is 0");

 private Pane root;

 public CountView(CountController controller) {

 root = createNodeHierarchy(controller);

 controller.setView(this);

 }

 public Pane root() {

 return root;

 }

 public void setLabel(String s) {

 lbl.setText(s);

 }

 private Pane createNodeHierarchy(CountController cont) {

 Button inc = new Button("Increment");

 Button dec = new Button("Decrement");

 ... // create the node hierarchy, having root p

 inc.setOnAction(e -> cont.incrementButtonPressed());

 dec.setOnAction(e -> cont.decrementButtonPressed());

 return p;

 }

}

Chapter 11 Model, View, and Controller

420

To understand the effect of these changes, consider what now happens

to the count view and count controller when the Increment button is

clicked.

• The view calls the controller’s incrementButtonPressed

method.

• That method calls the model’s updateBy method.

• That method updates the count and calls

notifyObservers, which calls the controller’s update

method.

• That method formats the string for the view to display,

and calls the view’s setLabel method.

• That method modifies the text of its label to be the

current count.

This sequence of method calls has the same effect as in the Count2

controller. The difference is that the controller calls a pair of void methods

instead of a single method that returns a value. This added complexity

is necessary to guarantee that the count will be updated in all views, no

matter which view does the updating.

The insight that controllers should be observers is the basis for the

MVC Design Pattern. This pattern asserts that an application should be

structured similarly to Count3. In particular: the model should be an

observable and all controllers should be model observers; the controllers

talk directly to the model; and each view/controller pair can talk directly to

each other. This pattern is expressed by the class diagram of Figure 11-6.

Chapter 11 Model, View, and Controller

421

Communication using the MVC pattern works as follows:

• An action on a view (such as a button click) gets

communicated to its controller.

• The controller translates that action to a method call on

the model.

• If that method call is a request for data, then the model

returns the requested data directly to the controller,

which forwards it to its view.

• If that method call causes the model to change, the

model notifies its observers.

• Each controller, being a model observer, decides

if the update is relevant to its view. If so, it calls the

appropriate view methods.

Figure 11-6. The MVC pattern

Chapter 11 Model, View, and Controller

422

Many GUI applications rely on the MVC pattern to synchronize their

views. To illustrate I will use two examples from the MacOS interface on

my computer, but similar examples can be found in Windows or Linux.

For the first example, consider the file manager. Open two file manager

windows and have them display the contents of the same folder. Go to

one of the windows and rename a file. You will see the file get renamed

automatically in the other window. Now open an application, create a file,

and save it to that folder. You will see that file appear automatically in both

file manager windows.

For the second example, consider the correspondence between a

text document and its pdf version. Open a document in a text editor.

Save the document as a pdf file and open the pdf version in a pdf viewer.

Change the text document, and resave it as pdf. The version displayed in

your pdf viewer will automatically change.

In both examples, the computer’s file system serves as the model.

File manager windows and pdf viewers are views of the file system. Each

view has a controller that observes the file system. When the file system

changes, it notifies its observers. When a file manager controller is notified,

it determines if the changes affect the files being displayed, and if so,

updates its view. When a pdf controller is notified, it determines if the

changes affect the file that it is displaying, and if so, tells the view to reload

the new contents of the file.

 MVC and the Banking Demo
The time has finally come to develop a JavaFX-based interface to the

banking demo. The interface will have one window that contains three

views: a view for creating a new account; a view for managing a selected

account; and a view that displays all account information. Figure 11-7

displays a screenshot of the three views.

Chapter 11 Model, View, and Controller

423

You have already encountered the view titled “Create a New Bank

Account.” The user selects the desired account type, specifies whether

the account is domestic or foreign-owned, and clicks the button. A new

account is created.

In the view titled “Access an Existing Account,” the user specifies the

current account by entering the account number in the text field of the

top pane and clicking the “Select Account” button. The account balance

then appears in the text field below it and the domestic/foreign choice

box in the bottom pane is set to the corresponding value of the account.

After selecting an account, the user can make a deposit to it, request a loan

authorization, or change its ownership status. Throughout, the account

balance is always kept up to date. When a deposit occurs or interest is

accrued, the balance is updated.

Figure 11-7. The JavaFX interface to the banking demo

Chapter 11 Model, View, and Controller

424

The view titled “Manage All Accounts” displays all the accounts in a

text area using the output of their toString method. The view also has a

button for executing the bank’s addInterest method. The account display

is automatically kept up to date. Whenever the state of a bank account

changes, the listing is refreshed.

The program is structured using the MVC pattern. Its main class is

called FxBankProgram, and it has three view classes and three controller

classes. The Bank class is the model. Recall that Bank was revised in

Chapter 10 to be an observable (see Listing 10-18), and requires no further

modification. The following subsections will examine FxBankProgram and

each view/controller pair.

 The Class FxBankProgram
This class configures the views into a single JavaFX window. Listing 11-25

gives the code. The JavaFX Application class has the two methods init and

stop in addition to start. The launch method first calls init, then start,

and then stop. The purpose of init is to initialize values needed by the

application. Here, init creates the node hierarchies for each of the three

views and saves their roots in the variables root1, root2, and root3. It also

creates the model and the three controllers. The stop method saves the

status of the bank.

