

In	easy	steps	is	an	imprint	of	In	Easy	Steps	Limited	16	Hamilton	Terrace	·	Holly	Walk	·
Leamington	Spa	Warwickshire	·	CV32	4LY
www.ineasysteps.com

http://www.ineasysteps.com

Sixth	Edition

Copyright	©	2017	by	In	Easy	Steps	Limited.	All	rights	reserved.	No	part	of	this	book	may	be
reproduced	or	transmitted	in	any	form	or	by	any	means,	electronic	or	mechanical,	including
photocopying,	recording,	or	by	any	information	storage	or	retrieval	system,	without	prior	written
permission	from	the	publisher.

Notice	of	Liability
Every	effort	has	been	made	to	ensure	that	this	book	contains	accurate	and	current	information.
However,	In	Easy	Steps	Limited	and	the	author	shall	not	be	liable	for	any	loss	or	damage	suffered
by	readers	as	a	result	of	any	information	contained	herein.

Trademarks	All	trademarks	are	acknowledged	as	belonging	to	their	respective	companies.

Contents

1	Getting	started
Introduction
Installing	the	JDK
Writing	a	first	Java	program
Compiling	&	running	programs
Creating	a	variable
Recognizing	data	types
Creating	constants
Adding	comments
Troubleshooting	problems
Summary

2	Performing	operations
Doing	arithmetic
Assigning	values
Comparing	values
Assessing	logic
Examining	conditions
Setting	precedence
Escaping	literals
Working	with	bits
Summary

3	Making	statements
Branching	with	if
Branching	alternatives
Switching	branches
Looping	for
Looping	while	true
Doing	do-while	loops
Breaking	out	of	loops
Returning	control
Summary

4	Directing	values
Casting	type	values
Creating	variable	arrays

Passing	an	argument
Passing	multiple	arguments
Looping	through	elements
Changing	element	values
Adding	array	dimensions
Catching	exceptions
Summary

5	Manipulating	data
Exploring	Java	classes
Doing	mathematics
Rounding	numbers
Generating	random	numbers
Managing	strings
Comparing	strings
Searching	strings
Manipulating	characters
Summary

6	Creating	classes
Forming	multiple	methods
Understanding	program	scope
Forming	multiple	classes
Extending	an	existing	class
Creating	an	object	class
Producing	an	object	instance
Encapsulating	properties
Constructing	object	values
Summary

7	Importing	functions
Handling	files
Reading	console	input
Reading	files
Writing	files
Sorting	array	elements
Making	array	lists
Managing	dates
Formatting	numbers
Summary

8	Building	interfaces
Creating	a	window
Adding	push	buttons
Adding	labels

Adding	text	fields
Adding	item	selectors
Adding	radio	buttons
Arranging	components
Changing	appearance
Summary

9	Recognizing	events
Listening	for	events
Generating	events
Handling	button	events
Handling	item	events
Reacting	to	keyboard	events
Responding	to	mouse	events
Announcing	messages
Requesting	input
Summary

10	Deploying	programs
Producing	an	application
Distributing	programs
Building	Java	archives
Deploying	applications
Creating	Android	projects
Exploring	project	files
Adding	resources	&	controls
Inserting	Java	code
Testing	the	application
Deploying	Android	apps
Summary

Preface

The	creation	of	this	book	has	provided	me,	Mike	McGrath,	a	welcome
opportunity	to	update	my	previous	books	on	Java	programming	with	the	latest
techniques.	All	examples	I	have	given	in	this	book	demonstrate	Java	features
supported	by	current	compilers	on	both	Windows	and	Linux	operating	systems,
and	the	book’s	screenshots	illustrate	the	actual	results	produced	by	compiling
and	executing	the	listed	code,	or	by	implementing	code	snippets	in	the	Java
shell.

Conventions	in	this	book

In	order	to	clarify	the	code	listed	in	the	steps	given	in	each	example,	I	have
adopted	certain	colorization	conventions.	Components	of	the	Java	language	itself
are	colored	blue;	programmer-specified	names	are	red;	numeric	and	string	values
are	black;	and	comments	are	green,	like	this:

//	Store	then	output	a	text	string	value.
String	message	=	“Welcome	to	Java	programming!”	;
System.out.println(message)	;

Additionally,	in	order	to	identify	each	source	code	file	described	in	the	steps,	a
colored	icon	and	file	name	appears	in	the	margin	alongside	the	steps,	like	these:	

App.java

App.class

App.jar

App.xml

Grabbing	the	source	code

For	convenience,	I	have	placed	source	code	files	from	the	examples	featured	in
this	book	into	a	single	ZIP	archive.	You	can	obtain	the	complete	archive	by
following	these	easy	steps:

Browse	to	www.ineasysteps.com	then	navigate	to	Free	Resources	and
choose	the	Downloads	section	Find	Java	in	easy	steps,	6th	Edition	in	the
list,	then	click	on	the	hyperlink	entitled	All	Code	Examples	to	download
the	archive	Now,	extract	the	archive	contents	to	any	convenient	location
on	your	computer

I	sincerely	hope	you	enjoy	discovering	the	programming	possibilities	of	Java
and	have	as	much	fun	with	it	as	I	did	in	writing	this	book.

Mike	McGrath

http://www.ineasysteps.com

1

Getting	started

Welcome	to	the	exciting	world	of	Java	programming.	This	chapter	shows	how	to	create	and	execute

simple	Java	programs,	and	demonstrates	how	to	store	data	within	programs.

Introduction
Installing	the	JDK
Writing	a	first	Java	program
Compiling	&	running	programs

Creating	a	variable
Recognizing	data	types
Creating	constants
Adding	comments

Troubleshooting	problems
Summary

Introduction

The	Java™	programming	language	was	first	developed	in	1990	by	an	engineer
at	Sun	Microsystems	named	James	Gosling.	He	was	unhappy	using	the	C++
programming	language	so	he	created	a	new	language	that	he	named	“Oak”,	after
the	oak	tree	that	he	could	see	from	his	office	window.

As	the	popularity	of	the	World	Wide	Web	grew,	Sun	recognized	that	Gosling’s
language	could	be	developed	for	the	internet.	Consequently,	Sun	renamed	the
language	“Java”	(simply	because	that	name	sounded	cool)	and	made	it	freely
available	in	1995.	Developers	around	the	world	quickly	adopted	this	exciting
new	language	and,	because	of	its	modular	design,	were	able	to	create	new
features	that	could	be	added	to	the	core	language.	The	most	endearing	additional
features	were	retained	in	subsequent	releases	of	Java	as	it	developed	into	the
comprehensive	version	of	today.

The	essence	of	Java	is	a	library	of	files	called	“classes”,	which	each	contain
small	pieces	of	ready-made	proven	code.	Any	of	these	classes	can	be
incorporated	into	a	new	program,	like	bricks	in	a	wall,	so	that	only	a	relatively
small	amount	of	new	code	ever	needs	to	be	written	to	complete	the	program.
This	saves	the	programmer	a	vast	amount	of	time,	and	largely	explains	the	huge
popularity	of	Java	programming.	Additionally,	this	modular	arrangement	makes
it	easier	to	identify	any	errors	than	in	a	single	large	program.

Java	technology	is	both	a	programming	language	and	a	platform.	In	Java
programming,	the	source	code	is	first	written	as	human-readable	plain	text	files
ending	with	the	.java	extension.	These	are	compiled	into	machine-readable	.class
files	by	the	javac	compiler.	The	java	interpreter	can	then	execute	the	program
with	an	instance	of	the	Java	Virtual	Machine	(Java	VM):

The	New	icon	pictured	above	indicates	a	new	or	enhanced	feature
introduced	with	the	latest	version	of	Java.

As	the	Java	VM	is	available	on	many	different	operating	systems,	the	same	.class
files	are	capable	of	running	on	Windows,	Linux	and	Mac	operating	systems	–	so
Java	programmers	theoretically	enjoy	the	cross-platform	ability	to	“write	once,
run	anywhere”.

In	order	to	create	Java	programs,	the	Java	class	libraries	and	the	javac	compiler
need	to	be	installed	on	your	computer.	In	order	to	run	Java	programs,	the	Java™
Runtime	Environment	(JRE)	needs	to	be	installed	to	supply	the	java	interpreter.
All	of	these	components	are	contained	in	a	freely	available	package	called	the
Java™	Platform,	Standard	Edition	Development	Kit	(JDK).

The	Java	programs	in	this	book	use	version	JDK	9,	which	incorporates	both	the
Development	Kit	itself	and	the	Runtime	Environment,	and	can	be	downloaded
from	the	Oracle®	website	at
www.oracle.com/technetwork/java/javase/downloads

http://www.oracle.com/technetwork/java/javase/downloads

The	Oracle	download	page	also	features	other	packages,	but	only	the
JDK	9	package	is	required	to	get	started	with	Java	programming.

The	JDK	9	package	is	available	in	versions	for	32-bit	and	64-bit	variants	of	the
Linux,	Mac,	Solaris	and	Windows	platforms	–	accept	the	Oracle	License
Agreement,	then	select	the	appropriate	version	for	your	computer	to	download
the	Java	Development	Kit.

There	is	no	truth	in	the	rumor	that	JAVA	stands	for	“Just	Another	Vague
Acronym”.

Installing	the	JDK
Select	the	appropriate	Java	Development	Kit	(JDK)	package	for	your	system
from	the	Oracle®	downloads	page,	and	then	follow	these	steps	to	install	Java	on
your	computer:

Uninstall	any	previous	versions	of	the	JDK	and/or	Java	Runtime
Environment	(JRE)	from	your	system

Start	the	installation	and	accept	the	License	Agreement	When	the	“Custom
Setup”	dialog	appears,	either	accept	the	suggested	installation	location	or
click	the	Change	button	to	choose	your	preferred	location	–	such	as
C:\Java	for	Windows	systems	or	usrJava	for	Linux	systems

Ensure	that	the	Public	JRE	and	Development	Tools	features	are	selected
from	the	list.	Optionally,	you	may	deselect	the	other	features	as	they	are
not	required	to	start	programming	with	this	book

Click	the	Next	button	to	install	all	the	necessary	Java	class	libraries	and
tools	at	the	chosen	location

A	previous	version	of	the	JRE	may	be	installed	so	your	web	browser	can
run	Java	applets.	It	is	best	to	uninstall	this	to	avoid	confusion	with	the
newer	version	in	JDK	9.

You	can	start	out	by	installing	just	the	minimum	features	to	avoid
confusion.

The	tools	to	compile	and	run	Java	programs	are	normally	operated	from	a
command-line	prompt	and	are	located	in	the	bin	sub-directory	of	the	Java
directory.	They	can	be	made	available	system-wide	by	adding	their	location	to
the	system	path:

• On	Windows,	navigate	through	Control	Panel,	System,	Advanced	System
Settings,	Advanced	tab,	Environment	Variables,	then	select	the	system
variable	named	“Path”.	Click	the	Edit	button	and	add	the	address	of	Java’s
bins	sub-directory	to	the	list	(e.g.	C:\Java\bin),	then	click	OK	to	apply	the
change.

• On	Linux,	add	the	location	of	Java’s	bin	sub-directory	to	the	system	path	by
editing	the	.bashrc	file	in	your	home	directory.	For	instance,	add
PATH=$PATH:usrJava/bin	then	save	the	file.

Paths	that	contain	spaces	must	be	enclosed	within	double	quotes	and
terminated	by	a	semicolon	on	older	versions	of	Windows.	For	example,
with	the	path	“C:\Program	Files\	Java\jdk-9\bin”;

You	are	now	able	to	test	the	environment:

You	are	now	able	to	test	the	environment:

Open	a	command-line	prompt	window,	such	as	Windows	PowerShell	or
Linux	Terminal	Type	the	command	java	-version	then	hit	the	Enter	key	to
see	the	Java	interpreter’s	version	number	Next,	type	the	command	javac	-
version	then	hit	the	Enter	key	to	see	the	Java	compiler’s	version	number	
Now,	type	the	command	jshell	-version	then	hit	the	Enter	key	to	see	the
Java	shell	version	number	Ensure	that	all	version	numbers	match	(9),	and
you’re	ready	to	begin	Java	programming

If	the	.bashrc	file	is	not	visible	in	your	Linux	home	directory	choose	View,
Show	Hidden	Files	to	reveal	it.

The	Java	shell	jshell	is	a	new	feature	in	Java	9.	This	interactive	tool	lets
you	quickly	test	snippets	of	code,	without	the	need	to	first	compile	the
code.	It	is	used	in	the	next	chapter	to	demonstrate	the	various	“operators”
available	in	Java	programming.

Writing	a	first	Java	program
All	Java	programs	start	as	text	files	that	are	later	used	to	create	“class”	files,
which	are	the	actual	runnable	programs.	This	means	that	Java	programs	can	be
written	in	any	plain	text	editor,	such	as	the	Windows	Notepad	application.

Follow	these	steps	to	create	a	simple	Java	program	that	will	output	the
traditional	first	program	greeting:

Hello.java

Open	a	plain	text	editor,	like	Notepad,	and	type	this	code	exactly	as	it	is
listed	–	to	create	a	class	named	“Hello”
class	Hello

{

}

Between	the	curly	brackets	of	the	Hello	class,	insert	this	code	–	to	create	a
“main”	method	for	the	Hello	class	public	static	void	main	(String[]
args)

{

}

Between	the	curly	brackets	of	the	main	method,	insert	this	line	of	code	–
stating	what	the	program	will	do	System.out.println(“Hello	World!”)	;

Save	the	file	at	any	convenient	location,	but	be	sure	to	name	it	precisely	as
Hello.java	–	the	complete	program	should	now	look	like	this:

Java	is	a	case-sensitive	language	where	“Hello”	and	“hello”	are	distinctly
different	–	traditionally,	Java	program	names	should	always	begin	with	an
uppercase	letter.

Java	programs	are	always	saved	as	their	exact	program	name	followed
by	the	“.java”	extension.

The	separate	parts	of	the	program	code	on	the	opposite	page	can	be	examined
individually	to	understand	each	part	more	clearly:

The	Program	Container

class	Hello	{				}

The	program	name	is	declared	following	the	class	keyword,	and	followed	by	a
pair	of	curly	brackets.	All	of	the	program	code	that	defines	the	Hello	class	will	be
contained	within	these	curly	brackets.

All	stand-alone	Java	programs	must	have	a	main	method.	Java	applets
are	different,	and	their	format	is	explained	later.

The	Main	Method

public	static	void	main	(String[]	args)	{								}

This	fearsome-looking	line	is	the	standard	code	that	is	used	to	define	the	starting
point	of	nearly	all	Java	programs.	It	will	be	used	in	most	examples	throughout
this	book	exactly	as	it	appears	above	–	so	it	may	be	useful	to	memorize	it.

The	code	declares	a	method	named	“main”	that	will	contain	the	actual	program
instructions	within	its	curly	brackets.

Keywords	public	static	void	precede	the	method	name	to	define	how	the	method
may	be	used,	and	are	explained	in	detail	later.

The	code	(String[]	args)	is	useful	when	passing	values	to	the	method,	and	is	also
fully	explained	later	in	this	book.

The	Statement

System.out.println(“Hello	World!”)	;

Statements	are	actual	instructions	to	perform	program	tasks,	and	must	always
end	with	a	semicolon.	A	method	may	contain	many	statements	inside	its	curly
brackets	to	form	a	“statement	block”	defining	a	series	of	tasks	to	perform,	but
here	a	single	statement	instructs	the	program	to	output	a	line	of	text.

Turn	to	here	to	discover	how	to	compile	and	run	this	program.

Create	a	“MyJava”	directory	in	which	to	save	all	your	Java	program	files.
On	Windows	use	the

Compiling	&	running	programs
Before	a	Java	program	can	run,	it	must	first	be	compiled	into	a	class	file	by	the
Java	compiler.	This	is	located	in	Java’s	bin	sub-directory,	and	is	an	application
named	javac.	The	instructions	here	described	how	to	add	the	bin	sub-directory	to
the	system	path	so	that	javac	can	be	invoked	from	any	system	location.

Follow	these	steps	to	compile	the	program	here	:

Open	a	command-line	window,	then	navigate	to	the	directory	where	you
saved	the	Hello.java	source	code	file	Type	javac	followed	by	a	space	then
the	full	name	of	the	source	code	file	Hello.java	and	hit	the	Enter	key

On	Windows	use	the	Windows	PowerShell	app	or	the	older	Command
Prompt	app	to	provide	a	command-line	prompt,	and	on	Linux	use	a
Terminal	window.

At	a	prompt	type	javac	and	hit	Return	to	reveal	the	Java	compiler
options.

If	the	javac	compiler	discovers	errors	in	the	code	it	will	halt	and	display	a	helpful

report	indicating	the	nature	of	the	error	–	see	here	for	troubleshooting	problems.

If	the	javac	compiler	does	not	find	any	errors	it	will	create	a	new	file	with	the
program	name	and	the	.class	file	extension.

You	can	also	compile	the	source	code	from	another	location	if	you	state
the	file’s	full	path	address	to	the	javac	compiler	–	in	this	case,
C:\MyJava\Hello.java

When	the	Java	compiler	completes	compilation,	the	command-line	prompt
window	focus	returns	to	the	prompt	without	any	confirmation	message	–	and	the
program	is	ready	to	run.

The	Java	program	interpreter	is	an	application	named	java	that	is	located	in
Java’s	bin	sub-directory	–	alongside	the	javac	compiler.	As	this	directory	was
previously	added	to	the	system	path,	here	,	the	java	interpreter	can	be	invoked
from	any	location.

Follow	these	steps	to	run	the	program	that	was	compiled	using	the	procedure
described	on	the	page	opposite:

Open	a	command-line	prompt	window,	then	navigate	to	the	directory
where	the	Hello.class	program	file	is	located	At	the	prompt,	type	java
followed	by	a	space	then	the	program	name	Hello	and	hit	the	Enter	key

Do	not	include	the	.class	extension	when	running	a	program	–	only	use
the	program	name.

The	Hello	program	runs	and	executes	the	task	defined	in	the	statement	within	its
main	method	–	to	output	“Hello	World!”.	Upon	completion,	focus	returns	to	the
prompt	once	more.

The	process	of	compiling	and	running	a	Java	program	is	typically	combined	in
sequential	steps,	and	is	the	same	regardless	of	platform.	The	screenshot	below
illustrates	the	Hello	program	being	compiled	and	run	in	combined	steps	on	a
Linux	system:

Creating	a	variable
In	Java	programming,	a	“variable”	is	simply	a	useful	container	in	which	a	value
may	be	stored	for	subsequent	use	by	the	program.	The	stored	value	may	be
changed	(vary)	as	the	program	executes	its	instructions	–	hence	the	term
“variable”.

A	variable	is	created	by	writing	a	variable	“declaration”	in	the	program,
specifying	the	type	of	data	that	variable	may	contain	and	a	given	name	for	that
variable.	For	example,	the	String	data	type	can	be	specified	to	allow	a	variable
named	“message”	to	contain	regular	text	with	this	declaration:
String	message	;

Variable	names	are	chosen	by	the	programmer	but	must	adhere	to	certain
naming	conventions.	The	variable	name	may	only	begin	with	a	letter,	dollar	sign
$,	or	the	underscore	character	_	,	and	may	subsequently	have	only	letters,	digits,
dollar	signs,	or	underscore	characters.	Names	are	case-sensitive,	so	“var”	and
“Var”	are	distinctly	different	names,	and	spaces	are	not	allowed	in	names.

Variable	names	should	also	avoid	the	Java	keywords	listed	in	the	table	below,	as
these	have	special	meaning	in	the	Java	language.

abstract default goto package synchronized

assert do if private this

boolean double implements protected throw

break else import public throws

byte enum instanceof return transient

case extends int short true

catch false interface static try

char final long strictfp void

class finally native String volatile

const float new super while

continue for null switch

Each	variable	declaration	must	be	terminated	with	a	semicolon	character
–	like	all	other	statements.