Listing 11-25. The FxBankProgram Class

public class FxBankProgram extends Application {

 private SavedBankInfo info =

 new SavedBankInfo("bank19.info");

 private Map<Integer,BankAccount> accounts =

 info.getAccounts();

 Bank bank = new Bank(accounts, info.nextAcctNum());

 private Pane root1, root2, root3;

Chapter 11 Model, View, and Controller

425

 public void start(Stage stage) {

 VBox left = new VBox();

 left.getChildren().addAll(root1, root2);

 HBox all = new HBox(left, root3);

 stage.setScene(new Scene(all));

 stage.show();

 }

 public void init() {

 Auditor aud = new Auditor(bank);

 bank.addObserver(BankEvent.DEPOSIT,

 (event,ba,amt) -> {

 if (amt > 10000000)

 bank.makeSuspicious(ba.getAcctNum());

 });

 CreationController c1 = new CreationController(bank);

 AllController c2 = new AllController(bank);

 InfoController c3 = new InfoController(bank);

 CreationView v1 = new CreationView(c1);

 AllView v2 = new AllView(c2);

 InfoView v3 = new InfoView(c3);

 BorderStroke bs = new BorderStroke(Color.BLACK,

 BorderStrokeStyle.SOLID,

 null, null, new Insets(10));

 Border b = new Border(bs);

 root1 = v1.root(); root2 = v2.root(); root3 = v3.root();

 root1.setBorder(b); root2.setBorder(b);

 root3.setBorder(b);

 }

Chapter 11 Model, View, and Controller

426

 public void stop() {

 info.saveMap(accounts, bank.nextAcctNum());

 }

 public static void main(String[] args) {

 Application.launch(args);

 }

}

 The Create Account View
The “create account” view class is called CreationView. Its code appears in

Listing 11-26. The code is similar to the AccountCreationWindow class from

Chapters 9 and 10, except that it now has a controller to talk to.

Listing 11-26. The CreationView Class

public class CreationView {

 private Pane root;

 private Label title = new Label("Create a New Bank Acct");

 public CreationView(CreationController controller) {

 controller.setView(this);

 root = createNodeHierarchy(controller);

 }

 public Pane root() {

 return root;

 }

 public void setTitle(String msg) {

 title.setText(msg);

 }

Chapter 11 Model, View, and Controller

427

 private Pane createNodeHierarchy(CreationController cont) {

 ... // Create the hierarchy as in Listing 9-9. Root is p1.

 btn.addEventHandler(ActionEvent.ACTION, e -> {

 cont.buttonPressed(chbx.getSelectionModel()

 .getSelectedIndex(),

 ckbx.isSelected());

 String foreign = ckbx.isSelected() ? "Foreign " : "";

 String acct = chbx.getValue();

 title.setText(foreign + acct + " Account Created");

 });

 return p1;

 }

}

The view talks to its controller via the button handler. The handler

calls the controller’s buttonPressed method, passing it the values of the

choice box and the check box. After an account has been created, the

controller will call the view’s setTitle method, passing it the message to

be displayed.

The controller is called CreationController. Its code appears in

Listing 11-27. Its buttonPressed method calls the bank’s newAccount

method to create the account.

Listing 11-27. The CreationController Class

public class CreationController implements BankObserver {

 private Bank bank;

 private CreationView view;

 public CreationController(Bank bank) {

 this.bank = bank;

 bank.addObserver(BankEvent.NEW, this);

 }

Chapter 11 Model, View, and Controller

428

 // methods called by the view

 void setView(CreationView view) {

 this.view = view;

 }

 public void buttonPressed(int type, boolean isforeign) {

 bank.newAccount(type+1, isforeign);

 }

 // method called by the model

 public void update(BankEvent e, BankAccount ba, int amt) {

 view.setTitle("Account " + ba.getAcctNum()

 + " created");

 }

}

The controller, like all controllers that follow the MVC pattern, is a

model observer. Recall from Chapter 10 that Bank supports four events.

The controller registers itself with the bank as an observer of NEW events.

When the controller receives an update notification, it constructs a

message for the view to display and calls the view’s setTitle method.

 The Account Information View
The “account information” view class is called InfoView. Its code appears

in Listing 11-28.

Listing 11-28. The InfoView Class

public class InfoView {

 private Pane root;

 private TextField balfld = createTextField(true);

 private ChoiceBox<String> forbx = new ChoiceBox<>();

Chapter 11 Model, View, and Controller

429

 public InfoView(InfoController controller) {

 controller.setView(this);

 root = createNodeHierarchy(controller);

 }

 public Pane root() {

 return root;

 }

 public void setBalance(String s) {

 balfld.setText(s);

 }

 public void setForeign(boolean b) {

 String s = b ? "Foreign" : "Domestic";

 forbx.setValue(s);

 }

 private Pane createNodeHierarchy(InfoController cont) {

 ... // Create the hierarchy, with p1 as the root.

 depbtn.setOnAction(e ->

 controller.depositButton(depfld.getText()));

 loanbtn.setOnAction(e ->

 respfld.setText(controller.loanButton(

 loanfld.getText())));

 forbtn.setOnAction(e ->

 controller.foreignButton(forbx.getValue()));

 selectbtn.setOnAction(e ->

 controller.selectButton(selectfld.getText()));

 return p1;

 }

}

Chapter 11 Model, View, and Controller

430

The view has four buttons, and the handler for each one calls a

different controller method. Note that the values sent to the controller

methods are strings even if the values denote numbers. The controller is

responsible for translating a value to its proper type because it understands

how the value is to be used.

The loan authorization button is different from the others in that it

requests a value from the model. Thus its controller method is not void. The

view displays the return value in its “loan response” text field.

The view’s controller is called InfoController. Its code appears in

Listing 11-29. It has a method for each button of the view; each method

performs the necessary actions on the model for its button. For example,

the depositButton method calls the bank’s deposit method. The

selectButton method retrieves the BankAccount object for the current

account, and tells the view to set the displayed value of the balance text

field and ownership choice box.

Listing 11-29. The InfoController Class

public class InfoController implements BankObserver {

 private Bank bank;

 private int current = 0;

 private InfoView view;

 public InfoController(Bank bank) {

 this.bank = bank;

 bank.addObserver(BankEvent.DEPOSIT, this);

 bank.addObserver(BankEvent.INTEREST, this);

 bank.addObserver(BankEvent.SETFOREIGN, this);

 }

 // methods called by the view

 public void setView(InfoView view) {

 this.view = view;

 }

Chapter 11 Model, View, and Controller

431

 public void depositButton(String s) {

 int amt = Integer.parseInt(s);

 bank.deposit(current, amt);

 }

 public String loanButton(String s) {

 int loanamt = Integer.parseInt(s);

 boolean result = bank.authorizeLoan(current, loanamt);

 return result ? "APPROVED" : "DENIED";

 }

 public void foreignButton(String s) {

 boolean b = s.equals("Foreign") ? true : false;

 bank.setForeign(current, b);

 }

 public void selectButton(String s) {

 current = Integer.parseInt(s);

 view.setBalance(

 Integer.toString(bank.getBalance(current)));

 String owner = bank.getAccount(current).isForeign() ?

 "Foreign" : "Domestic";

 view.setForeign(bank.isForeign(current));

 }

 // method called by the model

 public void update(BankEvent e, BankAccount ba, int amt) {

 if (e == BankEvent.SETFOREIGN &&

 ba.getAcctNum() == current)

 view.setForeign(ba.isForeign());

 else if (e == BankEvent.INTEREST ||

 ba.getAcctNum() == current)

 view.setBalance(

 Integer.toString(bank.getBalance(current)));

 }

}

Chapter 11 Model, View, and Controller

432

The controller registers itself as the observer of three bank events:

DEPOSIT, INTEREST, and SETFOREIGN. Its update method checks its first

argument to determine which event caused the update. For an INTEREST

event, the controller gets the balance of the current account and sends it

to the view’s setBalance method. For a DEPOSIT or SETFOREIGN event, the

controller checks to see if the affected account is the current account. If

so, it gets the balance (or ownership) of the current account and sends it

to the view.

 The All Accounts View
The “all accounts” view class is called AllView. Listing 11-30 gives its code.

The handler for the Add Interest button simply calls the controller’s

interestButton method. When the controller decides to refresh the

display of accounts, it calls the view’s setAccounts method.

Listing 11-30. The AllView Class

public class AllView {

 private Pane root;

 TextArea accts = new TextArea();

 public AllView(AllController controller) {

 controller.setView(this);

 root = createNodeHierarchy(controller);

 }

 public Pane root() {

 return root;

 }

 public void setAccounts(String s) {

 accts.setText(s);

 }

Chapter 11 Model, View, and Controller

433

 private Pane createNodeHierarchy(AllController cont) {

 accts.setPrefColumnCount(22);

 accts.setPrefRowCount(9);

 Button intbtn = new Button("Add Interest");

 intbtn.setOnAction(e -> cont.interestButton());

 VBox p1 = new VBox(8);

 p1.setAlignment(Pos.TOP_CENTER);

 p1.setPadding(new Insets(10));

 Label title = new Label("Manage All Accounts");

 double size = title.getFont().getSize();

 title.setFont(new Font(size*2));

 title.setTextFill(Color.GREEN);

 p1.getChildren().addAll(title, accts, intbtn);

 return p1;

 }

}

The view displays the list of accounts in a text box. The problem with

this design decision is that a single account value cannot be updated

individually. The setAccounts method must therefore replace the entire

list with a new one. The next two sections will examine other controls that

will produce a better implementation.

The controller is called AllController. Its code appears in Listing 11-31.

The controller is an observer of all four Bank events. Whenever an event of

any type occurs, the controller refreshes the displayed accounts by calling

the method refreshAccounts. This method iterates through the bank

accounts and creates a string that appends their toString values. It then

sends this string to the view.

Chapter 11 Model, View, and Controller

434

Listing 11-31. The AllController Class

public class AllController implements BankObserver {

 private Bank bank;

 private AllView view;

 public AllController(Bank bank) {

 this.bank = bank;

 bank.addObserver(BankEvent.NEW, this);

 bank.addObserver(BankEvent.DEPOSIT, this);

 bank.addObserver(BankEvent.SETFOREIGN, this);

 bank.addObserver(BankEvent.INTEREST, this);

 }

 // methods called by the view

 public void setView(AllView view) {

 this.view = view;

 refreshAccounts(); // initially populate the text area

 }

 public void interestButton() {

 bank.addInterest();

 }

 // method called by the model

 public void update(BankEvent e, BankAccount ba, int amt) {

 refreshAccounts();

 }

 private void refreshAccounts() {

 StringBuffer result = new StringBuffer();

 for (BankAccount ba : bank)

 result.append(ba + "\n");

 view.setAccounts(result.toString());

 }

}

Chapter 11 Model, View, and Controller

435

 Observable List Views
Using a text area to implement the list of all accounts is unsatisfying:

it looks bad, and it needs to be completely refreshed even if a single

account changes. JavaFX has a control, ListView, that is more satisfactory.

Figure 11-8 shows a screenshot of it in the “All Accounts” view.

The difference between a list view and a text area is that the list view

displays the contents of a Java List object. Each line of the list view

corresponds to an element of the list, and displays the result of calling the

toString method of that element.

The classes AllView2 and AllController2 rewrite AllView and

AllController to use the ListView control. Listing 11-32 gives the code

for AllView2, with new code in bold.

Figure 11-8. The Manage All Accounts screen

Chapter 11 Model, View, and Controller

436

Listing 11-32. The AllView2 Class

public class AllView2 {

 private Pane root;

 ListView<BankAccount> accts = new ListView<>();

 public AllView2(AllController2 controller) {

 root = createNodeHierarchy(controller);

 accts.setItems(controller.getAccountList());

 }

 ...

}

There are only two new lines of code. The first line creates a new

ListView object. The second line specifies the list that it should display,

which in this case is the list returned by the controller’s getAccountList

method.

AllView2 no longer needs a method to update its ListView control.

Instead, the control and its list are connected by the observer pattern. The

list is an observable. The ListView control is an observer of its list. When

the controller changes the list, the list notifies the control and the control

updates itself automatically.