Strictly	speaking,	some	words	in	this	table	are	not	actually	keywords	–
true,	false,	and	null	are	all	literals;	String	is	a	special	class	name;	const
and	goto	are	reserved	words	(currently	unused).	These	are	included	in
the	table	because	they	must	also	be	avoided	when	naming	variables.

As	good	practice,	variables	should	be	named	with	words	or	easily	recognizable
abbreviations,	describing	that	variable’s	purpose.	For	example,	“button1”	or
“btn1”	to	describe	button	number	one.	Lowercase	letters	are	preferred	for	single-
word	names,	such	as	“gear”,	and	names	that	consist	of	multiple	words	should
capitalize	the	first	letter	of	each	subsequent	word,	such	as	“gearRatio”	–	the	so-
called	“camelCase”	naming	convention.

Once	a	variable	has	been	declared,	it	may	be	assigned	an	initial	value	of	the
appropriate	data	type	using	the	equals	sign	=	,	either	in	the	declaration	or	later	on
in	the	program,	then	its	value	can	be	referenced	at	any	time	using	the	variable’s
name.

Follow	these	steps	to	create	a	program	that	declares	a	variable,	which	gets

Follow	these	steps	to	create	a	program	that	declares	a	variable,	which	gets
initialized	in	its	declaration	then	changed	later:

Start	a	new	program	named	“FirstVariable”,	containing	the	standard	main
method	class	FirstVariable

{

public	static	void	main	(String[]	args)	{																					}

}

FirstVariable.java

Between	the	curly	brackets	of	the	main	method,	insert	this	code	to	create,
initialize,	and	output	a	variable
String	message	=	“Initial	value”	;
System.out.println(message)	;

Add	these	lines	to	modify	and	output	the	variable	value	message	=
“Modified	value”	;
System.out.println(message)	;

Save	the	program	as	FirstVariable.java,	then	compile	and	run	the	program

If	you	encounter	problems	compiling	or	running	the	program,	you	can	get

help	from	Troubleshooting	problems	here	.

Recognizing	data	types
The	most	frequently-used	data	types	in	Java	variable	declarations	are	listed	in
this	table,	along	with	a	brief	description:

Data	type: Description: Example:

char A	single	Unicode	character ‘a’

String Any	number	of	Unicode	characters “my	String”

int An	integer	number,	from	-2.14	billion	to	+2.14	billion 1000

float A	floating-point	number,	with	a	decimal	point 3.14159265f

boolean A	logical	value	of	either	true	or	false true

Due	to	the	irregularities	of	floating-point	arithmetic	the	float	data	type
should	never	be	used	for	precise	values,	such	as	currency	–	see	here	for
details.

Notice	that	char	data	values	must	always	be	surrounded	by	single	quotes,	and
String	data	values	must	always	be	surrounded	by	double	quotes.	Also,	remember
that	float	data	values	must	always	have	an	“f”	suffix	to	ensure	they	are	treated	as
a	float	value.

In	addition	to	the	more	common	data	types	above,	Java	provides	these
specialized	data	types	for	use	in	exacting	circumstances:

Data	type: Description:

byte Integer	number	from	-128	to	+127

short Integer	number	from	-32,768	to	+32,767

long Positive	or	negative	integer	exceeding	2.14	billion

double Extremely	long	floating-point	number

All	data	type	keywords	begin	with	a	lowercase	letter	except	String	–
which	is	a	special	class.

Specialized	data	types	are	useful	in	advanced	Java	programs	–	the	examples	in
this	book	mostly	use	the	common	data	types	described	in	the	top	table.

Follow	these	steps	to	create	a	Java	program	that	creates,	initializes,	and	outputs
variables	of	all	five	common	data	types:

Start	a	new	program	named	“DataTypes”	containing	the	standard	main
method	class	DataTypes

{

public	static	void	main	(String[]	args)	{								}

}

DataTypes.java

Between	the	curly	brackets	of	the	main	method,	insert	these	declarations
to	create	and	initialize	five	variables
char	letter	=	‘M’	;
String	title	=	“Java	in	easy	steps”	;
int	number	=	365	;
float	decimal	=	98.6f	;
boolean	result	=	true	;

Add	these	lines	to	output	an	appropriate	text	String	concatenated	to	the

value	of	each	variable	System.out.println(“Initial	is	”	+	letter)	;
System.out.println(“Book	is	”	+	title)	;
System.out.println(“Days	are	”	+	number)	;
System.out.println(“Temperature	is	”	+	decimal)	;
System.out.println(“Answer	is	”	+	result)	;

Save	the	program	as	DataTypes.java,	then	compile	and	run	the	program

Notice	how	the	+	character	is	used	here	to	join	(concatenate)	text	strings
and	stored	variable	values.

The	Java	compiler	will	report	an	error	if	the	program	attempts	to	assign	a
value	of	the	wrong	data	type	to	a	variable	–	try	changing	the	values	in
this	example,	then	attempt	to	recompile	the	program	to	see	the	effect.

.

Creating	constants
The	“final”	keyword	is	a	modifier	that	can	be	used	when	declaring	variables	to
prevent	any	subsequent	changes	to	the	values	that	are	initially	assigned	to	them.
This	is	useful	when	storing	a	fixed	value	in	a	program	to	avoid	it	becoming
altered	accidentally.

Variables	created	to	store	fixed	values	in	this	way	are	known	as	“constants”,	and
it	is	convention	to	name	constants	with	all	uppercase	characters	–	to	distinguish
them	from	regular	variables.	Programs	that	attempt	to	change	a	constant	value
will	not	compile,	and	the	javac	compiler	will	generate	an	error	message.

Follow	these	steps	to	create	a	Java	program	featuring	constants:

Start	a	new	program	named	“Constants”	containing	the	standard	main
method	class	Constants

{

public	static	void	main	(String[]	args)	{								}

}

Constants.java

Between	the	curly	brackets	of	the	main	method,	insert	this	code	to	create
and	initialize	three	integer	constants
final	int	TOUCHDOWN	=	6	;
final	int	CONVERSION	=	1	;
final	int	FIELDGOAL	=	3	;

Now,	declare	four	regular	integer	variables
int	td	,	pat	,	fg	,	total	;

Initialize	the	regular	variables	–	using	multiples	of	the	constant	values	td	=

4	*	TOUCHDOWN	;
pat	=	3	*	CONVERSION	;
fg	=	2	*	FIELDGOAL	;
total	=	(td	+	pat	+	fg)	;

Add	this	line	to	display	the	total	score
System.out.println(“Score:	”	+	total)	;

Save	the	program	as	Constants.java,	then	compile	and	run	the	program	to
see	the	output,	Score:	33
(4	x	6	=	24,	3	x	1	=	3,	2	x	3	=	6,	so	24	+	3	+	6	=	33).

The	*	asterisk	character	is	used	here	to	multiply	the	constant	values,	and
parentheses	surround	their	addition	for	clarity

Adding	comments
When	programming	in	any	language,	it	is	good	practice	to	add	comments	to
program	code	to	explain	each	particular	section.	This	makes	the	code	more
easily	understood	by	others,	and	by	yourself,	when	revisiting	a	piece	of	code
after	a	period	of	absence.

In	Java	programming,	comments	can	be	added	across	multiple	lines	between	/*
and	*/	comment	identifiers,	or	on	a	single	line	after	a	//	comment	identifier.
Anything	appearing	between	/*	and	*/,	or	on	a	line	after	//,	is	completely	ignored
by	the	javac	compiler.

When	comments	have	been	added	to	the	Constants.java	program,	described

opposite,	the	source	code	might	look	like	this:	

Constants.java	(commented)

/*

A	program	to	demonstrate	constant	variables.

*/

class	Constants

{

public	static	void	main(String	args[])

{

//	Constant	score	values.
final	int	TOUCHDOWN	=	6	;
final	int	CONVERSION	=	1	;
final	int	FIELDGOAL	=	3	;

//	Calculate	points	scored.

int	td	,	pat	,	fg	,	total	;
td	=	4	*	TOUCHDOWN	;							//	4x6=24
pat	=	3	*	CONVERSION	;					//	3x1=	3
fg	=	2	*	FIELDGOAL	;											//	2x3=	6
total	=	(td	+	pat	+	fg)	;							//	24+3+6=33

//	Output	calculated	total.
System.out.println(“Score:	“	+	total)	;

}

}

Saved	with	comments,	the	program	compiles	and	runs	as	normal:

You	can	add	a	statement	that	attempts	to	change	the	value	of	a	constant,
then	try	to	recompile	the	program	to	see	the	resulting	error	message.

Troubleshooting	problems
Sometimes,	the	javac	compiler	or	java	interpreter	will	complain	about	errors,	so
it’s	useful	to	understand	their	cause	and	how	to	quickly	resolve	the	problem.	In
order	to	demonstrate	some	common	error	reports,	this	code	contains	some
deliberate	errors:

Test.java

class	test

{

public	static	void	main	(String[]	args)

{

String	text	;
System.out.println(“Test	”	+	text)

}

}

A	first	attempt	to	compile	Test.java	throws	up	this	error	report:

• Cause	–	the	javac	compiler	cannot	be	found.

• Solution	–	edit	the	system	PATH	variable,	as	described	here	,	or	use	its	full

path	address	to	invoke	the	compiler.

The	path	address	must	be	enclosed	within	quotation	marks	if	it	contains
any	spaces,	such	as	the	path	address	“C:\Program	Files\	Java”.

• Cause	–	the	file	Test.java	cannot	be	found.

• Solution	–	navigate	to	the	directory	where	the	file	is	located,	or	use	the	full
path	address	to	the	file	in	the	command.

• Cause	–	the	statement	is	not	terminated	correctly.

• Solution	–	in	the	source	code	add	a	semicolon	at	the	end	of	the	statement,
then	save	the	file	to	apply	the	change.

• Cause	–	the	program	name	and	class	name	do	not	match.

• Solution	–	in	the	source	code	change	the	class	name	from	test	to	Test,	then
save	the	file	to	apply	the	change.

• Cause	–	the	variable	text	has	no	value.

• Solution	–	in	the	variable	declaration	assign	the	variable	a	valid	String	value,
for	instance	=	“success”,	then	save	the	file.

You	must	run	the	program	from	within	its	directory	–	you	cannot	use	a
path	address	as	the	Java	launcher	requires	a	program	name,	not	a	file
name.

Summary
• Java	is	both	a	programming	language	and	a	runtime	platform.

• Java	programs	are	written	as	plain	text	files	with	a	.java	file	extension.

• The	Java	compiler	javac	creates	compiled	.class	program	files	from	original
.java	source	code	files.

• The	Java	interpreter	java	executes	compiled	programs	using	an	instance	of	the
Java	Virtual	Machine.

• The	Java	VM	is	available	on	many	operating	system	platforms.

• Adding	Java’s	bin	sub-directory	to	the	system	PATH	variable	allows	the	javac
compiler	to	be	invoked	from	anywhere.

• Java	is	a	case-sensitive	language.

• The	standard	main	method	is	the	entry	point	for	Java	programs.

• The	System.out.println()	statement	outputs	text.

• A	Java	program	file	name	must	exactly	match	its	class	name.

• Java	variables	can	only	be	named	in	accordance	with	specified	naming
conventions,	and	must	avoid	the	Java	keywords.

• In	Java	programming,	each	statement	must	be	terminated	by	a	semicolon
character.

• The	most	common	Java	data	types	are	String,	int,	char,	float	and	boolean.

• String	values	must	be	enclosed	in	double	quotes;	char	values	in	single	quotes;
and	float	values	must	have	an	“f”	suffix.

• The	final	keyword	can	be	used	to	create	a	constant	variable.

• Comments	can	be	added	to	Java	source	code	between	/*	and	*/,	on	one	or
more	lines,	or	after	//	on	a	single	line.

• Error	reports	identify	compiler	and	runtime	problems.

2

Performing	operations

This	chapter	demonstrates	the	various	operators	that	are	used	to	create	expressions	in	Java	programs.

Doing	arithmetic
Assigning	values

Comparing	values
Assessing	logic
Examining	conditions
Setting	precedence

Escaping	literals
Working	with	bits
Summary

Doing	arithmetic

Arithmetical	operators,	listed	in	the	table	below,	are	used	to	create	expressions	in
Java	programs	that	return	a	single	resulting	value.	For	example,	the	expression	4
*	2	returns	the	value	8.

Operator: Operation:

+
Addition	(and	concatenates	String	values)

-
Subtraction

-

*
Multiplication

/
Division

%
Modulus

++
Increment

--
Decrement

Division	of	int	values	will	truncate	any	fractional	part.	For	example,	11/4
=	2,	whereas	division	of	float	values	11/4	=	2.75.

The	increment	operator	++	and	decrement	operator	--	return	the	result	of
modifying	a	single	given	operand	by	a	value	of	one.	For	example,	4++	returns	the
value	5,	and	4--	returns	the	value	3.

All	other	arithmetic	operators	return	the	result	of	an	operation	performed	on	two
given	operands,	and	act	as	you	would	expect.	For	example,	the	expression	5	+	2
returns	7.

The	modulus	operator	divides	the	first	operand	by	the	second	operand	and
returns	the	remainder	of	the	operation.	For	example,	32	%	5	returns	2	–	five
divides	into	32	six	times,	with	2	remainder.

The	operation	performed	by	the	addition	operator	+	depends	on	the	type	of	its
given	operands.	Where	both	operands	are	numeric	values	it	will	return	the	total
sum	value	of	those	numbers,	but	where	the	operands	are	String	values	it	will
return	a	single	concatenated	String	–	combining	the	text	in	each	String	operand.

For	example,	“Java	”	+	“Arithmetic”	returns	“Java	Arithmetic”.

Increment	and	decrement	operators	are	typically	used	to	count	the
iterations	in	the	for	loop	constructs,	introduced	here	.

Follow	these	steps	to	explore	the	Java	arithmetic	operators	in	the	Java	shell:

Open	a	command-line	prompt	window,	then	type	jshell	and	hit	the	Enter	key	to
launch	the	Java	shell	Next,	enter	statements	to	initialize	three	variables	int	num	=
100	;	int	factor	=	20	;	int	sum	=	0	;

Next,	separately	enter	statements	to	perform	addition	and	subtraction
operations,	displaying	each	result
sum	=	num	+	factor	;
sum	=	num	-	factor	;

Now,	separately	enter	statements	to	perform	multiplication	and	division
operations,	displaying	each	result
sum	=	num	*	factor	;
sum	=	num	/	factor	;

Java	must	be	installed	on	your	system	path	to	launch	the	Java	shell	from
any	prompt	–	see	Installing	here	and	Troubleshooting	here	for	details.

The	Java	shell	jshell	is	a	new	feature	in	Java	9.	Optionally,	the
semicolon	character	may	be	omitted	at	the	end	of	single	statements
entered	into	the	shell	but	these	are	required	when	writing	Java	programs
for	compilation.	Semicolons	are	included	in	the	shell	examples	in	this
chapter	to	aid	code	consistency.

Assigning	values

Assignment	operators,	listed	in	the	table	below,	are	used	to	assign	the	result	of
an	expression.	All	except	the	simple	=	operator	are	the	shorthand	form	of	a
longer	equivalent	expression:

Operator: Example: Equivalent:

=
a	=	b a	=	b

+=
a	+=	b a	=	a	+	b

-= a	-=	b a	=	a	-	b

*=
a	*=	b a	=	a	*	b

/=
a	/=	b a	=	a	/	b

%=
a	%=	b a	=	a	%	b

It	is	important	to	regard	the	=	operator	to	mean	“assign”,	rather	than	“equals”,	to
avoid	confusion	with	the	==	equality	operator.

In	the	example	a	=	b,	the	value	stored	in	the	variable	named	b	is	assigned	to	the
variable	named	a,	so	that	value	becomes	the	new	value	stored	in	a	–	replacing
any	value	it	previously	contained.

The	+=	operator	is	useful	to	add	a	value	onto	an	existing	value	stored	in	a
variable	–	keeping	a	“running	total”.

The	example	a	+=	b	first	calculates	the	sum	total	of	the	values	stored	in	the
variables	named	a	and	b,	then	assigns	the	resulting	total	to	variable	a.	A	program
might	then	contain	a	further	assignment	a	+=	c	that	calculates	the	total	stored	in
variables	named	a	and	c,	then	assigns	that	new	total	to	variable	a	–	adding	the
value	of	c	to	the	value	it	previously	contained.

All	the	other	assignment	operators	work	in	the	same	way	by	first	performing	the
arithmetical	calculation	on	the	two	stored	values,	then	assigning	the	result	to	the
first	variable	–	to	become	its	new	stored	value.

The	==	equality	operator	compares	values,	and	is	fully	explained	here	.

Follow	these	steps	to	explore	the	Java	assignment	operators	in	the	Java	shell:

Open	a	command-line	prompt	window,	then	type	jshell	and	hit	the	Enter	key	to

launch	the	Java	shell	Next,	enter	statements	to	initialize	two	String	variables	String
txt	=	“Super	”	;	String	lang	=	“Java”	;

Now,	separately	enter	statements	to	add	and	assign	a	String	value,	then	display	the
concatenated	string	result	txt	+=	lang	;	txt	;

Then,	enter	statements	to	initialize	two	integer	variables	int	sum	=	10	;	int
num	=	20	;

Separately	enter	statements	to	add	and	assign	an	int	value,	then	display	the
totaled	integer	result	sum	+=	num	;	sum	;

The	new	Java	shell	feature,	introduced	in	Java	9,	creates	internal	$-
prefixed	numbered	variables	containing	the	result	of	an	evaluation.	Here,
internal	variables	$3	and	$7	contain	evaluation	results.

Assignment	of	the	wrong	data	type	to	a	variable	will	cause	an	error.

Comparing	values

Comparison	operators,	listed	in	the	table	below,	are	used	to	compare	two	values
in	an	expression	and	return	a	single	Boolean	value	of	true	or	false	–	describing
the	result	of	that	comparison.

Operator: Comparison:

==
Equality

!=
Inequality

> Greater	than

>= Greater	than,	or	equal	to

< Less	than

<= Less	than,	or	equal	to

The	==	equality	operator	compares	two	operands,	and	will	return	true	if	both	are
exactly	equal	in	value.	If	both	are	the	same	number	they	are	equal,	or	if	both	are
String	values	containing	the	same	characters	in	the	same	order	they	are	equal.
Boolean	operands	that	are	both	true,	or	that	are	both	false,	are	equal.

Conversely,	the	!=	inequality	operator	returns	true	if	two	operands	are	not	equal	–
applying	the	same	rules	as	the	equality	operator.

Equality	and	inequality	operators	are	useful	in	testing	the	state	of	two	variables
to	perform	“conditional	branching”	of	a	program	–	proceeding	in	different
directions	according	to	the	condition.

The	>	“greater	than”	operator	compares	two	operands,	and	will	return	true	if	the

first	is	greater	in	value	than	the	second.

The	<	“less	than”	operator	makes	the	same	comparison,	but	returns	true	if	the
first	operand	is	less	in	value	than	the	second.

Adding	the	=	assignment	operator	after	the	>	“greater	than”	operator,	or	after	the
<	“less	than”	operator,	makes	it	also	return	true	when	the	two	operands	are
exactly	equal	in	value.

The	<	less	than	operator	is	typically	used	to	test	a	counter	value	in	a	loop
–	an	example	of	this	can	be	found	here	.