This feature simplifies the view–controller interaction. The controller

no longer needs to explicitly manage the view updating. When the model

notifies the controller that the accounts have changed, the controller only

needs to modify its list. The view figures out the rest.

The code for the controller is named AllController2, and appears

in Listing 11-33. The variable accounts holds the observable list

of BankAccount objects. The JavaFX class FXCollections contains

several static factory methods for creating observable objects; the

method observableArrayList creates an observable list that wraps an

ArrayList object.

Chapter 11 Model, View, and Controller

437

Listing 11-33. The AllController2 Class

public class AllController2 implements BankObserver {

 private Bank bank;

 private ObservableList<BankAccount> accounts

 = FXCollections.observableArrayList();

 public AllController2(Bank bank) {

 this.bank = bank;

 bank.addObserver(BankEvent.NEW, this);

 bank.addObserver(BankEvent.DEPOSIT, this);

 bank.addObserver(BankEvent.SETFOREIGN, this);

 bank.addObserver(BankEvent.INTEREST, this);

 for (BankAccount ba : bank)

 accounts.add(ba); // initially populate the list

 }

 public ObservableList<BankAccount> getAccountList() {

 return accounts;

 }

 public void interestButton() {

 bank.addInterest();

 }

 public void update(BankEvent e, BankAccount ba, int amt) {

 if (e == BankEvent.INTEREST)

 refreshAllAccounts();

 else if (e == BankEvent.NEW)

 accounts.add(ba);

 else {

 int i = accounts.indexOf(ba);

 refreshAccount(i);

 }

 }

Chapter 11 Model, View, and Controller

438

 private void refreshAccount(int i) {

 // a no-op, to force the list to notify its observer

 accounts.set(i, accounts.get(i));

 }

 private void refreshAllAccounts() {

 for (int i=0; i<accounts.size(); i++)

 refreshAccount(i);

 }

}

The controller observes four kinds of event, and its update method

performs a different action based on the event. For an INTEREST event,

the controller calls refreshAllAccounts, so that the view will redisplay

each element of the list. For a NEW event, the controller adds the new bank

account to the list. For DEPOSIT and SETFOREIGN events, the controller

refreshes the list element having the specified account number.

Note that a DEPOSIT or SETFOREIGN event changes the state of a list

element, but does not actually change the list. This is a problem, because

the list will not notify the view unless it changes. The refreshAccount

method solves the problem by setting the new value of a list element to be

the same as the old value. Although that operation has no effect on the list

element, the list recognizes it as a change to the list, and notifies the view

to redisplay the element.

 Observable Table Views
The ListView control displays the information about each BankAccount

object in a single cell. It would be more visually pleasing if the account

information could be displayed as a table, with each value in its own

cell. This is the purpose of the TableView control. Figure 11-9 shows a

screenshot of the view revised to use a TableView control.

Chapter 11 Model, View, and Controller

439

This view is named AllView3, and its code appears in Listing 11-34. The

variable accts is now of type TableView. A TableView control observes a

list, the same as ListView. Its method setItems connects the control with

that list. Because the mechanism is exactly the same as with the ListView

control, AllView3 can use the controller AllController2 the same as

AllView2.

Listing 11-34. The AllView3 Class

public class AllView3 {

 private Pane root;

 TableView<BankAccount> accts = new TableView<>();

 public AllView3(AllController2 controller) {

 root = createNodeHierarchy(controller);

 TableColumn<BankAccount,Integer> acctnumCol

 = new TableColumn<>("Account Number");

Figure 11-9. Manage All Accounts as a table view

Chapter 11 Model, View, and Controller

440

 acctnumCol.setCellValueFactory(p -> {

 BankAccount ba = p.getValue();

 int acctnum = ba.getAcctNum();

 Property<Integer> result

 = new SimpleObjectProperty<>(acctnum);

 return result;

 });

 TableColumn<BankAccount,Integer> balanceCol

 = new TableColumn<>("Balance");

 balanceCol.setCellValueFactory(p ->

 new SimpleObjectProperty<>

 (p.getValue().getBalance()));

 TableColumn<BankAccount,String> foreignCol

 = new TableColumn<>("Owner Status");

 foreignCol.setCellValueFactory(p -> {

 boolean isforeign = p.getValue().isForeign();

 String owner = isforeign ? "Foreign" : "Domestic";

 return new SimpleObjectProperty<>(owner);

 });

 accts.getColumns().addAll(acctnumCol, balanceCol,

 foreignCol);

 accts.setItems(controller.getAccountList());

 accts.setPrefSize(300, 200);

 }

 ...

}

The difference between TableView and ListView is that a TableView

control has a collection of TableColumn objects. The method getColumns

returns this collection.

Chapter 11 Model, View, and Controller

441

A TableColumn object has a header string, which is passed into

its constructor. A TableColumn object also has a “cell value factory.”

The argument to this object is a method that computes the display value

of the cell for a given list element. The argument p to the method denotes

an element of the observable list, which here is an object that wraps

BankAccount. Its method getValue returns the wrapped BankAccount

object. The SimpleObjectProperty class creates a property from its

argument object.

For example, consider the first lambda expression in Listing 11-34,

which computes the value of the column acctnumCol.

 p -> {

 BankAccount ba = p.getValue();

 int acctnum = ba.getAcctNum();

 Property<Integer> result =

 new SimpleObjectProperty<>(acctnum);

 return result;

 }

This lambda expression unwraps p, extracts the account number from

the unwrapped bank account, wraps the value as a property, and returns it.

The lambda expression can be expressed more succinctly as follows:

 p -> new SimpleObjectProperty<>(p.getValue().getAcctNum())

 Summary
The MVC design rule states that each class in a program should have either

model, view, or controller responsibilities. Designing programs in this

way can require discipline. Instead of writing a single class to perform a

task you might need to write three classes, so as to separate the model,

view, and controller aspects of the task. Although creating these classes

Chapter 11 Model, View, and Controller

442

will undoubtedly require more effort, they come with significant benefits.

The separated concerns make the program more modular and more

easily modifiable, and therefore more in line with the fundamental design

principle.

The MVC pattern describes an effective way to organize the model,

view, and controller classes. According to the pattern, a program will have

one model and possibly several views. Each view has its own controller,

and uses the controller as a mediator to help it communicate with the

model. Each controller has a reference to its view and to the model, so that

it can send view requests to the model and model updates to the view. The

model, however, knows nothing about the controllers and views. Instead, it

communicates with them via the observer pattern.

The MVC pattern choreographs an intricate dance between the model,

controllers, and views. The purpose of this dance is to support flexibility

and modifiability of the program. In particular, the views are independent

of each other; you can add and remove a view from an MVC program

without impacting the other views.

This flexibility has enormous value. This chapter gave several examples

of commercial MVC-based software—such as Excel, pdf viewers, and file

managers—and describes features they have that are possible because of

their MVC architecture.

Although this chapter has given enthusiastic support for the MVC

pattern, the reality is that the pattern has no single agreed-upon definition.

The definition given in this chapter is just one of several ways that have

been used to organize models, views, and controllers. Regardless of their

differences, however, the central feature of all MVC definitions is their

following use of the observer pattern: Controllers make update requests to

the model, and the model notifies its observers of the resulting state changes.

I prefer using the controllers as model observers, but it is also possible to

use the views, or even a combination of views and controllers. There are

also different approaches for how a view can be connected to its controller.

Chapter 11 Model, View, and Controller

443

As with all the design patterns in this book, there are always tradeoffs

to be made. A good designer will adjust the connections among the MVC

components to fit the needs of a given program. In general, the more

deeply you understand how and why the MVC pattern works, the more

freedom you will have to make the adjustments that will lead you to the

best possible design.

Chapter 11 Model, View, and Controller

445© Edward Sciore 2019
E. Sciore, Java Program Design, https://doi.org/10.1007/978-1-4842-4143-1

Index

A
Abstract classes

AbstractBankAccount
class, 94, 96

bank account classes,
version 7, 98–101

banking demo, 100
CheckingAccount class, 101–102
deposit methods, 93
method of BankClient, 97–98
RegularChecking class, 102–103
SavingsAccount class, 96–97

Abstraction rule
DataManager1 vs. DataManager2

classes, 78–79
DataManager2 class, 77–78
DataManager3 class, 79–80

AccountCreationWindow class,
325–326, 376, 380–381

Adapter classes, 237
Adapter pattern

analogous situation, 241
ArrayAsList class, 243–244
asList method, 242
class diagram, 241
stack class, 242
wrapper classes, 240

addInterest method, 58, 91–93, 119
addObserver method, 362
addRecipes method, 341
Agile methodology, 2
AllController class, 433–434
AllView class, 432–433
AndPredicate class, 317, 319, 321
Anonymous inner classes, 140–141
Application Program

Interface (API), 4

B
Bank class, 354
Banking demo

adapters
BankAccountAdapter

class, 266
FBIAcctInfo interface,

264–265
FBIClient class, 267–268
LoanAdapter class, 266–267
Loan class, 264–265

JavaFX interface, 423
AllController class, 434
AllView class, 432–433
CreationController

class, 427–428

https://doi.org/10.1007/978-1-4842-4143-1

446

CreationView class, 426–427
FxBankProgram

class, 424–425
InfoView class, 428–430

Saving State
BankAccount interface, 263
SavedBankInfo class, 260–262
serializable interface, 262

BankObserver interface, 356, 363
BaseComponent object, 333
BasicFood class, 338–339
Basic predicates, 315–316
Bind method, 387
Bindings, JavaFX

change listener, 387
Choice Box Change Listener, 386
interface, 384
isNull method, 387
memory diagram, variables, 385
object, 385
value property, 384, 386

Button class, 378
Byte streams, 244

bankProgram class,
106–107, 110–111

ByteArrayInputStream
class, 117

class diagrams, 105–106
EncryptDecrypt class, 107
encrypt method, 108
input and output

streams, 108–109
InputStream class, 115–116

SavedBankInfo class, 111–112
writeAccount and

readAccount, 114
writeInt and readInt

methods, 113
writeMap and readMap

methods, 112–113
zero-argument read

method, 109, 115

C
Cached factory objects

AccountFactory interface,
188–190

BankAccount interface, 191
createAccount method, 190
createSavingsWithDeposit

method, 191–192
InputCommands enum,

192–193
Chain of command pattern

AuthorizeLoan method, 288
AuthorizerWrapper class, 286
CollateralAuthorizer class, 285
CreditScoreAuthorizer

class, 286
GoodCustomerAuthorizer

class, 287
LoanAuthorizer, 283–285, 288

Change listener, 381–383
Check Box Change Listener, 382
childIterator method, 338–339, 346
ChoiceBox, 379

Banking demo (cont.)

Index

447

Class design
global variables, 24
modularity, 29
two-step process, 27

Class diagram
design-level, 7
implementation phase, 7
UML, 7

Class hierarchy, elimination
AbstractBankAccount

class, 159–160
banking demo, 157
newAccount method, 159
SavingsAccount class, 158
subclasses (see Subclasses)
template pattern, 156
TypeStrategy interface, 158

Code to interface
BankAccount interface, 81
convenience methods, 81
createSavingsWithDeposit

method, 80–81
Sort method, 82–84

Collection streams
anyMatch method, 232
fluent expression, 230–231
hasNext and next methods, 228
map method, 231
map-reduce program, 233
maxBalance4 method, 232
printAccounts6

method, 229–230
printAccounts7 method, 230
reducing stream, 231

reduction algorithm, 232
SimpleStreamTest

class, 295–297
stream code, 294–295
stream interface, 228–229

ColorLabelHandler class, 375, 378
Command pattern

BankClient class, 154
constructMessage, 155
InputCommand

strategy, 151–152
ownerStrategy strategy, 150
processCommand

method, 150–151
version 9 BankClient class, 153

Comparable interface
CompareSavingsAccounts

class, 66–67
compareTo method, 64–65
findMax method, 67
Java library method, 67
SavingsAccount class, 65