Follow	these	steps	to	explore	the	Java	comparison	operators	in	the	Java	shell:

Open	a	command-line	prompt	window,	then	type	jshell	and	hit	the	Enter	key	to
launch	the	Java	shell	Next,	enter	statements	to	initialize	two	String	variables	String
txt	=	“Super	”	;	String	lang	=	“Java”	;

Now,	separately	enter	statements	to	initialize	a	boolean	variable	and	display	the
result	of	String	value	comparisons	for	equality	and	inequality	boolean	state	=	(txt
==	lang)	;
state	=	(txt	!=	lang)	;

In	a	similar	way,	separately	enter	these	statements	to	display	the	result	of
int	value	comparisons	for	greater	and	less	numeric	value	int	dozen	=	12	;	int
score	=	20	;
state	=	(dozen	>	score)	;
state	=	(dozen	<	score)	;

You	can	discover	more	options	within	the	Java	shell	by	entering	the	/help
command.

Here	it’s	untrue	(false)	that	the	String	values	are	equal,	but	it	is	true	that
they	are	unequal.

Notice	how	an	expression	can	be	contained	in	parentheses	for	better
readability.

Assessing	logic

Logical	operators,	listed	in	the	table	below,	are	used	to	combine	multiple
expressions	that	each	return	a	Boolean	value	–	into	a	complex	expression	that
returns	a	single	Boolean	value.

Operator: Operation:

&& Logical	AND

||
Logical	OR

! Logical	NOT

Logical	operators	are	used	with	operands	that	have	the	Boolean	values	of	true	or
false,	or	values	that	can	convert	to	true	or	false.

The	logical	&&	AND	operator	will	evaluate	two	operands	and	return	true	only	if
both	operands	are	themselves	true.	Otherwise,	the	logical	&&	operator	will	return
false.	This	evaluation	can	be	used	in	conditional	branching,	where	a	program	will
only	perform	a	certain	action	when	two	tested	conditions	are	both	true.

Unlike	the	logical	&&	operator	that	needs	two	operands	to	be	true,	the	logical	||
OR	operator	will	evaluate	its	two	operands	and	return	true	if	either	one	of	the
operands	is	true	–	it	will	only	return	false	when	neither	operand	is	true.	This	is
useful	in	Java	programming	to	perform	a	certain	action	when	either	one	of	two
test	conditions	has	been	met.

The	logical	!	NOT	operator	is	a	“unary”	operator	that	is	used	before	a	single
operand.	It	returns	the	inverse	Boolean	value	of	the	given	operand	–	reversing
true	to	false,	and	false	to	true.	It’s	useful	in	Java	programs	to	toggle	the	value	of	a
variable	in	successive	loop	iterations	with	a	statement	like	goState=!goState.	This
ensures	that	on	each	pass	of	the	loop	the	value	is	changed,	like	flicking	a	light
switch	on	and	off.

The	term	“Boolean”	refers	to	a	system	of	logical	thought	developed	by
the	English	mathematician	George	Boole	(1815-1864).

The	new	Java	shell	feature,	introduced	in	Java	9,	is	also	known	as	a
“REPL”	–	an	acronym	for	Read,	Evaluate,	Print,	Loop	that	describes	this
type	of	interactive	tool.

Follow	these	steps	to	explore	logical	operators	in	the	Java	shell:

Open	a	command-line	prompt	window,	then	type	jshell	and	hit	the	Enter	key	to
launch	the	Java	shell	Next,	enter	statements	to	initialize	two	boolean	variables
boolean	yes	=	true	;	boolean	no	=	false	;

Enter	statements	to	test	if	both	two	conditions	are	true	boolean	result	=	(yes	&&	yes)
;	result	=	(yes	&&	no)	;

Enter	statements	to	test	if	either	of	two	conditions	is	true	result	=	(yes	||	yes
)	;
result	=	(yes	||	no)	;

result	=	(no	||	no)	;

Enter	statements	to	show	an	original	and	inverse	value	result	=	yes	;	result	=
!yes	;

Notice	that	false	&&	false	returns	false,	not	true	–	demonstrating	the
maxim	that	“two	wrongs	don’t	make	a	right”.

The	value	returned	by	the	!	NOT	logical	operator	is	the	inverse	of	the
stored	value	–	the	stored	value	itself	remains	unchanged.

Examining	conditions

Possibly	the	all-time	favorite	operator	of	the	Java	programmer	is	the	?	:
conditional	operator	that	makes	a	powerful	statement	very	concisely.	Its	unusual
syntax	can	seem	tricky	to	understand	at	first,	but	it	is	well	worth	getting	to	know
this	useful	operator.

The	conditional	operator	first	evaluates	an	expression	for	a	true	or	false	value,
then	returns	one	of	two	given	operands	depending	on	the	result	of	the	evaluation.
Its	syntax	looks	like	this:

(boolean-expression)	?	if-true-return-this	:	if-false-return-this	;

The	conditional	operator	is	also	known	as	the	“ternary”	operator.

Each	specified	operand	alternative	allows	the	program	to	progress	according	to
the	Boolean	value	returned	by	the	tested	expression.	For	instance,	the
alternatives	might	return	a	String	value:	status	=	(quit	==	true)	?	“Done!”	:
“Continuing...”	;

In	this	case,	when	the	quit	variable	is	true	the	conditional	operator	assigns	the
value	of	its	first	operand	to	the	status	variable;	otherwise,	it	assigns	its	second
operand	value	instead.

A	shorthand	available	when	coding	Java	programs	allows	expressions	to
optionally	omit	==	true	when	evaluating	a	simple	Boolean	value,	so	the	example
above	can	be	written	simply	as:

status	=	(quit)	?	“Done!”	:	“Continuing...”	;

The	conditional	operator	can	return	values	of	any	data	type	and	employ	any
valid	test	expression.	For	instance,	the	expression	might	use	the	greater	than	>
operator	to	evaluate	two	numeric	values	then	return	a	Boolean	value	depending
on	the	result:

busted	=	(speed	>	speedLimit)	?	true	:	false	;

Similarly,	the	conditional	operator	might	employ	the	inequality	!=	operator	to
evaluate	a	String	value	then	return	a	numeric	value	depending	on	the	result:
bodyTemperature	=	(scale	!=	“Celsius”)	?	98.6	:	37.0	;

You	can	also	start	the	Java	shell	with	the	command	jshell--feedback
verbose	to	receive	descriptive	output	after	each	evaluation.

Follow	these	steps	to	explore	the	Java	conditional	operator	in	the	Java	shell:

Open	a	command-line	prompt	window,	then	type	jshell	and	hit	the	Enter	key	to
launch	the	Java	shell	Next,	enter	statements	to	initialize	two	int	variables	int	num1
=	1357	;	int	num2	=	2468	;

Declare	a	further	variable	to	store	a	test	result	String
String	result	;

Enter	this	statement	to	determine	whether	the	first	integer	value	is	an	odd	or	even
number
result	=	(num1	%	2	!=	0)	?	“Odd”	:	“Even”	;

Now,	enter	this	statement	to	determine	whether	the	second	integer	value	is
an	odd	or	even	number
result	=	(num2	%	2	!=	0)	?	“Odd”	:	“Even”	;

Notice	that	an	uninitialized	String	variable	returns	a	special	null	value	–
indicating	that	it	contains	nothing	whatsoever.

Here,	the	expression	evaluates	as	true	when	there	is	any	remainder.

Setting	precedence

Complex	expressions,	which	contain	multiple	operators	and	operands,	can	be
ambiguous	unless	the	order	in	which	the	operations	should	be	executed	is	clear.
This	lack	of	clarity	can	easily	cause	different	results	to	be	implied	by	the	same
expression.	For	example,	consider	this	complex	expression:	num	=	8	+	4	*	2	;

Working	left	to	right	8	+	4	=	12,	and	12	*	2	=	24,	so	num	=	24.	But	working	right	to
left	2	*	4	=	8,	and	8	+	8	=	16,	so	num	=	16.

The	Java	programmer	can	explicitly	specify	which	operation	should	be	executed
first	by	adding	parentheses	to	signify	which	operator	has	precedence.	In	this
case,	(8	+	4)	*	2	ensures	that	the	addition	is	performed	before	the	multiplication	–
so	the	result	is	24,	not	16.	Conversely,	8	+	(4	*	2)	performs	the	multiplication	first
–	so	the	result	is	16,	not	24.

Where	parentheses	do	not	explicitly	specify	operator	precedence	Java	follows
the	default	precedence	order	listed	in	the	table	below,	from	first	at	the	top	to	last
at	the	bottom:

Operator: Description:

++	--	! Increment,	Decrement,	Logical	NOT

*	/	%
Multiplication,	Division,	Modulus

+	-
Addition,	Subtraction

>	>=<	<= Greater	than,	Greater	than	or	equal	toLess	than,	Less	than	or
equal	to

==	!=
Equality,	Inequality

&& Logical	AND

||
Logical	OR

?	:
Conditional

=	+=	-=	*=	/=	%=
Assignment

Operators	of	equal	precedence	are	handled	in	the	order	they	appear	in
the	expression	–	from	left	to	right.

Follow	these	steps	to	explore	operator	precedence	in	the	Java	shell:

Open	a	command-line	prompt	window,	then	type	jshell	and	hit	the	Enter	key	to
launch	the	Java	shell	Next,	enter	a	statement	to	display	the	result	of	evaluating	an
expression	that	uses	default	operator	precedence	int	sum	=	32	-	8	+	16	*	2	;

Now,	enter	a	statement	to	display	the	result	of	evaluating	the	same
expression	–	but	giving	addition	and	subtraction	precedence	over
multiplication	sum	=	(32	-	8	+	16)	*	2	;

Finally,	enter	a	statement	to	display	the	result	of	evaluating	the	same
expression	once	more	–	but	now	where	operation	precedence	order	is
first	addition,	then	subtraction,	and	then	multiplication
sum	=	(32	-	(8	+	16))	*	2	;

Where	expressions	have	multiple	nested	parentheses,	the	innermost
takes	precedence.

How	it	works	–	Step	2	...

16	x	2	=	32,	+	24	=	56

Step	3...

24	+	16	=	40,	x	2	=	80

Step	4	...

32	-	24	=	8,	x	2	=	16

This	chapter	has	so	far	used	the	Java	shell	jshell	to	explore	the	various
Java	operators	by	evaluating	code	snippets.	Ensuing	examples	will	use
the	Java	compiler	javac	and	Java	runtime	java	to	create	and	execute
programs.	You	can	quit	the	Java	shell	to	return	to	a	regular	prompt	with
the	command	/exit.

Escaping	literals

The	numerical	and	text	values	in	Java	programs	are	known	as	“literals”	–	they
represent	nothing	but	are,	literally,	what	you	see.

Literals	are	normally	detached	from	the	keywords	of	the	Java	language,	but
where	double	quotes,	or	single	quotes,	are	required	within	a	String	value	it	is
necessary	to	indicate	that	the	quote	character	is	to	be	treated	literally	to	avoid
prematurely	terminating	the	String.	This	is	easily	achieved	by	immediately
prefixing	each	nested	quote	character	with	the	\	escape	operator.	For	example,
including	a	quote	within	a	String	variable,	like	this:	String	quote	=	“	\”Fortune	favors
the	brave.\”	said	Virgil	”;

Additionally,	the	\	escape	operator	offers	a	variety	of	useful	escape	sequences	for

simple	output	formatting:

Escape: Description:

\n Newline

\t Tab

\b Backspace

\r Carriage	return

\f Formfeed

\\
Backslash

\’ Single	quote	mark

\” Double	quote	mark

Single	quotes	can	be	nested	within	double	quotes	as	an	alternative	to
escaping	quote	characters.

The	\n	newline	escape	sequence	is	frequently	used	within	long	String	values	to
display	the	output	on	multiple	lines.	Similarly,	the	\t	tab	escape	sequence	is
frequently	used	to	display	the	output	in	columns.	Using	a	combination	of	\n
newline	and	\t	tab	escape	sequences	allows	the	output	to	be	formatted	in	both
rows	and	columns	–	to	resemble	a	table.

Follow	these	steps	to	create	a	Java	program	using	escape	sequences	to	format	the
output:

Start	a	new	program	named	“Escape”	containing	the	standard	main	method	class
Escape

{

public	static	void	main(String[]	args)	{									}

}

Escape.java

Between	the	curly	brackets	of	the	main	method,	insert	this	code	to	build	a	String
containing	a	formatted	table	title	and	column	headings	String	header	=	“\n\tNEW
YORK	3-DAY	FORECAST:\n”	;
header	+=	“\n\tDay\t\tHigh\tLow\tConditions\n”	;
header	+=	“\t---\t\t----\t---\t----------\n”	;

Add	these	lines	to	build	a	String	containing	formatted	table	cell	data	String	forecast
=	“\tSunday\t\t68F\t48F\tSunny\n”	;
forecast	+=	“\tMonday\t\t69F\t57F\tSunny\n”	;
forecast	+=	“\tTuesday\t\t71F\t50F\tCloudy\n”	;

Now,	add	this	line	to	output	both	formatted	String	values	System.out.print(header	+
forecast)	;

Save	the	program	as	Escape.java,	then	compile	and	run	the	program

In	this	case,	escape	sequences	add	newlines	so	the	print()	method	is
used	here	–	rather	than	the	println()	method	that	automatically	adds	a
newline	after	output.

Working	with	bits

In	addition	to	the	regular	operators	described	earlier	in	this	chapter,	Java
provides	special	operators	for	binary	arithmetic.	These	are	less	commonly	used
than	other	operators,	but	are	briefly	discussed	here	to	simply	provide	an
awareness	of	their	existence.

The	Java	“bitwise”	operators	can	be	used	with	the	int	integer	data	type	to
manipulate	the	bits	of	the	binary	representation	of	a	value.	This	requires	an
understanding	of	binary	numbering,	where	eight	bits	in	a	byte	represent	decimal
values	zero	to	255.	For	example,	53	is	binary	00110101
(0	x	128,	0	x	64,	1	x	32,	1	x	16,	0	x	8,	1	x	4,	0	x	2,	1	x	1).

Binary	addition	operations	are	performed	like	decimal	arithmetic:

	 53
=

00110101

+
7

=
00000111

	 60
=

00111100

The	bitwise	operators,	listed	below,	allow	more	specialized	operations	to	be
performed	in	binary	arithmetic.

Operator: Operation: Example: Result:

& AND a	&	b 1	if	both	bits	are	1

|
OR a	|	b 1	if	either	bit	is	1

^
XOR a	^	b 1	if	both	bits	differ

~
NOT ~a Inverts	the	bits

<< Left	shift n	<<	p Moves	n	bits	p	left

>> Right	shift n	>>	p Moves	n	bits	p	right

For	example,	using	the	bitwise	&	operator	in	binary	arithmetic:

	 53
=

00110101

& 7
=

00000111

	 5
=

00000101

Don’t	confuse	the	logical	AND	operator	&&	with	the	bitwise	&	operator,	or	the
logical	OR	operator	||	with	the	bitwise	|	operator.

A	common	use	of	bitwise	operators	combines	several	values	in	a	single	variable
for	efficiency.	For	instance,	a	program	with	eight	“flag”	int	variables,	with	values
of	1	or	0	(representing	on	and	off	states),	requires	32	bits	of	memory	for	each
variable	–	256	bits	in	total.	These	values	only	really	require	a	single	bit,
however,	so	eight	flags	can	be	combined	in	a	single	byte	variable	–	using	one	bit
per	flag.	The	status	of	each	flag	can	be	retrieved	with	bitwise	operations:

Start	a	new	program	named	“Bitwise”	containing	the	standard	main
method	class	Bitwise

{

public	static	void	main(String[]	args)	{							}

}

Bitwise.java

Between	the	curly	brackets	of	the	main	method,	insert	this	code	to	declare	and
initialize	a	byte	variable	with	a	value	representing	the	total	status	of	up	to	eight
flags	byte	fs	=	53	;	//	Combined	flag	status	of	00110101

Add	these	lines	to	retrieve	the	status	of	each	flag	System.out.println(“Flag	1:	“+((
(fs&1)>0)	?	“ON”	:	“off”));
System.out.println(“Flag	2:	“+(((fs&2)>0)	?	“ON”	:	“off”));
System.out.println(“Flag	3:	“+(((fs&4)>0)	?	“ON”	:	“off”));
System.out.println(“Flag	4:	“+(((fs&8)>0)	?	“ON”	:	“off”));
System.out.println(“Flag	5:	“+(((fs&16)>0)?	“ON”	:	“off”));
System.out.println(“Flag	6:	“+(((fs&32)>0)?	“ON”	:	“off”));
System.out.println(“Flag	7:	“+(((fs&64)>0)?	“ON”	:	“off”));
System.out.println(“Flag	8:	“+(((fs&128)>0)?“ON”:	“off”));

Save	the	program	as	Bitwise.java	then	compile	and	run	the	program:

How	it	works	–The	binary	representation	of	53	is	00110101	so	the	set
bits	are...	1	+	4	+	16	+	32	=	53

Here,	the	bitwise	&	operation	returns	one	or	zero	to	determine	each	flag’s
status.

Summary

• Arithmetical	operators	can	form	expressions	with	two	operands	for	addition
+,	subtraction	–,	multiplication	*,	division	/,	or	modulus	%.

• Increment	++	and	decrement	--	operators	modify	a	single	operand	by	a	value
of	one.

• The	assignment	=	operator	can	be	combined	with	an	arithmetical	operator	to
perform	an	arithmetical	calculation	then	assign	its	result.

• Comparison	operators	can	form	expressions	comparing	two	operands	for
equality	==,	inequality	!=,	greater	>,	or	lesser	<	values.

• The	assignment	=	operator	can	be	combined	with	the	greater	than	>	or	lesser
than	<	operator	to	also	return	true	when	equal.

• Logical	&&	and	||	operators	form	expressions	evaluating	two	operands	to
return	a	Boolean	value	of	either	true	or	false.

• The	logical	!	operator	returns	the	inverse	Boolean	value	of	a	single	operand.

• A	conditional	?	:	operator	evaluates	a	given	Boolean	expression	and	returns
one	of	two	operands,	depending	on	its	result.

• Expressions	evaluating	a	Boolean	expression	for	a	true	value	may	optionally

omit	==	true.

• It	is	important	to	explicitly	set	operator	precedence	in	complex	expressions
by	adding	parentheses	().

• The	backslash	escape	\	operator	can	be	used	to	prefix	quote	characters	within
String	values	to	prevent	syntax	errors.

• Escape	sequences	\n	newline	and	\t	tab	provide	simple	output	formatting.

• Bitwise	operators	can	be	useful	to	perform	binary	arithmetic	in	specialized
situations.

3

Making	statements

This	chapter	demonstrates	the	various	keywords	that	are	used	to	create	branching	in	Java	programs.

Branching	with	if
Branching	alternatives

Switching	branches
Looping	for
Looping	while	true
Doing	do-while	loops

Breaking	out	of	loops
Returning	control
Summary

Branching	with	if

The	if	keyword	performs	a	conditional	test	to	evaluate	an	expression	for	a
Boolean	value.	A	statement	following	the	expression	will	only	be	executed	when
the	evaluation	is	true,	otherwise	the	program	proceeds	on	to	subsequent	code	–
pursuing	the	next	“branch”.	The	if	statement	syntax	looks	like	this:	

if	(test-expression)	code-to-be-executed-when-true	;	The	code	to	be	executed
can	contain	multiple	statements	if	they	are	enclosed	within	curly	brackets	to
form	a	“statement	block”	:

Start	a	new	program	named	“If”	containing	the	standard	main	method	class	If

{

public	static	void	main	(String[]	args)	{										}

}

If.java

Between	the	curly	brackets	of	the	main	method,	insert	this	simple	conditional	test
that	executes	a	single	statement	when	one	number	is	greater	than	another	if	(5	>	1
)	System.out.println(“Five	is	greater	than	one.”)	;

Add	a	second	conditional	test,	which	executes	an	entire	statement	block	when	one
number	is	less	than	another	if	(2	<	4)

{

System.out.println(“Two	is	less	than	four.”)	;
System.out.println(“Test	succeeded.”)	;

}

Save	the	program	as	If.java	then	compile	and	run	the	program	to	see	all	statements
get	executed	–	because	both	tests	evaluate	as	true	in	this	case:

Expressions	can	utilize	the	true	and	false	keywords.	The	test	expression
(2	<	4)	is	shorthand	for	(2	<	4	==	true).