Component interface, 335
CompositeComponent class, 335
Composite interface, 335, 350–351
Composite object

CheckBox object, 327
getLayoutBounds

method, 330
getValue method, 327
JavaFX window

AccountCreationWindow, 325
control node, 323
controls, 330

Index

448

createNodeHierarchy
method, 326, 327

node hierarchy, 324
pane node, 323, 330

lambda expression, 328
predicate class diagram, 330
PrintNodeInformation

class, 330–332
printNodeSize method, 332
traversing

childIterator method, 346
Cookbook class, 345
FoodIterator class, 349
foodsUsed1 method, 346
foodsUsed2 method, 347
getChildren method, 344
NodeTraversal class, 342
printAllNodes, code, 343
printRecipes method, 346
printRecipesUsedIn1

method, 348
printRecipesUsedIn2

method, 348
printShoppingList

method, 349
Composite pattern

class diagram, 334
CompositeComponent

class, 334
tree-structured objects, 333

Composite predicates
actual implementation, 322
basic predicate, 316

class diagram, 317, 318
memory representation, 320
predicate tree, 316
reasonable implementation, 322
sequence diagram, expression

pred5.test(9), 321
CompositePredicateTest class,

318–319
Configuration class, 39
Constructor injection, 37
Controller, 390
Cookbook

addIngredient method, 339
addRecipes method, 341
BasicFood class, 338–339
childIterator method, 338
class diagram, 337
FoodItem interface, 337
Recipe class, 339–340
traversal methods childIterator

and iterator, 344
CountController class, 410
CountModel class, 408, 412
CountObserver interface, 412
CountView class, 408–409
createNodeHierarchy method,

326–327, 379
Customization, Factory objects

AccountFactories enum, 196
newThread method, 197
PriorityThreadFactory class,

197–198
SavingsFactory class, 195
ThreadFactory interface, 196

Composite object (cont.)

Index

449

D
Decorated iterators

FilterIterator class, 291–292, 294
IteratorTest class, 289–290
MapIterator class, 290–291, 294
sequence diagram, 293

Decorator chain, 334
Decorator classes

CipherInputStream class, 304
DecoratedEncryptDecrypt

class, 304–305
InputStream class, 298
InputStreamEfficiency

class, 299
iterator method, 271–272, 274
makeSuspicious

method, 276–277
ProgressMonitorFileRead

class, 302–304
readFileArrayBuffer

method, 300–301
readFileDecoratorBuffer

method, 301–302
readFileUnbuffered method, 299
Subclasses, 275
SuspiciousAccount class,

275–276
Iterator method, 275
UnmodifiableAccount

class, 273
UnmodifiableBankIterator

class, 274
Wrapped objects, 275

Decorator pattern
BankAccount hierarchy, 279–280
BankAccount objects, 282–283
BankAccountWrapper

class, 277–278
composed decorator, 281–282
SuspiciousAccount class, 278–279
UnmodifiableAccount class, 278

Decorator transparency
BufferedReader method, 310
DoubledChars class, 307–310
markSupported method, 309
openAndSkip method, 306–307
printDoubleChars method, 309
ProgressMonitorInputStream

class, 311–312
PushbackInputStream class, 311
PushbackReader method,

306–307, 310
Dependency injection

BankClient class, 36–38, 40
Bankprogram class, 39
scanner object, 36
techniques, 37

Don’t repeat yourself (DRY) rule,
93–94, 103, 118

E
Encapsulation

accessors method, 29
getBalance method, 30
mutator method, 30
rules, 31

Index

450

EventHandler interface, 375–377
Event types

enum BankEvent, 369
MouseEvent.MOUSE_

CLICKED, 378
version 18 Bank class, 370

External iteration, 234
basic idiom, 214
for-each loop, 216–217
interleaving access, 217
printAccounts1 and maxBalance1

methods, 214–216

F
Factory method, 325
Factory objects

AccountFactory interface,
185–186

BankAccount interface, 187
class diagram, 187–188
createSavingsWithDeposit

method, 187
SavingsFactory class, 186
weak dependency, 188

Factory pattern
ListFactory interface, 194
parallel hierarchies, 192–193
result hierarchy, 193

FoodItem interface, 336–337
FoodIterator class, 349
forEach method, 399
for-each loop, 234
Fundamental design principle, 2, 13

G
getBalance method, 58
getLayoutBounds method, 330
Graphical user interfaces

(GUIs), 315, 398

H
hasEnoughCollateral method,

100, 118–119
hasNext method, 350
Hybrid push-pull observer

method, 381

I
InfoController class, 430–432
InfoView class, 428–430
Inheritance for reuse

inherited methods, 239
Liskov Substitution Principle, 239
Stack class, 238–239

Interface Comparator<T>, 142
Internal iteration, 217–219
Internal tree traversal, 345
Iterable class, 212

Bank class, 213
prototypical tasks, 213
screen scraping, 213
toString method, 212

Iterator class
AbstractListIterator class,

209–210
hasNext and next methods, 205

Index

451

PrimeCollection class, 207–208
PrimeIterator class, 206–207
RandomIterator class, 205–206

Iterator pattern, 210–211
Iterators

hasNext and next methods,
202, 204

isUnique method, 202–205
noDuplicates

method, 202–205

J, K
Java collection classes, 104
Java collection library

ArrayList, 73
elements, 72
HashSet, 73
interfaces, 70–71
IS-A relationship, 74
LinkedList, 73
TreeSet, 73

JavaFX window, 323
Java interface

bankAccount interface, 51
CheckingAccount class, 52–53
class diagram, 53–54
SavingsAccount class, 51–52