A	conditional	test	can	also	evaluate	a	complex	expression	to	test	multiple
conditions	for	a	Boolean	value.	Parentheses	enclose	each	test	condition	to
establish	precedence	–	so	they	get	evaluated	first.	The	Boolean	&&	AND	operator
ensures	the	complex	expression	will	only	return	true	when	both	tested	conditions
are	true:	if	((test-condition1)	&&	(test-condition2))	execute-this-code	;	The
Boolean	||	OR	operator	ensures	a	complex	expression	will	only	return	true	when
either	one	of	the	tested	conditions	is	true:	if	((test-condition1)	||	(test-
condition2))	execute-this-code	;	A	combination	of	these	can	form	longer
complex	expressions:

Inside	the	main	method	of	If.java	insert	this	line	to	declare	and	initialize	an	integer
variable	named	num	int	num	=	8	;

Add	a	third	conditional	test	that	executes	a	statement	when	the	value	of	the	num
variable	is	within	a	specified	range,	or	when	it’s	exactly	equal	to	a	specified
value	if	(((num	>	5)	&&	(num	<	10))	||	(num	==	12))
System.out.println(“Number	is	6-9	inclusive,	or	12”)	;

Recompile	the	program,	and	run	it	once	more	to	see	the	statement	after	the
complex	expression	get	executed

Change	the	value	assigned	to	the	num	variable	so	it	is	neither	within	the
specified	range	6-9,	or	exactly	12.	Recompile	the	program,	and	run	it
again	to	now	see	the	statement	after	the	complex	expression	is	not
executed

The	range	can	be	extended	to	include	the	upper	and	lower	limits	using
the	>=	and	<=	operators.

The	complex	expression	uses	the	==	equality	operator	to	specify	an
exact	match,	not	the	=	assignment	operator.

Branching	alternatives

The	else	keyword	is	used	in	conjunction	with	the	if	keyword	to	create	if	else
statements	that	provide	alternative	branches	for	a	program	to	pursue	–	according
to	the	evaluation	of	a	tested	expression.	In	its	simplest	form,	this	merely
nominates	an	alternative	statement	for	execution	when	the	test	fails:	if	(test-
expression)	code-to-be-executed-when-true	;

else

code-to-be-executed-when-false	;	Each	alternative	branch	may	be	a
single	statement	or	a	statement	block	of	multiple	statements	–	enclosed
within	curly	brackets.

More	powerful	if	else	statements	can	be	constructed	that	evaluate	a	test
expression	for	each	alternative	branch.	These	employ	nested	if	statements	after
each	else	keyword	to	specify	each	further	test.	When	the	program	discovers	an
expression	that	evaluates	as	true,	it	executes	the	statements	associated	with	just
that	test	then	exits	the	if	else	statement	without	exploring	any	further	branches:

Start	a	new	program	named	“Else”	containing	the	standard	main	method	class	Else

{

public	static	void	main	(String[]	args)	{										}

}

Else.java

Inside	the	main	method,	insert	this	line	to	declare	and	initialize	an	integer	variable
named	hrs
int	hrs	=	11	;

Insert	this	simple	conditional	test,	which	executes	a	single	statement	when	the
value	of	the	hrs	variable	is	below	13
if	(hrs	<	13)

{

System.out.println(“Good	morning:	”	+	hrs)	;

}

Save	the	program	as	Else.java	then	compile	and	run	the	program	to	see	the
statement	get	executed

Notice	that	the	first	statement	is	terminated	with	a	semicolon,	as	usual,
before	the	else	keyword.

Change	the	value	assigned	to	the	hrs	variable	to	15,	then	add	this
alternative	branch	right	after	the	if	statement	else	if	(hrs	<	18)

{

System.out.println(“Good	afternoon:	”	+	hrs)	;

}

Save	the	changes,	recompile,	and	run	the	program	again	to	see	just	the
alternative	statement	get	executed

It	is	sometimes	desirable	to	provide	a	final	else	branch,	without	a	nested	if
statement,	to	specify	a	“default”	statement	to	be	executed	when	no	tested
expression	evaluates	as	true:

Change	the	value	assigned	to	the	hrs	variable	to	21,	then	add	this	default	branch	to
the	end	of	the	if	else	statement	else	System.out.println(“Good	evening:	”	+	hrs)	;

Save	the	changes,	recompile,	and	run	the	program	once	more	to	see	just	the
default	statement	get	executed

Conditional	branching	is	the	fundamental	process	by	which	computer
programs	proceed.

Switching	branches

Lengthy	if	else	statements,	which	offer	many	conditional	branches	for	a	program
to	pursue,	can	become	unwieldy.	Where	the	test	expressions	repeatedly	evaluate
the	same	variable	value,	a	more	elegant	solution	is	often	provided	by	a	switch
statement.

The	syntax	of	a	typical	switch	statement	block	looks	like	this:	switch	(test-
variable)	{

case	value1	:	code-to-be-executed-when-true	;	break	;
case	value2	:	code-to-be-executed-when-true	;	break	;
case	value3	:	code-to-be-executed-when-true	;	break	;
default	:	code-to-be-executed-when-false	;	}

The	switch	statement	works	in	an	unusual	way.	It	takes	a	specified	variable	then
seeks	to	match	its	assigned	value	from	among	a	number	of	case	options.
Statements	associated	with	the	option	whose	value	matches	are	then	executed.

Optionally,	a	switch	statement	can	include	a	final	option	using	the	default
keyword	to	specify	statements	to	execute	when	no	case	options	match	the	value
assigned	to	the	specified	variable.

Each	option	begins	with	the	case	keyword	and	a	value	to	match.	This	is	followed
by	a	:	colon	character	and	the	statements,	if	any,	to	be	executed	when	the	match
is	made.

It	is	important	to	recognize	that	the	statement,	or	statement	block,	associated
with	each	case	option	must	be	terminated	by	the	break	keyword.	Otherwise,	the
program	will	continue	to	execute	the	statements	of	other	case	options	after	the
matched	option.	Sometimes,	this	is	desirable	to	specify	a	number	of	case	options
that	should	each	execute	the	same	statements	if	matched.	For	example,	one
statement	for	each	block	of	three	options	like	this:	switch	(test-variable)	{

case	value1	:	case	value2	:	case	value3	:	code-A-to-be-executed-when-true
;	break	;	case	value4	:	case	value5	:	case	value6	:	code-B-to-be-executed-
when-true	;	break	;	}

Missing	break	keywords	are	not	syntax	errors	–	ensure	that	all	intended
breaks	are	present	in	switch	blocks	to	avoid	unexpected	results.

Start	a	new	program	named	“Switch”	containing	the	standard	main
method	class	Switch

{

public	static	void	main	(String[]	args)	{										}

}

Switch.java

Inside	the	main	method,	declare	and	initialize	three	integer	variables	int	month	=	2,
year	=	2018,	num	=	31	;

Add	a	switch	statement	block	to	test	the	value	assigned	to	the	month	variable
switch	(month)

{

}

}

Inside	the	switch	block,	insert	case	options	assigning	a	new	value	to	the	num
variable	for	months	4,	6,	9	and	11
case	4	:	case	6	:	case	9	:	case	11	:	num	=	30	;	break	;

Insert	a	case	option	assigning	a	new	value	to	the	num	variable	for	month	2,
according	to	the	year	value	case	2	:	num	=	(year	%	4	==	0)	?	29	:	28	;	break	;

After	the	switch	block,	at	the	end	of	the	main	method,	add	this	line	to	output	all
three	integer	values	System.out.println(month+“/”+year+“:	“+num+“days”)	;

Save	the	program	as	Switch.java	then	compile	and	run	the	program	to	see	the
output

Notice	how	all	three	integer	variables	are	declared	and	initialized	inline
here	using	convenient	shorthand.

The	conditional	operator	is	used	to	good	effect	in	step	5.	You	can	check
back	to	here	to	be	reminded	how	it	works.

Looping	for

A	loop	is	a	block	of	code	that	repeatedly	executes	the	statements	it	contains	until

A	loop	is	a	block	of	code	that	repeatedly	executes	the	statements	it	contains	until
a	tested	condition	is	met	–	then	the	loop	ends	and	the	program	proceeds	on	to	its
next	task.

The	most	frequently-used	loop	structure	in	Java	programming	employs	the	for
keyword	and	has	this	syntax:	for	(initializer	;	test-expression	;	updater)	{

statements-to-be-executed-on-each-iteration	;	}

The	parentheses	after	the	for	keyword	must	contain	three	controls	that	establish
the	performance	of	the	loop:	• Initializer	–	assigns	an	initial	value	to	a	counter
variable,	which	will	keep	count	of	the	number	of	iterations	made	by	this	loop.
The	variable	for	this	purpose	may	be	declared	here,	and	it	is	traditionally	a
“trivial”	integer	variable	named	i.

• Test	expression	–	evaluated	at	the	start	of	each	iteration	of	the	loop	for	a
Boolean	true	value.	When	the	evaluation	returns	true	the	iteration	proceeds
but	when	it	returns	false	the	loop	is	immediately	terminated,	without
completing	that	iteration.

• Updater	–	changes	the	current	value	of	the	counter	variable,	started	by	the
initializer,	keeping	the	running	total	of	the	number	of	iterations	made	by	this
loop.	Typically,	this	will	use	i++	for	counting	up,	or	i--	for	counting	down.

The	code	executed	on	each	iteration	of	the	loop	can	be	a	single	statement,	a
statement	block,	or	even	another	“nested”	loop.

Every	loop	must,	at	some	point,	enable	the	test	expression	to	return	false	–
otherwise,	an	infinite	loop	is	created	that	will	relentlessly	execute	its	statements.
Commonly,	the	test	expression	will	evaluate	the	current	value	of	the	counter
variable	to	perform	a	specified	number	of	iterations.	For	example,	with	a	counter
i	initialized	at	one	and	incremented	by	one	on	each	iteration,	a	test	expression	of
i	<	11	becomes	false	after	10	iterations	–	so	that	loop	will	execute	its	statements
10	times	before	the	loop	ends.

The	updater	is	often	referred	to	as	the	“incrementer”	as	it	more	often
increments,	rather	than	decrements,	the	counter	variable

Start	a	new	program	named	“For”	containing	the	standard	main	method	class	For

{

public	static	void	main	(String[]	args)	{										}

}

For.java

Inside	the	main	method,	declare	and	initialize	an	integer	variable	to	count	the	total
overall	number	of	iterations	int	num	=	0	;

Add	a	for	loop	to	perform	three	iterations	and	display	the	current	value	of	its
counter	variable	i	on	each	iteration	for	(int	i	=	1	;	i	<	4	;	i++)

{

System.out.println(“Outer	Loop	i=”	+	i)	;

}

Inside	the	for	loop	block	insert	a	nested	for	loop	to	also	perform	three	iterations,
displaying	the	current	value	of	its	counter	variable	j	and	total	overall	number	of
iterations	for	(int	j	=	1	;	j	<	4	;	j++)

{

System.out.print(“\tInner	Loop	j=”	+	j)	;

System.out.println(“\t\tTotal	num=”+	(++num))	;

}

Save	the	program	as	For.java	then	compile	and	run	the	program	to	see	the	output

The	increment	++	and	decrement	--	operators	can	prefix	a	variable,	to
change	its	value	immediately,	or	postfix	the	variable	–	so	its	value
becomes	changed	when	next	referenced.	Try	changing	the	increment
operators	in	this	example	to	++i	and	++j	to	see	the	difference.

Looping	while	true

An	alternative	loop	structure	to	that	of	the	for	loop,	described	here	,	employs	the
while	keyword	and	has	this	syntax:	while	(test-expression)	{

statements-to-be-executed-on-each-iteration	;	}

Like	the	for	loop,	a	while	loop	repeatedly	executes	the	statements	it	contains	until
a	tested	condition	is	met	–	then	the	loop	ends	and	the	program	proceeds	on	to	its
next	task.

Unlike	the	for	loop,	the	parentheses	after	the	while	keyword	do	not	contain	an
initializer	or	updater	for	an	iteration	counter	variable.	This	means	that	the	test

expression	must	evaluate	some	value	that	gets	changed	in	the	loop	statements	as
the	loop	proceeds	–	otherwise,	an	infinite	loop	is	created	that	will	relentlessly
execute	its	statements.

The	test	expression	is	evaluated	at	the	start	of	each	iteration	of	the	loop	for	a
Boolean	true	value.	When	the	evaluation	returns	true	the	iteration	proceeds	but
when	it	returns	false	the	loop	is	immediately	terminated,	without	completing	that
iteration.

Note	that	if	the	test	expression	returns	false	when	it	is	first	evaluated,	the	loop
statements	are	never	executed.

A	while	loop	can	be	made	to	resemble	the	structure	of	a	for	loop,	to	evaluate	a
counter	variable	in	its	test	expression,	by	creating	a	counter	variable	outside	the
loop	and	changing	its	value	within	the	statements	it	executes	on	each	iteration.
For	example,	the	outer	for	loop	in	the	previous	example	can	be	recreated	as	a
while	loop,	like	this:	int	i	=	1	;

while	(i	<	4)

{

System.out.println(“Outer	Loop	i=”	+i)	;
i++	;

}

This	positions	the	counter	initializer	externally,	before	the	while	loop	structure,
and	its	updater	within	the	statement	block.

An	infinite	loop	will	lock	the	program	as	it	continues	to	perform	iterations
–	on	Windows,	press	Ctrl	+	C	to	halt.

Start	a	new	program	named	“While”	containing	the	standard	main	method
class	While

{

public	static	void	main	(String[]	args)	{										}

}

While.java

Inside	the	main	method,	declare	and	initialize	an	integer	variable	named	num
int	num	=	100	;

Add	a	while	loop	to	display	the	num	variable’s	current	value	while	it	remains
above	zero	while	(num	>	0)

{

System.out.println(“While	Countdown:	”	+	num)	;

}

Insert	an	updater	at	the	end	of	the	while	loop	block	to	decrease	the	num	variable’s
value	by	10	on	each	iteration	–	thereby	avoiding	an	infinite	loop	num	-=	10	;

Save	the	program	as	While.java	then	compile	and	run	the	program	to	see	the	output

The	assignment	in	this	updater	is	shorthand	for	num	=	(num	-	10).

Doing	do-while	loops
A	variation	of	the	while	loop	structure,	described	here	,	employs	the	do	keyword
to	create	a	loop	with	this	syntax:

do

{

statements-to-be-executed-on-each-iteration	;	}

while	(test-expression)	;	Like	the	for	loop	and	while	loop,	a	do	while	loop
repeatedly	executes	the	statements	it	contains	until	a	tested	condition	is	met	–
then	the	loop	ends	and	the	program	proceeds	to	its	next	task.

Unlike	the	for	loop	and	while	loop,	the	do	while	test	expression	appears	after	the
block	containing	the	statements	to	be	executed.	The	test	expression	is	evaluated
at	the	end	of	each	iteration	of	the	loop	for	a	Boolean	true	value.	When	the
evaluation	returns	true	the	next	iteration	proceeds	but	when	it	returns	false	the
loop	is	immediately	terminated.	This	means	that	the	statements	in	a	do	while	loop
are	always	executed	at	least	once.

Note	that	if	the	test	expression	returns	false	when	it	is	first	evaluated,	the	loop
statements	have	already	been	executed	once.

A	do	while	loop	can	be	made	to	resemble	the	structure	of	a	for	loop,	to	evaluate	a
counter	variable	in	its	test	expression,	by	positioning	the	counter	initializer
outside	the	loop	structure	and	its	updater	within	the	statement	block	–	just	as
with	a	while	loop.

All	for,	while,	or	do	while	loop	structures	containing	just	one	statement	to	execute
may,	optionally,	omit	the	curly	brackets	around	the	statement.	But,	if	omitted,
you	will	need	to	add	curly	brackets	if	additional	statements	are	added	to	the	loop
later.

The	choice	of	for,	while,	or	do	while	loop	is	largely	a	matter	of	personal	coding
preference	and	purpose.	A	for	loop	structure	conveniently	locates	the	counter

initializer,	test	expression,	and	updater	in	the	parentheses	after	the	for	keyword.
A	while	loop	structure	can	be	more	concise	–	but	you	must	remember	to	include
an	updater	in	the	loop’s	statements	to	avoid	an	infinite	loop.	A	do	while	loop
simply	adds	the	benefit	of	executing	its	statements	once	before	evaluating	its	test
expression	–	demonstrated	by	the	do	while	loop	described	opposite.

Always	enclose	the	statements	to	be	executed	by	a	loop	within	curly
brackets	–	for	clarity	and	improved	code	maintainability.

Start	a	new	program	named	“DoWhile”	containing	the	standard	main
method	class	DoWhile

{

public	static	void	main	(String[]	args)	{										}

}

DoWhile.java

Inside	the	main	method,	declare	and	initialize	an	integer	variable	named	num
int	num	=	100	;

Add	a	do	while	loop	to	display	the	num	variable’s	current	value	while	it	is	below
10

do

{

System.out.println(“DoWhile	Countup:	”	+	num)	;

}

}

while	(num	<	10)	;

Insert	an	updater	at	the	end	of	the	do	while	loop	block	to	change	the	num	variable’s
value	on	each	iteration	–	thereby	avoiding	an	infinite	loop	num	+=	10	;

Save	the	program	as	DoWhile.java	then	compile	and	run	the	program	–	see	that	the
num	variable	never	meets	the	test	condition,	but	the	statement	executes	once
anyway

The	assignment	in	this	updater	is	shorthand	for	num	=	(num	+	10).

Breaking	out	of	loops

The	break	keyword	can	be	used	to	prematurely	terminate	a	loop	when	a	specified
condition	is	met.	The	break	statement	is	situated	inside	the	loop	statement	block,
and	is	preceded	by	a	test	expression.	When	the	test	returns	true,	the	loop	ends
immediately	and	the	program	proceeds	on	to	its	next	task.	For	example,	in	a
nested	loop	it	proceeds	to	the	next	iteration	of	its	outer	loop.

Start	a	new	program	named	“Break”	containing	the	standard	main	method
class	Break

{

public	static	void	main	(String[]	args)	{										}

}

}

Break.java

Inside	the	main	method,	create	two	nested	for	loops	that	display	their	counter
values	on	each	of	three	iterations	for	(int	i	=	1	;	i	<	4	;	i++)

{

for	(int	j	=	1	;	j	<	4	;	j++)

{

System.out.println(“Running	i=”+i+“	j=”+j)	;

}

}

Save	the	program	as	Break.java	then	compile	and	run	the	program	to	see	the	output

This	program	makes	three	iterations	of	the	outer	loop,	which	executes	the	inner
loop	on	each	iteration.	A	break	statement	can	be	added	to	stop	the	second
execution	of	the	inner	loop.

Add	this	break	statement	to	the	beginning	of	the	inner	loop	statement
block,	to	break	out	of	the	inner	loop	–	then	recompile	and	re-run	the
program	if	(i	==	2	&&	j	==	1)

{

{

System.out.println(“Breaks	innerLoop	when	i=”	+i+	“	j=”	+j)	;

break	;

}

Here,	the	break	statement	halts	all	three	iterations	of	the	inner	loop	when
the	outer	loop	tries	to	run	it	the	second	time.

The	continue	keyword	can	be	used	to	skip	a	single	iteration	of	a	loop	when	a
specified	condition	is	met.	The	continue	statement	is	situated	inside	the	loop
statement	block	and	is	preceded	by	a	test	expression.	When	the	test	returns	true,
that	iteration	ends.

Add	this	continue	statement	to	the	beginning	of	the	inner	loop	statement
block,	to	skip	the	first	iteration	of	the	inner	loop	–	then	recompile	and	re-
run	the	program	if	(i	==	1	&&	j	==	1)

{

System.out.println(“Continues	innerLoop	when	i=”	+i+	“	j=”	+j)	;

continue;

}

Here,	the	continue	statement	skips	just	the	first	iteration	of	the	inner	loop
when	the	outer	loop	tries	to	run	it	for	the	first	time.

Returning	control

The	default	behavior	of	the	break	and	continue	keywords	can	be	changed	to
explicitly	specify	that	control	should	return	to	a	labeled	outer	loop	by	stating	its
label	name.

Start	a	new	program	named	“Label”	containing	the	standard	main	method
class	Label

{

public	static	void	main	(String[]	args)	{										}

}

Label.java

Inside	the	main	method,	create	two	nested	for	loops	that	display	their	counter
values	on	each	of	three	iterations	for	(int	i	=	1	;	i	<	4	;	i++)

{

{

for	(int	j	=	1	;	j	<	4	;	j++)

{

System.out.println(“Running	i=”+i+	“	j=”+j)	;

}

}

Save	the	program	as	Label.java	then	compile	and	run	the	program	to	see	the	output

The	syntax	to	label	a	loop	requires	a	label	name,	followed	by	a	:	colon	character,
to	precede	the	start	of	the	loop	structure

Edit	the	start	of	the	outer	loop	to	label	it	“outerLoop”
outerLoop	:	for	(int	i	=	1	;	i	<	4	;	i++)

To	explicitly	specify	that	the	program	should	proceed	in	the	outer	loop,	state	that
loop’s	label	name	after	the	continue	keyword

Add	this	continue	statement	to	the	beginning	of	the	inner	loop	statement	block,	to
proceed	at	the	next	iteration	of	the	outer	loop	–	then	recompile	and	re-run	the
program	if	(i	==	1	&&	j	==	1)

{

System.out.println(“Continues	outerLoop	when	i=”	+i+	“	j=”	+j)	;
continue	outerLoop	;

}

}

Here	the	continue	statement	halts	all	three	iterations	of	the	inner	loop‘s	first
run	–	by	returning	control	to	the	outer	loop.

To	explicitly	specify	that	the	program	should	exit	from	the	outer	loop,	state	that
loop’s	label	name	after	the	break	keyword

Add	this	break	statement	to	the	beginning	of	the	inner	loop	statement	block,	to
exit	the	outer	loop	–	then	recompile	and	re-run	the	program	if	(i	==	2	&&	j	==	3)

{

System.out.println(“Breaks	outerLoop	when	i=”	+i+	“	j=”	+j)	;
break	outerLoop	;

}

Here	the	break	statement	halts	all	further	iterations	of	the	entire	loop
structure	–	by	exiting	from	the	outer	loop.

Summary

• The	if	keyword	performs	a	conditional	test	to	evaluate	an	expression	for	a
Boolean	value	of	true	or	false.

• An	if	statement	block	can	contain	one	or	more	statements,	which	are	only
executed	when	the	test	expression	returns	true.

• The	else	keyword	specifies	alternative	statements	to	execute	when	the	test
performed	by	the	if	keyword	returns	false.

• Combined	if	else	statements	enable	a	program	to	proceed	by	the	process	of
conditional	branching.

• A	switch	statement	can	often	provide	an	elegant	solution	to	unwieldy	if	else
statements	by	offering	case	options.

• Each	case	option	can	be	terminated	by	the	break	keyword	so	only	statements
associated	with	that	option	will	be	executed.

• The	default	keyword	can	specify	statements	to	be	executed	when	all	case
options	return	false.

• A	loop	repeatedly	executes	the	statements	it	contains	until	a	tested	expression
returns	false.

• The	parentheses	that	follow	the	for	keyword	specify	the	loop’s	counter
initializer,	test	expression,	and	counter	updater.

• Statements	in	a	while	loop	and	a	do	while	loop	must	change	a	value	used	in
their	test	expression	to	avoid	an	infinite	loop.

• The	test	expression	is	evaluated	at	the	start	of	for	loops	and	while	loops	–
before	the	first	iteration	of	the	loop.

• The	test	expression	is	evaluated	at	the	end	of	do	while	loops	–	after	the	first

iteration	of	the	loop.

• A	loop	iteration	can	be	skipped	using	the	continue	keyword.

• A	loop	can	be	terminated	using	the	break	keyword.

• Nested	inner	loops	can	use	labels	with	the	break	and	continue	keywords	to
reference	the	outer	loop.

4

Directing	values

This	chapter	demonstrates	how	to	direct	data	values	using	various	Java	programming	constructs.

Casting	type	values
Creating	variable	arrays

Passing	an	argument
Passing	multiple	arguments
Looping	through	elements
Changing	element	values

Adding	array	dimensions
Catching	exceptions
Summary

Casting	type	values

Handling	values	in	Java	programming	requires	correct	data	typing	to	be	closely
observed	to	avoid	compiler	errors.	For	example,	sending	a	float	type	value	to	a
method	that	requires	an	int	type	value	will	produce	a	compiler	error.	This	means
it	is	often	necessary	to	convert	a	value	to	another	data	type	before	it	can	be
processed.

Numeric	values	can	be	easily	“cast”	(converted)	into	another	numeric	data	type
using	this	syntax:

(data-type)	value	Some	loss	of	precision	will	occur	when	casting	float	floating

point	values	into	an	int	data	type,	as	the	number	will	be	truncated	at	the	decimal
point.	For	example,	casting	a	float	value	of	9.9	into	an	int	variable	produces	an
integer	value	of	nine.

Interestingly,	character	values	of	the	char	data	type	can	automatically	be	used	as
int	values	because	they	each	have	a	unique	integer	representation.	This	is	their
numeric	code	value	in	the	ASCII	character	set,	which	is	supported	by	Java.	The
uppercase	letter	A,	for	instance,	has	the	code	value	of	65.

Numeric	values	can	be	converted	to	the	String	data	type	using	the	toString()
method	of	that	value’s	data	type	class.	This	takes	the	numeric	value	as	its
argument,	within	the	parentheses.	For	example,	convert	an	int	num	variable	to	a
String	with	Integer.toString(num).	Similarly,	convert	a	float	num	variable	to	a	String
with	Float.toString(num).	In	practice,	this	technique	is	not	always	required	because
Java	automatically	converts	concatenated	variables	to	a	String	if	any	one	of	the
variables	has	a	String	value.

More	frequently,	you	will	want	to	convert	a	String	value	to	a	numeric	data	type
so	the	program	can	use	that	value	arithmetically.	A	String	value	can	be	converted
to	an	int	value	using	the	Integer.parseInt()	method.	This	takes	the	String	value	as	its
argument,	within	the	parentheses.	For	example,	convert	a	String	msg	variable	to
an	int	with	Integer.parseInt(msg).	Similarly,	convert	a	String	msg	variable	to	a	float
with	Float.parseFloat(msg).	When	converting	a	String	value	to	a	numeric	data	type,
the	String	may	only	contain	a	valid	numeric	value,	or	the	compiler	will	report	an
error.

All	numeric	classes	have	a	parse...	method	and	a	toString	method
allowing	conversion	between	String	values	and	numeric	data	types.

Start	a	new	program	named	“Convert”	containing	the	standard	main
method	class	Convert

{

public	static	void	main	(String[]	args)	{						}

}

}

Convert.java

Inside	the	main	method,	declare	and	initialize	a	float	variable	and	a	String	variable
float	daysFloat	=	365.25f	;
String	weeksString	=	“52”	;

Cast	the	float	value	into	an	int	variable	int	daysInt	=	(int)	daysFloat	;

Convert	the	String	value	into	an	int	variable	int	weeksInt	=	Integer.parseInt(
weeksString)	;

Perform	arithmetic	on	the	converted	values	and	display	the	result	int	week	=	(
daysInt	/	weeksInt)	;
System.out.println(“Days	per	week:	“	+	week)	;

Save	the	program	as	Convert.java	then	compile	and	run	the	program	to	see	the
output

Creating	variable	arrays

An	array	is	simply	a	variable	that	can	contain	multiple	values	–	unlike	a	regular
variable	that	can	only	contain	a	single	value.

The	declaration	of	an	array	first	states	its	data	type,	using	one	of	the	data	type
keywords,	followed	by	square	brackets	[]	to	denote	that	it	will	be	an	array

keywords,	followed	by	square	brackets	[]	to	denote	that	it	will	be	an	array
variable.	Next,	the	declaration	states	the	array	variable	name,	adhering	to	the
normal	naming	conventions.

An	array	can	be	initialized	in	its	declaration	by	assigning	values	of	the
appropriate	data	type	as	a	comma-delimited	list,	enclosed	within	curly	brackets.
For	example,	the	declaration	of	an	integer	array	variable	initialized	with	three
values	might	look	like	this:

int[]	numbersArray	=	{	1,	2,	3	}	;

The	array	is	created	of	the	length	of	the	assigned	list,	allowing	one	“element”	per
value	–	in	this	case,	an	array	of	three	elements.

Stored	values	are	indexed	starting	at	zero,	and	each	value	can	be	addressed	by	its
element	index	position.	The	syntax	to	do	so	requires	the	array	name	to	be
followed	by	square	brackets	containing	the	element	index.	For	instance,
numbersArray[0]	would	address	the	first	value	stored	in	the	example	above	(1).

Although	the	values	stored	in	each	element	can	be	changed	as	simply	as	those	of
regular	variables,	the	size	of	an	array	is	determined	by	its	declaration	and	cannot
be	changed	later.	Usefully,	the	total	number	of	elements	in	an	array	is	stored	as
an	integer	in	the	length	property	of	that	array.	The	syntax	to	address	this	figure
just	tacks	a	period	and	“length”	onto	the	array	name.	For	example,
numbersArray.length	would	return	the	size	of	the	array	in	the	example	above	–	in
this	case,	the	integer	3.

Arrays	can	also	be	declared	without	assigning	a	list	of	initial	values	by	using	the
new	keyword	to	create	an	empty	array	“object”	of	a	specified	size.	The	number
of	required	empty	elements	is	stated	in	the	assignment	within	square	brackets
after	the	appropriate	data	type.	For	example,	the	declaration	of	an	empty	integer
array	variable	with	three	elements	might	look	like	this:	int[]	numbersArray	=	new
int[3]	;

The	elements	are	assigned	default	values	of	zero	for	int	and	float	data	types,	null
for	String	data	types,	\0	for	char	data	types,	and	false	for	boolean	data	types.

Remember	that	array	indexing	starts	at	zero.	This	means	that	index[2]
addresses	the	third	element	in	the	array,	not	its	second	element.

Start	a	new	program	named	“Array”	containing	the	standard	main	method
class	Array

{

public	static	void	main	(String[]	args)	{						}

}

Array.java

Inside	the	main	method,	declare	and	initialize	a	String	array	with	three	elements
String[]	str	=	{	“Much	”,	“More”,	“	Java”	}	;

Declare	an	empty	integer	array	with	three	elements	int[]	num	=	new	int[3]	;

Assign	values	to	the	first	two	integer	array	elements	num[0]	=	100	;

num[1]	=	200	;

Assign	a	new	value	to	the	second	String	array	element	str[1]	=	“Better”	;

Output	the	length	of	each	array	and	the	content	of	all	elements	in	each	array
System.out.println(“String	array	length	is	“	+	str.length)	;
System.out.println(“Integer	array	length	is	“+	num.length)	;
System.out.println(num[0]	+	”,”	+num[1]+	”,”+num[2])	;
System.out.println(str[0]	+	str[1]	+	str[2])	;

Save	the	program	as	Array.java	then	compile	and	run	the	program	to	see	the	output

String	values	need	to	be	enclosed	within	quotes.

Passing	an	argument

The	standard	Java	code	that	declares	the	program’s	main	method	includes	an
argument	within	its	parentheses	that	creates	a	String	array,	traditionally	named
“args”:	public	static	void	main(String[]	args)	{	}

The	purpose	of	the	args[]	array	is	to	allow	values	to	be	passed	to	the	program
when	it	is	called	upon	to	run.	At	the	command	line,	a	value	to	be	passed	to	the
program	is	added	after	a	single	space	following	the	program	name.	For	example,
the	command	to	pass	the	String	“Java”	to	a	program	named	“Run”	would	be	Run
Java.

A	single	value	passed	to	a	program	is	automatically	placed	into	the	first	element
of	the	args[]	array,	so	it	can	be	addressed	by	the	program	as	args[0].

It	is	important	to	recognize	that	the	args[]	array	is	of	the	String	data	type	–	so	a
numeric	value	passed	to	a	program	will	be	stored	as	a	String	representation	of
that	number.	This	means	that	the	program	cannot	use	that	value	arithmetically
until	it	has	been	converted	to	a	numerical	data	type,	such	as	an	int	value.	For
example,	Run	4	passes	the	number	four	to	the	program,	which	stores	it	as	the
String	“4”,	not	as	the	int	4.	Consequently,	output	of	args[0]+3	produces	the
concatenated	String	“43”,	not	the	sum	7.	The	argument	can	be	converted	with	the
Integer.parseInt()	method	so	that	Integer.parseInt(args[0])+3	does	produce	the	sum	7.

A	String	containing	spaces	can	be	passed	to	a	program	as	a	single	String	value	by
enclosing	the	entire	String	within	double	quotes	on	the	command	line.	For
example,	Run	“Java	In	Easy	Steps”.

Passing	an	argument	to	a	program	is	most	useful	to	determine	how	the	program
should	run	by	indicating	an	execution	option.	The	option	is	passed	to	the
program	as	a	String	value	in	args[0]	and	can	be	evaluated	using	the	String.equals()
method.	The	syntax	for	this	just	tacks	a	period	and	“equals()”	onto	the	array
name,	with	a	comparison	String	within	the	parentheses.	For	example,
args[0].equals(“b”)	evaluates	the	argument	for	the	String	value	“b”.

Start	a	new	program	named	“Option”	containing	the	standard	main
method	class	Option

{

public	static	void	main	(String[]	args)	{						}

}

Option.java

Inside	the	main	method,	write	an	if	statement	to	seek	an	argument	of	“-en”
if	(args[0].equals(“-en”))

{

System.out.println(“English	option”)	;

}

Add	an	else	alternative	onto	the	if	statement	to	seek	an	argument	of	“-es”
else	if	(args[0].equals(“-es”))

{

System.out.println(“Spanish	option”)	;

}

}

Add	another	else	alternative	onto	the	if	statement	to	provide	a	default	response	else
System.out.println(“Unrecognized	option”)	;

Save	the	program	as	Option.java	then	compile	and	run	the	program	to	see	the
output

This	example	will	throw	an	ArrayIndexOutOfBounds	exception	if	you
attempt	to	execute	the	program	without	any	argument.	See	here	for
details	on	how	to	catch	exceptions.

Passing	multiple	arguments

Multiple	arguments	can	be	passed	to	a	program	at	the	command	line,	following
the	program	name	and	a	space.	The	arguments	must	be	separated	by	at	least	one
space	and	their	values	are	placed,	in	order,	into	the	elements	of	the	args[]	array.
Each	value	can	then	be	addressed	by	its	index	number	as	with	any	other	array	–
args[0]	for	the	first	argument,	args[1]	for	the	second	argument,	and	so	on.

The	program	can	test	the	length	property	of	the	args[]	array	to	ensure	the	user	has
entered	the	appropriate	number	of	arguments.	When	the	test	fails,	the	return
keyword	can	be	used	to	exit	the	main	method,	thereby	exiting	the	program:

Start	a	new	program	named	“Args”	containing	the	standard	main	method	class
Args

{

public	static	void	main	(String[]	args)	{						}

}

Args.java

Inside	the	main	method,	write	an	if	statement	to	output	advice	and	exit	the
program	when	there	are	not	the	required	number	of	arguments	–	in	this	case,
three	if	(args.length	!=	3)

{

System.out.println(“Wrong	number	of	arguments”)	;	return	;

}

Below	the	if	statement,	create	two	int	variables	–	initialized	with	the	values	of	the
first	argument	and	third	argument	respectively
int	num1	=	Integer.parseInt(args[0])	;
int	num2	=	Integer.parseInt(args[2])	;

Add	a	String	variable,	initialized	with	a	concatenation	of	all	three	arguments	String
msg	=	args[0]	+	args[1]	+	args[2]	+	“=”	;

The	return	keyword	exits	the	current	method.	It	can	also	return	a	value	to
the	point	where	the	method	was	called.	See	here	for	more	details.

Add	this	if	else	statement	to	perform	arithmetic	on	the	arguments	and
append	the	result	to	the	String	variable	if	(args[1].equals(“+”))												msg	+=
(num1	+	num2);
else	if	(args[1].equals(“-”))					msg	+=	(num1	-	num2)	;
else	if	(args[1].equals(“x”))				msg	+=	(num1	*	num2)	;
else	if	(args[1].equals(“/”))					msg	+=	(num1	/	num2)	;
else	msg	=	“Incorrect	operator”	;

Insert	this	line	at	the	end	of	the	main	method	to	display	the	appended
String
System.out.println(msg)	;

Save	the	program	as	Args.java	then	compile	and	run	the	program	with
three	arguments	–	an	integer,	any	arithmetical	symbol	+	-	x	/,	and
another	integer

Now,	run	the	program	with	an	incorrect	second	argument	and	with	the
wrong	number	of	arguments

This	program	will	report	an	error	if	non-numeric	values	are	entered.	See
here	for	details	on	how	to	catch	errors.

Looping	through	elements

All	types	of	loop	can	be	used	to	easily	read	all	the	values	stored	inside	the
elements	of	an	array.	The	loop	counter	should	start	with	the	index	number	of	the
first	element	then	proceed	on	up	to	the	final	index	number.	The	index	number	of
the	last	element	in	an	array	will	always	be	one	less	than	the	array	length	–
because	the	index	starts	at	zero.

It	is	useful	to	set	the	array	length	property	as	the	loop’s	conditional	test
determining	when	the	loop	should	end.	This	means	that	the	loop	will	continue
until	the	counter	value	exceeds	the	index	number	of	the	array’s	final	element.

Start	a	new	program	named	“Loops”	containing	the	standard	main	method
class	Loops

{

public	static	void	main	(String[]	args)	{						}

}

Loops.java

Inside	the	main	method,	write	an	if	statement	to	test	whether	any	argument	values
have	been	entered	into	the	args[]	array	from	the	command	line	if	(args.length	>	0)
{					}

Insert	a	for	loop	inside	the	curly	brackets	of	the	if	statement	to	output	the	value
stored	in	each	element	for	(int	i	=	0	;	i	<	args.length	;	i++)

{

System.out.println(“args[“	+i+	“]	is	|	“+	args[i])	;

}

Save	the	program	as	Loops.java	then	compile	the	program	and	run	it	with	the
arguments	Java	in	easy	steps

Edit	Loops.java	to	add	a	String	array	and	a	while	loop	to	output	the	value
stored	in	each	element	String[]	htm	=	{	“HTML5”,	“in”,	“easy”,	“steps”	}	;

int	j	=	0	;
while	(j	<	htm.length)

{

System.out.println(“htm[“	+j+	“]	is	|	“	+	htm[j])	;
j++	;

}

Save	the	changes,	then	recompile	and	re-run	the	program

Edit	Loops.java	to	add	another	String	array	and	a	do	while	loop	to	output	the
value	stored	in	each	element	String[]	xml	=	{	“XML”,	“in”,	“easy”,	“steps”	}	;

int	k	=	0	;
if	(xml.length	>	0)	do

{

System.out.println(“\t\txml[“+k+“]	is	|	“+xml[k])	;
k++	;

}	while	(k	<	xml.length)	;

Save	the	changes,	then	recompile	and	re-run	the	program

Notice	that	the	do	statement	is	preceded	by	a	conditional	test	to	ensure
the	array	is	not	empty	before	attempting	to	output	the	value	of	the	first
element.