L
Lambda expression, 142, 378, 381

lambdaExpComp1 method, 142
lambdaExpComp2 method, 143

Liskov Substitution Principle, 91
interface Set, 76
interface SortedList, 75–76
Queue, list, 76
SortedSet, list, 75

ListViews, observable
AllController2 class, 437–438
AllView2 class, 436
manage all accounts screen, 435
refreshAccount method, 438

Low Coupling, 40–41

M
Mediator, definition, 40
Method injection, 362–363
Model-View-Controller

(MVC) pattern
architecture

Count3 class, 416–417
CountModel class, 412
CountObserver interface, 412
screenshot, Count3

program, 411
WatcherController class, 414
WatcherView class, 415–416

communication, 421
CountController, 417
incrementButtonPressed

and decrementButton
Pressed, 417

revised CountController class, 418
revised CountView class, 419
sequence of method calls, 420

Index

452

MOUSE_CLICKED event, 374
MVC design rule

BankClient and
InputCommands classes,
391, 392

Excel chart, 403, 405
version 18 banking demo

BankClient class, 392, 394
BankProgram class, 395–396
class diagram, 396
InputCommands

enum, 391, 394
InputController class, 392

N
newAccount method, 27, 57
Node class hierarchy, 329
NodeTraversal class, 342
Nonrecursive tree traversal, 350
notifyObservers method, 371

O
Object caching

Boolean class, 165–166
Integer caching, 168
sensors class, 163–166
setSensor method, 164

Object-oriented concepts
API, 4–5
class diagrams, 6
modular, 6
static vs. nonstatic, 8–9

Object streams
adapter class, 259
DataInput, DataOutput,

ObjectInput, and
ObjectOutput
interfaces, 256

object serialization, 260
ObjectStreamTest class,

257–258
readObject method, 260
writeObject method, 260

Observable-observer
relationship, 355

Observer pattern
architecture, 358
class diagram, 358
notifyObservers methods, 366
Observable class, 365
ObserverInfo class, 368
Observer interface, 365
observer list, manage

addObserver and
removeObserver, 361–362

auditor observer, 364
method injection, 362–364
revising BankProgram, 363

push vs. pull technique, 359
Observers

Auditor class, 357
Bank constructor, 357
Bank Class, 354–357
events

enum BankEvent, 369
update method, 370

Index

453

Version 18 Auditor class, 373
Version 18 Bank

class, 371–372
Version 18 BankObserver

interface, 370
Version 18 BankProgram

class, 373
JavaFX

AccountCreationWindow
program, 376

ColorLabelHandler Class, 375
EventHandler Interface, 375
event types, 374
revised

AccountCreationWindow
Class, 377

publish-subscribe
technique, 355

rewriting bank and auditor, 367
Open-Closed rule, 63–64
OrPredicate classes, 322
OrPredicate object, 319

P, Q
Polymorphic array, 150
Polymorphism

definition, 47
need, 47–50
subtypes, 67–70
transparency, 61, 63

Predicates
Domestic Accounts, 223
interface, 342

lambda expressions, 224
maxBalance5 method, 226
printAccounts4 and

maxBalance4 methods, 225
printAccounts5 method,

225–226
visit3 and visit4 method, 227

Predicate tree, 316
PrintNodeInformation class,

330–332
printRecipesUsedIn1 method, 348
printShoppingList method, 349
Properties, JavaFX

change listener, 382–383
check box listener, 382
choice box, 383
explicit property objects, 380
getValue and setValue

methods, 379
interface, 379
itemsProperty and

valueProperty, 379
observables, 381–384
wrappers, 379–380

Property interface, 379
Publish-subscribe technique, 355
Push technique, 366

R
Recipe class, 336
Reference types

bank class, 56–57
class-typed variable, 55

Index

454

interface-typed variable, 55
primitive type, 54
reference type, 54

S
SimpleObjectProperty

class, 441
Single responsibility rule

addInterest method, 17
authorizeLoan method, 16
BankClient class, 17–19
command methods, 14
deposit method, 16
getBalance method, 16
newAccount method, 15
showAll method, 17
version 2 Bank class, 15–16

Singleton classes
default constructor, 171
enum syntax, 169, 171
toString method, 171–172
valueOf method, 169

Singleton strategy classes
AbstractBankAccount class,

172–174
BankClient class, 176, 179
Foreign class, 172
InputCommands enum,

176–180
Owners enum, 173–174
rewriting Foreign class, 173
SelectCmd interface, 175

Software design
banking Demo, 9, 11
development methodologies, 2
encapsulation (see

Encapsulation)
fundamental principle, 3–4
Java maps

client, 44
HashMap, 43–44
Map.Entry, 43–45

mediator, 40–41
object-oriented concepts (see

Object-oriented concepts)
redistributing responsibility

BankAccount class, 32–33
bank addInterest method, 35
bank authorizeLoan

method, 33, 35
bank deposit method, 32, 34
bank toString method, 35

refactoring, 19–20
tradeoffs, 41–42

Spreadsheet’s model and view, 403
Static factory method

AccountFactory interface,
183–184

allocateDirect method, 181
asList method, 181
BankAccount interface, 184–185
ByteBuffer class, 181–182
createAccount method, 184
createSavingsWithDeposit

method, 182
direct buffer, 181

Reference types (cont.)