Changing	element	values

The	value	stored	in	an	array	element	can	be	changed	by	assigning	a	new	value	to
that	particular	element	using	its	index	number.	Additionally,	any	type	of	loop
can	be	used	to	efficiently	populate	all	the	elements	in	an	array	from	values	stored
in	other	arrays.	This	is	especially	useful	to	combine	data	from	multiple	arrays
into	a	single	array	of	totaled	data.

Start	a	new	program	named	“Elements”	containing	the	standard	main
method	class	Elements

{

public	static	void	main	(String[]	args)	{						}

}

Elements.java

In	the	main	method,	add	initialized	int	arrays	representing	monthly	kiosk	sales
from	all	four	quarters	of	a	year	int[]	kiosk_q1	=	{	42000	,	48000	,	50000	}	;
int[]	kiosk_q2	=	{	52000	,	58000	,	60000	}	;
int[]	kiosk_q3	=	{	46000	,	49000	,	58000	}	;
int[]	kiosk_q4	=	{	50000	,	51000	,	61000	}	;

Add	initialized	int	arrays	representing	monthly	outlet	sales	from	all	four	quarters
of	a	year	int[]	outlet_q1	=	{	57000	,	63000	,	60000	}	;
int[]	outlet_q2	=	{	70000	,	67000	,	73000	}	;
int[]	outlet_q3	=	{	67000	,	65000	,	62000	}	;
int[]	outlet_q4	=	{	72000	,	69000	,	75000	}	;

Now,	create	an	empty	int	array	of	12	elements	in	which	to	combine	all	the
monthly	sales	figures	and	an	int	variable	in	which	to	record	their	grand	total
value	int[]	sum	=	new	int[12]	;
int	total	=	0	;

Add	a	for	loop	to	populate	each	element	of	the	empty	array	with	combined	values

from	the	other	arrays
for	(int	i	=	0	;	i	<	kiosk_q1.length	;	i++)

{

sum[i]	=	kiosk_q1[i]	+	outlet_q1[i]	;
sum[i+3]	=	kiosk_q2[i]	+	outlet_q2[i]	;
sum[i+6]	=	kiosk_q3[i]	+	outlet_q3[i]	;
sum[i+9]	=	kiosk_q4[i]	+	outlet_q4[i]	;

}

Next,	add	a	second	for	loop	to	output	each	of	the	combined	monthly	sales
totals,	and	to	calculate	their	grand	total
for	(int	i	=	0	;	i	<	sum.length	;	i++)

{

System.out.println(“Month	“+	(i+1)	+	”	sales:\t”	+	sum[i])	;
total	+=	sum[i]	;

}

Insert	a	final	statement	at	the	end	of	the	main	method	to	output	the	grand
total	System.out.println(“TOTAL	YEAR	SALES\t”	+	total)	;

Save	the	program	as	Elements.java	then	compile	the	program	and	run	it	to
see	the	output

The	counter	number	gets	increased	by	one	to	produce	the	month
numbers	1-12.

Adding	array	dimensions

Arrays	can	be	created	to	store	multiple	sets	of	element	values,	each	having	their
own	index	dimension.	Individual	values	are	addressed	in	a	multi-dimensional
array	using	the	appropriate	index	numbers	of	each	dimension.	For	example,	num
[1]	[3].

A	two-dimensional	array	might	be	used	to	record	an	integer	value	for	each	day
of	a	business	year,	organized	by	week.	This	requires	an	array	of	52	elements
(one	per	week)	that	each	have	an	array	of	seven	elements	(one	per	day).	Its
declaration	looks	like	this:

int[][]	dailyRecord	=	new	int	[52]	[7]	;

Avoid	using	more	than	three	dimensions	in	arrays	–	it	will	be	confusing.

This	“array	of	arrays”	provides	an	element	for	each	business	day.	Values	are
assigned	to	a	multi-dimensional	array	by	stating	the	appropriate	index	numbers
of	each	dimension.	With	the	example	above,	for	instance,	a	value	can	be
assigned	to	the	first	day	of	the	sixth	week	like	this:	dailyRecord	[5]	[0]	=	5000	;

Each	array	has	its	own	length	property	that	can	be	accessed	by	specifying	the
dimension	required.	For	the	example	above,	the	syntax	dailyRecord.length	returns
a	value	52	–	the	size	of	the	first	dimension.	To	access	the	size	of	the	second
dimension,	the	syntax	dailyRecord[0].length	returns	the	value	of	seven.

Two-dimensional	arrays	are	often	used	to	store	grid	coordinates,	where	one
dimension	represents	the	X	axis	and	the	other	dimension	represents	the	Y	axis.
For	example,	point[3][5].

Three-dimensional	arrays	can	be	used	to	store	XYZ	coordinates	in	a	similar	way,
but	it	can	be	difficult	to	visualize	point[4][8][2].

Nested	loops	are	perfectly	suited	to	multi-dimensional	arrays,	as	each	loop	level
can	address	the	elements	of	each	array	dimension.

Start	a	new	program	named	“Dimensions”	containing	the	standard	main
method	class	Dimensions

{

public	static	void	main	(String[]	args)	{						}

}

Dimensions.java

In	the	main	method,	create	a	two-dimensional	array	to	store	Boolean	flats	relating
to	XY	coordinates
boolean[][]	points	=	new	boolean[5][20]	;

Define	one	Y	point	on	each	X	axis	points[0][5]	=	true	;
points[1][6]	=	true	;
points[2][7]	=	true	;
points[3][8]	=	true	;
points[4][9]	=	true	;

Add	a	for	loop	to	iterate	through	the	first	array	index,	adding	a	newline	character
at	the	end	of	each	iteration
for	(int	i	=	0	;	i	<	points.length	;	i++)

{

System.out.print(“\n”)	;

}

Within	the	curly	brackets	of	the	for	loop,	insert	a	second	for	loop	to	iterate	through
the	second	array	index	for	(int	j	=	0	;	j	<	points[0].length	;	j++)	{						}

Within	the	curly	brackets	of	the	second	for	loop,	insert	a	statement	to	output	a
character	for	each	element	according	to	that	element’s	Boolean	value	char	mark	=
(points[i][j])	?	‘X’	:	‘-’	;
System.out.print(mark)	;

Save	the	program	as	Dimensions.java	then	compile	and	run	the	program	to	see	the
output

Boolean	variables	are	false	by	default.

Catching	exceptions

A	program	may	encounter	a	runtime	problem	that	causes	an	“exception”	error,

A	program	may	encounter	a	runtime	problem	that	causes	an	“exception”	error,
which	halts	its	execution.	Often,	this	will	be	created	by	unexpected	user	input.	A
well-written	program	should,	therefore,	attempt	to	anticipate	all	possible	ways
the	user	might	cause	exceptions	at	runtime.

Code	where	exceptions	might	arise	can	be	identified	and	enclosed	within	a	try
catch	statement	block.	This	allows	the	program	to	handle	exceptions	without
halting	execution	and	looks	like	this:

try

{

statements	where	an	exception	may	arise	}
catch(Exception	e)

{

statements	responding	to	an	exception	}

The	parentheses	following	the	catch	keyword	specify	the	class	of	exception	to	be
caught	and	assign	it	to	the	variable	“e”.	The	top-level	Exception	class	catches	all
exceptions.	Responses	can	be	provided	for	specific	exceptions,	however,	using
multiple	catch	statements	to	identify	different	lower-level	exception	classes.

The	most	common	exceptions	are	the	NumberFormatException,	which	arises	when
the	program	encounters	a	value	that	is	not	of	the	expected	numeric	type,	and	the
ArrayIndexOutOfBoundsException,	which	arises	when	the	program	attempts	to
address	an	array	element	number	that	is	outside	the	index	size.	It	is	helpful	to
create	a	separate	response	for	each	of	these	exceptions	to	readily	notify	the	user
about	the	nature	of	the	problem.

Optionally,	a	try	catch	statement	block	can	be	extended	with	a	finally	statement
block,	containing	code	that	will	always	be	executed	–	irrespective	of	whether	the
program	has	encountered	exceptions.

The	e.getMessage()	method	returns	further	information	about	some	captured
exceptions.

Start	a	new	program	named	“Exceptions”	containing	the	standard	main
method	class	Exceptions

{

public	static	void	main	(String[]	args)	{						}

}

Exceptions.java

Inside	the	main	method,	write	a	try	statement	to	output	a	single	integer	argument

try

{

int	num	=	Integer.parseInt(args[0])	;
System.out.println(“You	entered:	“+	num)	;

}

Add	a	catch	statement	to	handle	the	exception	that	arises	when	the	program	is	run
without	an	argument
catch(ArrayIndexOutOfBoundsException	e)
{	System.out.println(“Integer	argument	required.”)	;					}

Add	a	catch	statement	to	handle	the	exception	that	arises	when	the	program	is	run
with	a	non-integer	argument
catch(NumberFormatException	e)
{	System.out.println(“Argument	is	wrong	format.”)	;					}

Add	a	finally	statement	at	the	end	of	the	program	finally	{	System.out.println(“Program
ends.”)	;					}

Save	the	program	as	Exceptions.java	then	compile	and	run	the	program,	trying	to
cause	exceptions

Summary

• Numeric	values	can	be	converted	to	other	numeric	data	types	by	casting,	and
to	the	String	type	using	the	toString()	method.

• A	String	value	can	be	converted	to	an	int	value	using	the	Integer.parseInt()
method,	and	to	a	float	using	Float.	parseFloat().

• An	array	is	a	variable	that	can	contain	multiple	values,	initialized	as	a	list
within	curly	brackets	in	its	declaration.

• An	empty	array	object	can	be	created	using	the	new	keyword.

• The	length	property	of	an	array	stores	an	integer,	which	is	the	number	of
elements	in	that	array.

• Each	element	of	an	array	can	be	addressed	by	its	index	number.

• A	program’s	main	method	creates	a	String	array,	traditionally	named	“args”,	to
store	command	line	arguments.

• The	first	command	line	argument	gets	automatically	stored	in	the	args[0]
element	–	as	a	String	data	type.

• Multiple	arguments	being	passed	to	a	program	from	the	command	line	must
each	be	separated	by	a	space.

• Loops	are	an	ideal	way	to	read	all	the	values	stored	within	array	elements.

• Data	from	multiple	arrays	can	be	combined	to	form	a	new	array	of	totaled
data	in	each	element.

• Multi-dimensional	arrays	can	store	multiple	sets	of	element	values,	each
having	their	own	index	dimension.

• A	try	catch	statement	block	is	used	to	anticipate	and	handle	runtime
exceptions	that	may	arise.

• The	Exception	class	catches	all	exception	errors,	including
NumberFormatException	and	ArrayIndexOutOfBoundsException.

• A	try	catch	statement	can	be	extended	with	a	finally	statement	block,
containing	code	that	will	always	be	executed.

5

Manipulating	data

This	chapter	demonstrates	how	to	manipulate	program	data	using	various	Java	library	methods.

Exploring	Java	classes
Doing	mathematics

Rounding	numbers
Generating	random	numbers
Managing	strings
Comparing	strings

Searching	strings
Manipulating	characters
Summary

Exploring	Java	classes

Java	has	a	vast	library	of	pre-tested	code	packages,	which	are	arranged	in
modules.	Those	providing	functionality	that	is	fundamental	to	the	Java	language
itself	are	contained	in	the	java.lang	package,	within	the	java.base	module.	These
are	automatically	accessible	to	the	Java	API	(Application	Programming
Interface).	This	means	that	the	properties	and	methods	provided	by	the	java.lang
package	are	readily	available	when	creating	programs.	For	example,	the
mathematic	functionality	provided	by	the	abs()	method	of	the	Math	class,	which	is
part	of	the	java.lang	package,	in	the	java.base	module.

Modules	are	a	new	feature	introduced	in	Java	9	to	improve	scalability
and	increase	performance.

Package	contents	are	arranged	in	hierarchical	order,	allowing	any	item	to	be
addressed	using	dot	notation.	For	example,	the	System	class	contains	an	out
property	(field),	which	in	turn	contains	a	println()	method	–	so	can	be	addressed
as	System.out.println().

The	Java	documentation	provides	information	about	every	item	available,	and
can	be	used	to	explore	the	Java	classes.	It	is	available	online	at
docs.oracle.com/javase/9/docs/api	or	can	be	downloaded	for	offline	reference.
The	documentation	is	understandably	large,	but	familiarity	with	it	is	valuable.	A
good	starting	point	is	the	API	Overview	page	containing	a	list	of	every	module
in	each	of	three	sections,	together	with	a	brief	description	of	each	module:

Start	a	web	browser	and	open	the	API	Overview	page	at
docs.oracle.com/javase/9/docs/api

See	the	Modules	listed	alphabetically	in	each	section	–	scroll	down	the	page	to
the	“Java	SE”	section	and	find	the	java.base	module,	then	click	its	hyperlink

You	can	click	on	the	Frames	link	to	see	a	multi-pane	view	of	the
documentation.

https://docs.oracle.com/javase/9/docs/api/overview-summary.html
https://docs.oracle.com/javase/9/docs/api/overview-summary.html

See	the	module’s	Packages	listed	alphabetically	in	each	section	–	scroll
down	the	page	to	the	“Exports”	section	and	find	the	java.lang	package,
then	click	its	hyperlink

See	the	package’s	Classes	listed	alphabetically	in	each	section	–	scroll
down	the	page	to	the	“Class	Summary”	section	to	find	the	Math	class,
then	click	its	hyperlink

See	the	class’s	Methods	listed	alphabetically	in	the	“Method	Summary”
section	–	click	on	any	hyperlink	to	discover	the	purpose	of	that	method
and	its	syntax

You	can	also	use	the	Search	box	to	find	information	on	any	item.

Examine	the	information	available	via	other	items	on	the	page	menu	to
become	more	familiar	with	the	documentation.

Doing	mathematics

The	Math	class	within	the	java.lang	package	provides	two	constant	values	that	are
often	useful	to	perform	mathematical	calculations.	Math.PI	stores	the	value	of	Pi,
and	Math.E	stores	the	value	that	is	the	base	of	natural	logarithms.	Both	these
constant	values	are	stored	as	double	precision	data	types	with	15	decimal	places.

Start	a	new	program	named	“Pi”	containing	the	standard	main	method
class	Pi

{

public	static	void	main	(String[]	args)	{									}

}

Pi.java

Inside	the	main	method,	declare	and	initialize	a	float	variable	from	a	command
line	argument,	and	cast	the	double	Math.PI	constant	into	a	second	float	variable
float	radius	=	Float.parseFloat(args[0])	;
float	shortPi	=	(float)	Math.PI	;

Perform	mathematical	calculations	using	the	cast	value,	assigning	the	results	to
more	float	variables	float	circ	=	shortPi	*	(radius	+	radius)	;
float	area	=	shortPi	*	(radius	*	radius)	;

Output	the	value	of	Math.PI	and	its	cast	float	equivalent,	followed	by	the	results	of
the	calculations	System.out.print(“With	Pi	commuted	from	“	+	Math.PI)	;
System.out.println(“	to	“	+	shortPi	+	“...”)	;
System.out.println(“A	circle	of	radius	“	+	radius	+	“	cm”)	;
System.out.printIn(“has	a	circumference	of	“	+	circ	+	“	cm”)	;
System.out.println(“	and	an	area	of	“	+	area	+	“	sq.cm”)	;

Save	the	program	as	Pi.java	then	compile	and	run	the	program	to	see	the	output

The	commuted	value	of	Pi	usually	provides	sufficient	precision.

The	Math	class	within	the	java.lang	package	provides	many	methods	that	are
useful	to	perform	mathematical	calculations.	Using	Math.pow(),	a	given	number
can	be	raised	to	a	specified	power.	The	parentheses	require	the	number	as	its
first	argument	and	the	power	by	which	it	is	to	be	raised	as	its	second	argument.
The	Math.sqrt()	method	returns	the	square	root	of	the	number	specified	as	its	sole
argument.	Both	methods	return	a	double	type.

Start	a	new	program	named	“Power”	containing	the	standard	main	method
class	Power

{

public	static	void	main	(String[]	args)	{							}

}

Power.java

Inside	the	main	method,	declare	and	initialize	an	int	variable	from	a	passed
command	line	argument	int	num	=	Integer.parseInt(args[0])	;

Perform	mathematical	calculations,	casting	the	results	into	more	int	variables	int
square	=	(int)	Math.pow(num	,	2)	;
int	cube	=	(int)	Math.pow(num	,	3)	;
int	sqrt	=	(int)	Math.sqrt(num)	;

Output	the	results	of	the	calculations	System.out.println(num	+	”	squared	is	“	+	square
)	;
System.out.println(num	+	”	cubed	is	“	+	cube)	;
System.out.println(“Square	root	of	“	+	num	+	”	is	“+	sqrt)	;

Save	the	program	as	Power.java	then	compile	and	run	the	program	to	see	the
output

Both	these	examples	could	be	improved	by	adding	try	catch	statement

blocks	to	anticipate	user	errors	–	see	here	for	details.

Rounding	numbers

The	Math	class	within	the	java.lang	package	provides	three	methods	to	round
floating-point	numbers	to	the	nearest	integer.	Simplest	of	these	is	the	Math.round()
method	that	rounds	a	number	stated	as	its	argument	up,	or	down,	to	the	closest
integer.

The	Math.floor()	method	rounds	down	to	the	closest	integer	below,	and	Math.ceil()
rounds	up	to	the	closest	integer	above.

While	the	Math.round()	method	returns	an	int	data	type,	both	Math.floor()	and
Math.ceil()	methods	return	a	double	data	type.

Start	a	new	program	named	“Round”	containing	the	standard	main
method	class	Round

{

public	static	void	main	(String[]	args)	{									}

}

Round.java

Inside	the	main	method,	declare	and	initialize	a	float	variable	float	num	=	7.25f	;

Output	the	rounded	float	value	as	an	int	value	System.out.println(num+”	rounded	is
“+Math.round(num))	;

Output	the	rounded	float	value	as	double	values	System.out.println(num+”	floored	is	“
+Math.floor(num));
System.out.println(num+“	ceiling	is	“	+	Math.ceil(num))	;

Save	the	program	as	Round.java	then	compile	and	run	the	program	to	see	the
output

By	default,	Math.round()	will	round	up	–	so	7.5	would	be	rounded	up	to
8.

The	Math	class	within	the	java.lang	package	provides	two	methods	to	compare
two	numerical	values.	The	Math.max()	method	and	the	Math.min()	method	each
require	two	numbers	to	be	stated	as	their	arguments.	Math.max()	will	return	the
greater	number	and	Math.min()	will	return	the	smaller	number.

The	numbers	to	be	compared	can	be	of	any	numerical	data	type,	but	the	result
will	be	returned	as	a	double	data	type.

Start	a	new	program	named	“Compare”	containing	the	standard	main
method	class	Compare

{

public	static	void	main	(String[]	args)	{										}

}

Compare.java

Inside	the	main	method,	declare	and	initialize	a	float	variable	and	an	int	variable

float	num1	=	24.75f	;
int	num2	=	25	;

Output	the	greater	value	System.out.println(“Most	is	“	+	Math.max(num1,	num2))	;

Output	the	lesser	value	System.out.println(“Least	is	“	+	Math.min(num1,	num2))	;

Save	the	program	as	Compare.java	then	compile	and	run	the	program	to	see	the
output

Generating	random	numbers

The	Math	class	within	the	java.lang	package	provides	the	ability	to	generate
random	numbers	with	its	Math.random()	method,	which	returns	a	double	precision
random	number	between	0.0	and	0.999.	Multiplying	the	random	number	will
specify	a	wider	range.	For	example,	multiplying	by	10	will	create	a	random
number	in	the	range	of	0.0	to	9.999.	Now	rounding	the	random	number	up	with
Math.ceil()	will	ensure	it	falls	within	the	range	of	1-10	inclusive.