Index

455

heap buffer, 181
newAccount

method, 182–184
valueOf method, 180

StaticTest class, 8–9
Strategy pattern

abstract methods, 127
class diagrams, 130–131
comparable interface, 136

AcctByMinBal class, 137
Collections.max, 139
ComparatorBank

Accounts, 138
findMax method, 139

design tool, 144
hierarchy, 129
IntProcessor, 127–129
RunnableThreadTest

class, 134
vs. templates, 160–161
thread, 132, 135–136

StreamAccountStats class, 398
StreamStatController class, 401
StreamStatModel class, 399–400
StreamStatProgram class, 402
StreamStatView class, 401
Subclasses

class diagram, 90
class–superclass

relationship, 90
default equals method, 87–89
interestChecking class, 91–92
super method, 92
toString method, 87, 89, 91–92

T
Table views

AllView3 class, 439–440
control, 438–440
lambda expression, 441
manage all accounts, 439
SimpleObjectProperty class, 441

Template pattern
AbstractBankAccount class, 121
CheckingAccount class, 121–122
class diagram, 119–120
collateralRatio method, 119
definition, 118
ReadLine class, 124
RegularChecking class, 121, 123
run method, 123, 125
SavingsAccount class, 121–122
start method, 123, 125
ThreadTest class, 124–125

Text streams
InputStreamReader

ByteBuffer object, 251–253
CharDecoder class, 251
FileReader class, 250–251

OutputStreamWriter, 248
CharBuffer argument, 250
CharEncoder class, 246
close, flush, and 3-arg

methods, 248–249
FileOutputStream, 246
FileWriter class, 247

StringReader, 254–255
toString method, 87, 89, 91–92, 119

Index

456

traversal methods childIterator and
iterator, 344

Tree traversals, 334
Type casting, 59–60
Type safety, 58–59

U
Unit testing

driver program, 20–21
mock class, 21–22
use case, 20

Universal Modeling Language
(UML), 7

V
Version 18 Auditor class, 373
Version 18 BankClient class, 392
Version 18 BankProgram class, 373
Version 18 StreamStatProgram

class, 400
Version 19 BankClient class, 394
Version 19 InputController

class, 392

Views and controllers, JavaFX
Count1 class, 406
Count2 class, 407
CountController class, 410
CountModel class, 408
CountView class, 408–409
screen, Count1 program, 405

Visitor pattern, 234
IteratorAccountStats class, 220
maxBalance3a and

maxBalance3b methods,
221–222

maxBalance3c methods, 223
MaxBalanceVisitor class, 221
visit1 method, 220
visit2 method, 222–223

W, X, Y, Z
WatcherController class, 414
WatcherView class, 415–416
Waterfall methodology, 2
Window’s node

hierarchy, 324
Wrappers, 239–240

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Modular Software Design
	Designing for Change
	Object-Oriented Basics
	APIs and Dependencies
	Modularity
	Class Diagrams
	Static vs. Nonstatic

	A Banking Demo
	The Single Responsibility Rule
	Refactoring
	Unit Testing
	Class Design
	Encapsulation
	Redistributing Responsibility
	Dependency Injection
	Mediation
	Design Tradeoffs
	The Design of Java Maps
	Summary

	Chapter 2: Polymorphism
	The Need for Polymorphism
	Interfaces
	Reference Types
	Type Safety
	Type Casting
	Transparency
	The Open-Closed Rule
	The Comparable Interface
	Subtypes
	The Java Collection Library
	ArrayList
	LinkedList
	HashSet
	TreeSet

	The Liskov Substitution Principle
	Should SortedSet Extend List?
	Why Isn’t There an Interface SortedList?
	Should Queue Extend List? Should List Extend Queue?
	Why Have the Interface Set if It Doesn’t Provide any Added Functionality?

	The Rule of Abstraction
	Adding Code to an Interface
	Summary

	Chapter 3: Class Hierarchies
	Subclasses
	Abstract Classes
	Writing Java Collection Classes
	Byte Streams
	The Template Pattern
	Summary

	Chapter 4: Strategies
	The Strategy Pattern
	Comparators
	Anonymous Inner Classes
	Explicit Anonymous Classes
	Lambda Expressions

	The Strategy Pattern as a Design Tool
	The Command Pattern
	Eliminating the Class Hierarchy
	Templates vs. Strategies
	Summary

	Chapter 5: Encapsulating Object Creation
	Object Caching
	Singleton Classes
	Singleton Strategy Classes
	Static Factory Methods
	Factory Objects
	Cached Factory Objects
	The Factory Pattern
	Factories for Customized Objects
	Summary

	Chapter 6: Iterables and Iteration
	Iterators
	Writing an Iterator Class
	The Iterator Pattern
	Designing Iterable Classes
	External Iteration
	Internal Iteration
	The Visitor Pattern
	Predicates
	Collection Streams
	Summary

	Chapter 7: Adapters
	Inheritance for Reuse
	Wrappers
	The Adapter Pattern
	Text Streams
	The Adapter OutputStreamWriter
	The Adapter InputStreamReader
	The Adapter StringReader

	Object Streams
	Saving State in the Banking Demo
	Adapters for the Banking Demo
	Summary

	Chapter 8: Decorators
	Decorator Classes
	The Decorator Pattern
	The Chain of Command Pattern
	Decorated Iterators
	Implementing Collection Streams
	Decorated Input Streams
	Buffered Input Streams
	Progress Monitoring
	Cipher Input Streams

	Decorator Transparency
	Summary

	Chapter 9: Composites
	Predicates as Composites
	Composite Objects in JavaFX
	The Composite Pattern
	A Cookbook Example
	Traversing a Composite Object
	Summary

	Chapter 10: Observers
	Observers and Observables
	The Observer Pattern
	Push vs. pull
	Managing the Observer List

	The Generic Observer Pattern in Java
	Events
	Observers in JavaFX
	JavaFX Properties
	Properties as Wrappers
	Properties as Observables

	JavaFX Bindings
	Summary

	Chapter 11: Model, View, and Controller
	The MVC Design Rule
	Multiple Views for a Model
	MVC in Excel
	JavaFX Views and Controllers
	Extending the MVC Architecture
	The MVC Pattern
	MVC and the Banking Demo
	The Class FxBankProgram
	The Create Account View
	The Account Information View
	The All Accounts View

	Observable List Views
	Observable Table Views
	Summary

	Index