Start	a	new	program	named	“Random”	containing	the	standard	main
method	class	Random

{

public	static	void	main	(String[]	args)	{									}

}

Random.java

Inside	the	main	method,	assign	a	random	number	to	a	float	variable,	and	output	its
value	float	random	=	(float)	Math.random()	;
System.out.println(“Random	number:	“	+	random)	;

Assign	a	multiplication	of	the	random	number	to	a	second	float	variable,	and
output	its	value	float	multiplied	=	random	*	10	;
System.out.println(“Multiplied	number:	“	+	multiplied)	;

Assign	a	rounded	integer	of	the	multiplied	random	number	to	an	int	variable,	and
output	its	value	int	randomInt	=	(int)	Math.ceil(multiplied)	;
System.out.println(“Random	Integer:	“	+	randomInt)	;

Save	the	program	as	Random.java	then	compile	and	run	the	program	to	see	the
output

The	Lottery	program	described	opposite	combines	all	three	steps	from
this	example	into	a	single	statement.

A	sequence	of	six	non-repeating	random	numbers	within	the	range	1-59
inclusive	can	be	generated	using	Math.random()	to	produce	a	random	lottery
selection.

Start	a	new	program	named	“Lottery”	containing	the	standard	main
method	class	Lottery

{

public	static	void	main	(String[]	args)	{												}

}

Lottery.java

Inside	the	main	method,	create	an	int	array	of	60	elements,	then	fill	elements	1-59
with	integers	1-59
int[]	nums	=	new	int[60]	;
for(int	i	=	1	;	i	<	60	;	i++)	{	nums[i]	=	i	;	}

Shuffle	the	values	in	elements	1-59
for(int	i	=	1	;	i	<	60	;	i++)

{

int	r	=	(int)	Math.ceil(Math.random()	*	59)	;
int	temp	=	nums[i]	;
nums[i]	=	nums[r]	;	nums[r]	=	temp	;	}

Output	only	those	values	contained	in	elements	1-6
for	(int	i	=	1	;	i	<	7	;	i++)

{

System.out.print(Integer.toString(nums[i])	+	“	“)	;

}

Save	the	program	as	Lottery.java	then	compile	it	and	run	the	program	three	times	to
see	three	different	sequences

This	program	is	revisited	with	a	graphical	user	interface	in	Chapter	10.

Managing	strings

In	Java	programming,	a	String	is	zero	or	more	characters	enclosed	within
quotation	marks.	So,	these	are	all	valid	String	values:	String	txt1	=	“My	First	String”	;

String	txt2	=	“”	;

String	txt3	=	“2”	;

String	txt4	=	“null”	;

Array.length	is	a	property	but	String.length()	is	a	method	–	so	it	must
have	trailing	parentheses.

The	empty	quotes	of	txt2	initialize	the	variable	as	an	empty	String	value.	The
numeric	value	assigned	to	txt3	is	a	String	representation	of	the	number.	The	Java
null	keyword,	which	normally	represents	the	absence	of	any	value,	is	simply	a
String	literal	when	it	is	enclosed	within	quotes.

Essentially,	a	String	is	a	collection	of	characters;	each	character	containing	its
own	data	–	just	like	elements	in	a	defined	array.	It	is,	therefore,	logical	to	regard
a	String	as	an	array	of	characters	and	apply	array	characteristics	when	dealing
with	String	values.

The	String	class	is	part	of	the	fundamental	java.lang	package	and	provides	a
length()	method	that	will	return	the	size	of	a	String,	much	like	the	length	property
of	an	array.	Each	String	variable	is	created	as	an	“instance”	of	the	String	class	so
its	methods	can	be	used	by	tacking	their	name	onto	the	variable	name	using	dot
notation.	For	example,	the	syntax	to	return	the	size	of	a	String	variable	named	txt
is	txt.length().

The	String	class	within	the	java.lang	package	also	provides	an	alternative	to	the	+
concatenation	operator	for	joining	String	values	together.	Its	concat()	method
requires	a	single	argument	specifying	the	second	String	to	be	appended.	In	use	it
is	tacked	onto	the	variable	name	of	the	first	String	using	dot	notation.	For
example,	append	txt2	onto	txt1	using	txt1.concat(txt2).

Start	a	new	program	named	“StringLength”	containing	the	standard	main
method	class	StringLength

{

public	static	void	main	(String[]	args)	{											}

}

StringLength.java

Inside	the	main	method,	create	and	initialize	two	String	variables	String	lang	=
“Java”	;
String	series	=	“	in	easy	steps”	;

Add	another	String	variable	and	assign	it	the	concatenated	value	of	the	other	two
String	variables	String	title	=	lang.concat(series)	;

Output	the	concatenated	String	within	quotation	marks,	together	with	its	size
System.out.print(“\””	+	title	+	“\”	has	“)	;

System.out.println(title.length()	+	“	characters”)	;

Save	the	program	as	StringLength.java	then	compile	and	run	the	program	to	see	the
output

Spaces	are	part	of	the	String	so	are	included	in	the	character	count	–	but
the	quotation	marks	are	not	included.

Comparing	strings

The	String	class	within	the	java.lang	package	provides	the	useful	equals()	method
that	was	introduced	here	to	evaluate	a	command	line	argument	in	the	args[0]
element.	This	can	also	be	used	to	compare	any	two	String	values	by	tacking	the
method	name	onto	the	first	String	variable	using	dot	notation,	and	specifying	the
String	to	be	compared	as	its	argument.	For	example,	the	syntax	to	compare	txt2	to
txt1	is	txt1.equals(txt2).	When	both	String	values	have	identical	characters,	in	the
same	order,	the	method	returns	true	–	otherwise,	it	returns	false.

Be	sure	to	observe	correct	capitalization	using	a	capital	“C”	in	the

toUpperCase	and	toLowerCase	methods.

String	values	that	use	different	letter	case,	such	as	“Java”	and	“JAVA”,	are	not
considered	equal	because	the	ASCII	code	values	of	the	characters	differ.	For
instance,	the	value	of	uppercase	“A”	is	65,	whereas	lowercase	“a”	is	97.

To	compare	an	input	String	value,	where	the	letter	case	entered	by	the	user	is
uncertain,	against	a	String	value	in	the	program	it	is	often	useful	to	transform	the
input	into	a	particular	case.	For	this	purpose,	the	String	class	provides	a
toUpperCase()	method	and	a	toLowerCase()	method.	The	input	String	is	specified	as
the	argument,	and	the	method	returns	the	transformed	String.

A	typical	example	might	force	a	user-input	password	String	to	lowercase	before
comparing	it	to	the	correct	password	stored	in	all	lowercase	in	a	String	variable
within	the	program.	This	would	allow	the	user	to	enter	their	password	in
uppercase,	lowercase,	or	a	mixture	of	both	cases	where	case-insensitive
passwords	are	permissible.

Dot	notation	allows	methods	to	be	tacked	onto	other	methods	so	their	operations
can	be	performed	in	sequence.	This	means	that	toLowerCase().equals()	can	be	used
to	transform	a	String	value	to	lowercase	and	then	compare	that	lowercase	version
against	a	specified	argument.

Start	a	new	program	named	“StringComparison”	containing	the	standard
main	method	class	StringComparison

{

public	static	void	main	(String[]	args)	{												}

}

StringComparison.java

Inside	the	main	method,	create	and	initialize	a	String	variable	with	a	correct
lowercase	password	String	password	=	“bingo”	;

Add	a	try	catch	statement	to	catch	the	exception	that	occurs	when	no	password

argument	is	entered	try	{						}
catch(Exception	e)

{

System.out.println(“Password	required.”)	;

}

Insert	this	if	else	statement	into	the	try	statement	block	to	evaluate	the	password
argument	entered	by	the	user	if	(args[0].toLowerCase().equals(password))

{

System.out.println(“Password	accepted.”)	;

}

else

{

System.out.println(“Incorrect	password.”)	;

}

Save	the	program	as	StringComparison.java	then	compile	and	run	the	program	with
various	arguments

Searching	strings

The	String	class	within	the	java.lang	package	provides	startsWith()	and	endsWith()
methods	to	compare	portions	of	a	String	value.	These	are	especially	useful	to
compare	a	number	of	String	values	and	select	those	with	common	beginnings	or
common	endings.	When	the	String	section	matches	the	specified	argument,	the
method	returns	true	–	otherwise,	it	returns	false.

A	portion	of	a	String	value	can	be	copied	by	stating	the	position	number	of	the
first	character	to	be	copied	as	the	argument	to	its	substring()	method.	This	will
return	a	substring	of	the	original	String	value,	starting	at	the	specified	start
position	and	ending	at	the	end	of	the	original	String.

Optionally,	the	substring()	method	can	take	a	second	argument	to	specify	the
position	number	of	the	final	character	to	be	copied.	This	will	return	a	substring
of	the	original	String	value,	starting	at	the	specified	start	position	and	ending	at
the	specified	end	position.

A	String	value	can	be	searched	to	find	a	character	or	substring	specified	as	the
argument	to	its	indexOf()	method.	Unusually,	this	method	returns	the	numeric
position	of	the	first	occurrence	of	the	matched	character	or	substring	within	the
searched	String	value.	Where	no	match	is	found,	the	method	returns	the	negative
integer	value	of	-1.

Start	a	new	program	named	“StringSearch”	containing	the	standard	main
method	class	StringSearch

{

public	static	void	main	(String[]	args)	{											}

}

StringSearch.java

Inside	the	main	method,	create	an	initialized	String	array	of	book	titles	String[]
books	=
{											“Java	in	easy	steps”,	“XML	in	easy	steps”	,
												“SQL	in	easy	steps”	,	”CSS	in	easy	steps”	,
												“Gone	With	the	Wind”	,	“Drop	the	Defense”	}	;

Create	and	initialize	three	int	counter	variables	int	counter1	=	0	,	counter2	=	0	,
counter3	=	0	;

Add	a	for	loop	to	iterate	through	the	String	array,	listing	as	output	the	first
four	characters	of	each	title	for	(int	i	=	0	;	i	<	books.length	;	i++)

{

System.out.print(books[i].substring(0,4)	+	“	|	“)	;

}

Insert	a	statement	in	the	for	loop	block	to	count	the	titles	found	with	a
specified	ending	if	(books[i].endsWith(“in	easy	steps”))	counter1++	;

Insert	a	statement	in	the	for	loop	block	to	count	the	titles	found	with	a
specified	beginning	if	(books[i].startsWith(“Java”))	counter2++	;

Insert	a	statement	in	the	for	loop	block	to	count	the	titles	found	not
containing	a	specified	substring	if	(books[i].indexOf(“easy”)	==	-1)
counter3++	;

At	the	end	of	the	main	method,	add	these	statements	to	output	the	results
of	each	search
System.out.println(“\nFound	“	+	counter1	+	“	titles	from	this	series”)	;
System.out.println(“Found	“	+	counter2	+	“	Java	title”)	;
System.out.println(“Found	“	+	counter3	+	“	other	titles”)	;

Save	the	program	as	StringSearch.java	then	compile	and	run	the	program	to
see	the	output

The	!	NOT	operator	cannot	be	used	to	test	if	the	indexOf()	method	has
failed	–	because	it	returns	an	integer	value,	not	a	Boolean	value.

Manipulating	characters

The	String	class	within	the	java.lang	package	provides	the	trim()	method	that	is
used	to	remove	any	whitespace	from	the	beginning	and	end	of	the	String
specified	as	its	argument.	This	method	will	remove	all	extreme	spaces,	newlines,
and	tabs,	returning	the	trimmed	version	of	that	String.

An	individual	character	in	a	String	can	be	addressed	by	stating	its	index	position
within	that	String	as	the	argument	to	its	charAt()	method.	This	method	treats	the
String	as	an	array	of	characters	where	the	first	character	is	at	position	zero	–	just
like	other	arrays	whose	elements	are	indexed	starting	at	zero.	The	first	character
in	a	String	can	be	addressed	as	charAt(0),	the	second	character	as	charAt(1),	and	so
on.

As	character	indexing	begins	at	zero,	the	final	character	in	a	String	will	always
have	an	index	number	that	is	one	less	than	the	total	number	of	characters	in	the
String.	This	means	that	the	final	character	in	any	String	has	the	index	number
equivalent	to	length()	-	1.	The	final	character	in	a	String	named	“str”	can,	therefore,
be	addressed	as	str.charAt(str.length()	-	1).

All	occurrences	of	a	particular	character	in	a	String	can	be	replaced	by	another
character	using	its	replace()	method.	This	method	requires	two	arguments	that
specify	the	character	to	be	replaced	and	the	character	that	is	to	take	its	place.	For
example,	to	replace	all	occurrences	of	the	letter	“a”	with	the	letter	“z”,	the	syntax
would	be	replace(‘a’	,	‘z’).

The	isEmpty()	method	can	be	used	to	discover	if	a	String	contains	no	characters.
This	method	will	return	true	if	the	String	is	absolutely	empty,	otherwise	it	will
return	false.

Start	a	new	program	named	“CharacterSwap”	containing	the	standard
main	method	class	CharacterSwap

{

public	static	void	main	(String[]	args)	{													}

}

CharacterSwap.java

Inside	the	main	method,	declare	and	initialize	an	empty	String	variable	String	txt	=
““	;

Assign	some	characters	to	the	String	variable,	if	it	is	indeed	empty,	with
both	leading	and	trailing	spaces	if	(txt.isEmpty())	txt	=	“						Borrocudo					“	;

Output	the	String	value	and	the	number	of	characters	it	contains
System.out.println(“String:	“	+	txt)	;
System.out.println(“Original	String	Length:	“	+	txt.length())	;

Remove	the	leading	and	trailing	spaces,	then	output	the	String	value	and
its	size	again	txt	=	txt.trim()	;
System.out.println(“String:	“	+	txt)	;
System.out.println(“String	Length:	“	+	txt.length())	;

Output	the	first	character	in	the	String
char	initial	=	txt.charAt(0)	;
System.out.println(“First	Letter:	“	+	initial)	;

Now,	output	the	last	character	in	the	String
initial	=	txt.charAt((txt.length()	-1));
System.out.println(“Last	Letter:	“	+	initial)	;

Replace	all	occurrences	of	the	letter	“o”	with	letter	“a”
txt	=	txt.replace(‘o’	,	’a’)	;
System.out.println(“String:	“	+	txt)	;

Save	the	program	as	CharacterSwap.java	then	compile	and	run	the	program
to	see	the	output

Summary

• The	Java	documentation	provides	information	about	the	methods	and
properties	in	each	Java	class.

• Java	classes	that	are	fundamental	to	the	Java	language	are	contained	in	the
java.lang	package,	in	the	java.base	module.

• The	Math	class	provides	Math.PI	and	Math.E	constants.

• Math.pow()	raises	to	a	specified	power	and	Math.sqrt()	returns	the	square	root	of
a	specified	number.

• Numbers	can	be	rounded	to	an	integer	value	with	Math.round(),	Math.floor(),	and
Math.ceil().

• Numbers	can	be	compared	with	Math.max()	and	Math.min().

• Math.random()	returns	a	double	precision	random	number	between	0.0	and
0.999999999999999.

• A	String	is	zero	or	more	characters	enclosed	in	quote	marks.

• The	length()	method	returns	the	size	of	its	String,	much	like	the	length	property
of	an	array.

• The	concat()	method	of	a	String	appends	another	String	value.

• The	equals()	method	of	a	String	only	returns	true	when	two	String	values	have
identical	characters,	in	the	same	order.

• Character	case	of	a	String	can	be	changed	using	its	toUpperCase()	method	and
toLowerCase()	method.

• String	values	can	be	compared	using	the	startsWith()	and	endsWith()	methods	of
a	String.

• A	substring	can	be	sought	in	a	String	using	its	indexOf()	and	substring()
methods.

• The	isEmpty()	method	only	returns	true	when	the	String	contains	absolutely
nothing.

• Characters	can	be	manipulated	within	a	String	value	using	its	trim(),	charAt(),
and	replace()	methods.

6

Creating	classes

This	chapter	demonstrates	how	to	create	Java	programs	that	employ	multiple	methods	and	classes.

Forming	multiple	methods
Understanding	program	scope

Forming	multiple	classes
Extending	an	existing	class
Creating	an	object	class
Producing	an	object	instance

Encapsulating	properties
Constructing	object	values
Summary

Forming	multiple	methods

Programs	are	typically	split	into	separate	methods	in	order	to	create	modules	of
code	that	each	perform	tasks,	and	that	can	be	called	repeatedly	throughout	the
program	as	required.	Splitting	the	program	into	multiple	methods	also	makes	it
easier	to	track	down	bugs,	as	each	method	can	be	tested	individually.	Further
methods	may	be	declared,	inside	the	curly	brackets	that	follow	the	class
declaration,	using	the	same	keywords	that	are	used	to	declare	the	main	method.
Each	new	method	must	be	given	a	name,	following	the	usual	naming
conventions,	and	may	optionally	specify	arguments	in	the	parentheses	after	its
name.

Start	a	new	program	named	“Methods”	containing	the	standard	main
method	class	Methods

{

public	static	void	main	(String[]	args)	{						}

}

Methods.java

Between	the	curly	brackets	of	the	main	method,	insert	statements	to	output	a
message	and	to	call	a	second	method	named	“sub”
System.out.println(“Message	from	the	main	method.”)	;
sub()	;

After	the	main	method,	before	the	final	curly	bracket	of	the	class,	add	the	second
method	to	output	a	message	public	static	void	sub()

{

System.out.println(“Message	from	the	sub	method.”)	;

}

Save	the	program	as	Methods.java	then	compile	and	run	the	program	to	see	the
output

The	syntax	to	call	a	method	without	arguments	just	needs	the	method
name,	followed	by	parentheses.

A	class	may	even	contain	multiple	methods	of	the	same	name	providing	they
each	have	different	arguments	–	requiring	a	different	number	of	arguments,	or
arguments	of	different	data	types.	This	useful	feature	is	known	as	method
“overloading”.

Start	a	new	program	named	“Overload”	containing	the	standard	main
method	class	Overload

{

public	static	void	main	(String[]	args)	{						}

}

Overload.java

Between	the	curly	brackets	of	the	main	method,	insert	three	statements	calling
different	overloaded	methods	and	passing	them	argument	values
System.out.println(write(12))	;
System.out.println(write(“Twelve”))	;
System.out.println(write(4	,	16))	;

After	the	main	method,	before	the	final	curly	bracket	of	the	class,	add	the	three
overloaded	methods	to	each	return	a	String	to	the	caller	public	static	String	write(int
num)
{						return	(“Integer	passed	is	“	+	num)	;				}
public	static	String	write(String	num)
{						return	(“String	passed	is	“	+	num)	;				}
public	static	String	write(int	num1	,	int	num2)
{						return	(“Sum	Total	is	“	+	(num1	*	num2))	;				}

Save	the	program	as	Overload.java	then	compile	and	run	the	program	to	see	the
output

The	declaration	for	each	of	the	overloaded	methods	must	indicate	that
the	method	returns	a	String	value,	not	void.

Understanding	program	scope

A	variable	that	is	declared	inside	a	method	is	only	accessible	from	inside	that
method	–	its	“scope”	of	accessibility	is	only	local	to	the	method	in	which	it	is
declared.	This	means	that	a	variable	of	the	same	name	can	be	declared	in	another
method	without	conflict.

Start	a	new	program	named	“Scope”	containing	the	standard	main	method
class	Scope

{

public	static	void	main	(String[]	args)	{						}

}

Scope.java

Between	the	curly	brackets	of	the	main	method	declare	and	initialize	a	local	String
variable,	then	output	its	value	String	txt	=	“This	is	a	local	variable	in	the	main	method”;
System.out.println(txt)	;

After	the	main	method,	before	the	final	curly	bracket	of	the	class,	add	another
method	named	“sub”
public	static	void	sub()	{						}

Between	the	curly	brackets	of	the	sub	method,	declare	and	initialize	a	local	String
variable	of	the	same	name	as	the	variable	in	the	main	method	String	txt	=	“This	is	a
local	variable	in	the	sub	method”	;
System.out.println(txt)	;

Insert	a	call	to	the	sub	method	at	the	end	of	the	main	method	sub()	;

Save	the	program	as	Scope.java	then	compile	and	run	the	program	to	see	the
output

A	counter	variable	declared	in	a	for	loop	cannot	be	accessed	outside	the
loop	–	its	scope	is	limited	to	the	for	statement	block.

The	static	keyword	that	is	used	in	method	declarations	ensures	that	the	method	is
a	“class	method”	–	globally	accessible	from	any	other	method	in	the	class.

Similarly,	a	“class	variable”	can	be	declared	with	the	static	keyword	to	ensure	it
is	globally	accessible	throughout	the	class.	Its	declaration	should	be	made	before
the	main	method	declaration,	right	after	the	curly	bracket	following	the	class
declaration.

A	program	may	have	a	global	class	variable	and	local	method	variable	of	the

A	program	may	have	a	global	class	variable	and	local	method	variable	of	the
same	name.	The	local	method	variable	takes	precedence	unless	the	global	class
variable	is	explicitly	addressed	by	the	class	name	prefix	using	dot	notation,	or	if
a	local	variable	of	that	name	has	not	been	declared.

Edit	Scope.java	by	inserting	a	global	class	String	variable	constant	of	the
same	name	as	the	local	method	variables	final	static	String	txt	=	“This	is	a
global	variable	of	the	Scope	class”	;

Add	a	statement	at	the	end	of	the	main	method	to	output	the	value	of	the
global	class	variable
System.out.println(Scope.txt)	;

Comment	out	the	line	that	declares	the	local	variable	in	the	sub	method	–
so	the	output	statement	will	now	address	the	global	variable	of	the	same
name	//String	txt	=	“This	is	a	local	variable	in	the	sub	method”	;

Save	the	changes,	then	recompile	the	program	and	run	it	once	more	to	see
the	revised	output

Use	local	method	variables	wherever	possible	to	avoid	conflicts	–	global
class	variables	are	typically	only	used	for	constants.

Forming	multiple	classes

In	the	same	way	that	a	program	may	have	multiple	methods,	larger	programs
may	consist	of	several	classes	–	where	each	class	provides	specific	functionality.
This	modular	format	is	generally	preferable	to	writing	the	entire	program	in	a

This	modular	format	is	generally	preferable	to	writing	the	entire	program	in	a
single	class	as	it	makes	debugging	easier	and	provides	better	flexibility.

The	public	keyword	that	appears	in	declarations	is	an	“access	modifier”	that
determines	how	visible	an	item	will	be	to	other	classes.	It	can	be	used	in	the
class	declaration	to	explicitly	ensure	that	class	will	be	visible	to	any	other	class.
If	it	is	omitted,	the	default	access	control	level	allows	access	from	other	local
classes.	The	public	keyword	must	always	be	used	with	the	program’s	main
method,	however,	so	that	method	will	be	visible	to	the	compiler.

Start	a	new	program	named	“Multi”	containing	the	standard	main	method
–	including	the	public	keyword	as	usual	class	Multi

{

public	static	void	main	(String[]	args)	{						}

}

Multi.java

Between	the	curly	brackets	of	the	main	method,	declare	and	initialize	a	String
variable,	then	output	its	contents	String	msg	=	“This	is	a	local	variable	in	the	Multi
class”	;
System.out.println(msg)	;

Output	the	contents	of	a	class	String	variable	constant	named	“txt”	from	a	class
named	“Data”
System.out.println(Data.txt)	;

Call	a	method	named	“greeting”	from	the	Data	class	Data.greeting()	;

Call	a	method	named	“line”	from	a	class	named	“Draw”
Draw.line()	;

Save	the	program	as	Multi.java

The	compiler	will	automatically	find	classes	in	adjacent	external	.java
files	–	and	create	compiled	.class	files	for	each	one.

Start	a	new	file	creating	the	Data	class	class	Data

{

}

Data.java

Declare	and	initialize	a	public	class	variable	constant	public	final	static	String	txt	=
“This	is	a	global	variable	in	the	Data	class”	;

Add	a	public	“greeting”	class	method	public	static	void	greeting()

{

System.out.print(“This	is	a	global	method	“)	;
System.out.println(“of	the	Data	class”)	;

}

Save	the	file	as	Data.java	in	the	same	directory	as	the	Multi.java	program	Start	a	new
file	creating	a	Draw	class	and	a	class	“line”	method	for	default	access	–	without
the	public	keyword	class	Draw

{

static	void	line()

{

System.out.println(“																									”)	;

}

}

Draw.java

Save	the	file	as	Draw.java	in	the	same	directory	as	the	Multi.java	program,	then
compile	and	run	the	program	to	see	the	output

The	public	keyword	allows	access	from	any	other	class,	but	default
access	only	allows	access	from	classes	in	the	same	package.

Extending	an	existing	class

A	class	can	inherit	the	features	of	another	class	by	using	the	extends	keyword	in
the	class	declaration	to	specify	the	name	of	the	class	from	which	it	should
inherit.	For	example,	the	declaration	class	Extra	extends	Base	inherits	from	the
Base	class.

The	inheriting	class	is	described	as	the	“sub”	class,	and	the	class	from	which	it

inherits	is	described	as	the	“super”	class.	In	the	example	declaration	above,	the
Base	class	is	the	super	class	and	the	Extra	class	is	the	sub	class.

Methods	and	variables	created	in	a	super	class	can	generally	be	treated	as	if	they
existed	in	the	sub	class	providing	they	have	not	been	declared	with	the	private
keyword,	which	denies	access	from	outside	the	original	class.

A	method	in	a	sub	class	will	override	a	method	of	the	same	name	that	exists	in
its	super	class	unless	their	arguments	differ.	The	method	in	the	super	class	may
be	explicitly	addressed	using	its	class	name	and	dot	notation.	For	example,
SuperClass.run().

It	should	be	noted	that	a	try	catch	statement	in	a	method	within	a	super	class	does
not	catch	exceptions	that	occur	in	a	sub	class	–	the	calling	statement	must	be
enclosed	within	its	own	try	catch	statement	to	catch	those	exceptions.

Start	a	new	class	named	“SuperClass”
class	SuperClass	{					}

SuperClass.java

Between	the	curly	brackets	of	the	class,	add	a	method	that	outputs	an	identifying
String
public	static	void	hello()

{

System.out.println(“Hello	from	the	Super	Class”)	;

}

Add	a	second	method	that	attempts	to	output	a	passed	argument,	then	save	the	file
as	SuperClass.java
public	static	void	echo(String	arg)

{

try
{	System.out.println(“You	entered:	“	+	arg)	;						}
catch(Exception	e)
{	System.out.println(“Argument	required”)	;						}

}

Start	a	new	program	named	“SubClass”	that	extends	the	SuperClass	class
class	SubClass	extends	SuperClass

{

public	static	void	main	(String[]	args)	{						}

}

SubClass.java

After	the	main	method,	add	a	method	that	outputs	an	identifying	String,	overriding
the	inherited	method	of	the	same	name	public	static	void	hello()

{

System.out.println(“Hello	from	the	Sub	Class”)	;

}

Between	the	curly	brackets	of	the	main	method,	insert	a	call	to	the	overriding
method	and	then	explicitly	call	the	method	of	the	same	name	in	the	super	class
hello()	;
SuperClass.hello()	;

Add	a	call	to	the	other	inherited	method	echo(args[0])	;

Save	the	program	as	SubClass.java	then	compile	and	run	the	program	without	a
command	line	argument

Edit	SubClass.java	to	enclose	the	method	call	in	Step	7,	to	place	it	within
its	own	try	catch	statement	to	catch	exceptions,	then	recompile	and	re-run
the	program	to	see	the	problem	resolved

You	can	find	more	information	about	catching	exceptions	here	.

Creating	an	object	class

Real-world	objects	are	all	around	us,	and	they	each	have	attributes	and	behaviors
that	we	can	describe:

• Attributes	describe	the	features	that	an	object	has	• Behaviors	describe	actions
that	an	object	can	perform	For	example,	a	car	might	be	described	with
attributes	of	“red”	and	“coupe”,	along	with	an	“accelerates”	behavior.

These	features	could	be	represented	in	Java	programming	with	a	Car	class
containing	variable	properties	of	color	and	bodyType,	along	with	an	accelerate()
method.

Java	is	said	to	be	an	Object	Oriented	Programming	(OOP)	language	because	it

Java	is	said	to	be	an	Object	Oriented	Programming	(OOP)	language	because	it
makes	extensive	use	of	object	attributes	and	behaviors	to	perform	program	tasks.

Objects	are	created	in	Java	by	defining	a	class	as	a	template	from	which	different
copies,	or	“instances”,	can	be	made.

Each	instance	of	the	class	can	be	customized	by	assigning	attribute	values	and
behaviors	to	describe	that	object.

The	Car	class	is	created	as	a	class	template	in	the	steps	described	opposite	–	with
the	default	attributes	and	behavior	outlined	above.	An	instance	of	the	Car	class	is
created	in	the	steps	described	here	,	inheriting	the	same	default	attributes	and
behavior.

Start	a	new	template	class	named	“Car”
class	Car

{

}

FirstObject.java

Between	the	curly	brackets	of	the	Car	class,	declare	and	initialize	two	global	String
constants	describing	attributes	public	final	static	String	color	=	“Red”	;
public	final	static	String	bodyType	=	“Coupe”	;

Add	a	global	method	describing	a	behavior	public	static	String	accelerate()

{

String	motion	=	“Accelerating...”	;
return	motion	;

}

After	the	Car	class,	start	a	new	program	class	named	“FirstObject”	containing	the
standard	main	method

class	FirstObject

{

public	static	void	main	(String[]	args)	{						}

}

Between	the	curly	brackets	of	the	main	method,	insert	statements	to	output	the
value	of	each	Car	attribute	and	call	its	behavior	method	System.out.println(“Paint	is
“	+	Car.color)	;
System.out.println(“Style	is	“	+	Car.bodyType)	;
System.out.println(Car.accelerate())	;

Save	the	program	as	FirstObject.java	then	compile	and	run	the	program	to	see	the
output

The	static	keyword	declares	class	variables	and	class	methods	–	in	this
case,	as	members	of	the	Car	class.

Object	classes	are	normally	created	before	the	program	class	containing
the	main	method.

Producing	an	object	instance

Each	class	has	a	built-in	“constructor”	method	that	can	be	used	to	create	a	new
instance	of	that	class.	The	constructor	method	has	the	same	name	as	the	class,
and	is	invoked	with	the	new	keyword.

Each	instance	of	a	class	inherits	the	object’s	attributes	and	behaviors.	The
principle	of	inheritance	is	used	throughout	Java	so	that	programs	can	use	ready-
made	properties.

To	be	more	flexible,	object	class	templates	can	be	defined	in	a	file	other	than
that	containing	the	program.	This	means	they	can	be	readily	used	by	multiple
programs.

Start	a	new	file,	repeating	the	Car	class	object	template	from	the	previous
example	here
class	Car

{

public	final	static	String	color	=	“Red”	;
public	final	static	String	bodyType	=	“Coupe”	;
public	static	String	accelerate()

{

String	motion	=	“Accelerating...”	;
return	motion	;

}

}

Car.java

Save	the	file	as	Car.java

Start	a	new	program	named	“FirstInstance”	containing	the	standard	main	method
class	FirstInstance

{

public	static	void	main	(String[]	args)	{						}

}

FirstInstance.java

Between	the	curly	brackets	of	the	main	method,	insert	statements	to	output	the
value	of	each	attribute	of	the	Car	class	and	call	its	behavior	method
System.out.println(“Car	paint	is	“	+	Car.color)	;
System.out.println(“Car	style	is	“+	Car.bodyType)	;
System.out.println(Car.accelerate())	;

Now,	add	a	statement	to	create	a	Porsche	instance	of	the	Car	class	Car
Porsche	=	new	Car()	;

Add	statements	to	output	the	inherited	value	of	each	Porsche	attribute	and
call	its	behavior	method	System.out.println(“Porsche	paint	is	“	+
Porsche.color)	;
System.out.println(“Porsche	style	is	“	+	Porsche.bodyType)	;
System.out.println(Porsche.accelerate())	;

Save	the	program	as	FirstInstance.java	alongside	the	Car.java	template	file,
then	compile	and	run	the	program	to	see	the	output

You	cannot	address	the	motion	variable	directly	–	it	is	out	of	scope
within	the	method	declaration.

A	virtual	class	is	created	for	the	new	Porsche	object	that	replicates	the	original
Car	class.	Both	these	objects	contain	static	“class	variables”	and	a	“class
method”,	which	are	addressed	using	the	class	name	and	dot	notation	–	as	these
members	are	globally	accessible,	this	is	not	considered	good	programming
practice.

Whilst	this	example	demonstrates	how	instances	of	an	object	inherit	properties
of	the	original	class,	it	is	improved	in	the	next	example	here	that	uses	non-static
members	to	create	“instance	variables”	and	an	“instance	method”,	which	cannot
be	addressed	from	outside	that	class	–	as	these	members	are	not	globally
accessible,	this	is	considered	good	programming	practice.

The	compiler	automatically	finds	the	Car	class	in	the	external	.java	file	–
and	creates	a	compiled	.class	file	for	it.

Encapsulating	properties

The	private	keyword	can	be	used	when	declaring	object	variables	and	methods	to
protect	them	from	manipulation	by	external	program	code.	The	object	should
then	include	public	methods	to	retrieve	the	values	and	call	the	methods.	This
technique	neatly	encapsulates	the	variables	and	methods	within	the	object
structure.	It	is	demonstrated	in	the	following	steps	that	reproduce	the	previous
example	–	but	with	encapsulated	attributes	and	method:

Start	a	new	class	named	“Car”
class	Car

{

{

}

SafeInstance.java

Between	the	curly	brackets	of	the	class,	declare	three	private	String	variables	to
store	object	attributes	private	String	maker	;
private	String	color	;
private	String	bodyType	;

Add	a	private	method	describing	a	behavior	private	String	accelerate()

{

String	motion	=	“Accelerating...”	;
return	motion	;

}

Add	a	public	method	to	assign	passed	argument	values	to	each	private	variable
public	void	setCar(String	brand	,	String	paint	,	String	style)

{

maker	=	brand	;
color	=	paint	;
bodyType	=	style	;

}

Add	another	public	method	to	retrieve	the	private	variable	values	and	to	call	the
private	method
public	void	getCar()

{

System.out.println(maker	+	”	paint	is	“	+	color)	;

System.out.println(maker	+	“	style	is	“	+	bodyType)	;
System.out.println(maker	+	“	is	“	+	accelerate()	+	”\n”)	;

}

After	the	end	of	the	Car	class,	start	another	class	named	“SafeInstance”
containing	the	standard	main	method	class	SafeInstance

{

public	static	void	main	(String[]	args)	{						}

}

Between	the	curly	brackets	of	the	main	method,	insert	a	statement	to
create	an	instance	of	the	Car	class	Car	Porsche	=	new	Car()	;

Add	a	statement	that	calls	a	public	method	of	the	Car	class	to	assign	values
to	its	private	variables	Porsche.setCar(“Porsche”	,	”Red”	,	”Coupe”)	;

Now	add	a	statement	to	call	the	other	public	method	of	the	Car	class	to
retrieve	the	stored	attribute	values	and	call	the	private	behavior	method
Porsche.getCar()	;

Create	another	instance,	assigning	and	retrieving	values	Car	Bentley	=	new
Car()	;
Bentley.setCar(“Bentley”	,	”Green”	,	”Saloon”)	;
Bentley.getCar()	;

Save	the	program	as	SafeInstance.java	then	compile	and	run	the	program	to
see	the	output

An	uninitialized	String	variable	has	a	null	value	–	so	calling	the	getCar()
method	before	setCar()	will	return	a	null	from	each	variable.

Constructing	object	values

An	object’s	constructor	method	can	be	called	directly	in	the	object	class	to
initialize	object	variables.	This	helps	to	keep	the	declarations	and	assignments
separate,	and	is	considered	to	be	good	programming	style.	It	is	demonstrated	in
the	following	steps	that	reproduce	the	previous	example	here	with	encapsulated
attributes	and	method	–	together	with	initialization	by	the	constructor:

Start	a	new	class	named	“Car”
class	Car

{

}

Constructor.java

Between	the	curly	brackets	of	the	class,	declare	three	private	String	variables	to
store	object	attributes	private	String	maker	;
private	String	color	;
private	String	bodyType	;

Add	a	constructor	method	that	initializes	all	three	variables	with	attribute	values
public	Car()

{

maker	=	“Porsche”	;

color	=	“Silver”	;
bodyType	=	“Coupe”	;

}

Add	a	private	method	describing	a	behavior	private	String	accelerate()

{

String	motion	=	“Accelerating...”	;
return	motion	;

}

Add	a	public	method	to	assign	passed	argument	values	to	each	private	variable
public	void	setCar(String	brand	,	String	paint	,	String	style)

{

maker	=	brand	;
color	=	paint	;
bodyType	=	style	;

}

Constructor	method	declarations	do	not	state	any	return	data	type.

Add	another	public	method	to	retrieve	the	private	variable	values	and	to
call	the	private	method
public	void	getCar()

{

System.out.println(maker	+	”	paint	is	“	+	color)	;
System.out.println(maker	+	“	style	is	“	+	bodyType)	;
System.out.println(maker	+	“	is	“	+	accelerate()	+	”\n”)	;

}

}

After	the	end	of	the	Car	class,	start	another	class	named	“Constructor”
containing	the	standard	main	method	class	Constructor

{

public	static	void	main	(String[]	args)	{						}

}

Between	the	curly	brackets	of	the	main	method,	insert	statements	to	create
an	instance	of	the	Car	class	and	retrieve	the	initial	default	values	Car
Porsche	=	new	Car()	;
Porsche.getCar()	;

Create	another	instance,	assigning	and	retrieving	values	Car	Ferrari	=	new
Car()	;
Ferrari.setCar(“Ferrari”	,	”Red”	,	”Sport”)	;
Ferrari.getCar()	;

Save	the	program	as	Constructor.java	then	compile	and	run	the	program	to
see	the	output

Summary

• Splitting	programs	into	multiple	methods,	which	can	be	called	upon	when
required,	increases	flexibility	and	makes	it	easier	to	track	down	bugs.

• Overloaded	methods	have	the	same	name	but	take	different	arguments.

• Variables	declared	within	a	method	have	local	scope,	but	class	variables	have

global	scope	throughout	that	class.

• The	static	keyword	is	used	to	declare	class	methods	and	class	variables	–
having	global	scope	throughout	that	class.

• The	public	keyword	explicitly	allows	access	from	any	class.

• A	class	declaration	can	include	the	extends	keyword	to	nominate	a	super	class
from	which	it	will	inherit.

• The	class	name	and	dot	notation	can	be	used	to	explicitly	address	a	particular
class	method	or	class	variable.

• Real-world	objects	have	attributes	and	behaviors	that	can	be	represented	in
programs	by	variables	and	methods.

• Java	objects	are	created	as	a	template	class	from	which	instance	copies	can
be	made.

• Each	class	has	a	constructor	method	that	can	be	invoked	using	the	new
keyword	to	create	an	instance	copy	of	that	class.

• Instances	inherit	the	attributes	and	behaviors	of	the	class	from	which	they	are
derived.

• Encapsulation	protects	instance	variables	and	instance	methods	from
manipulation	by	external	classes.

• The	private	keyword	denies	access	from	outside	the	class	where	the
declaration	is	made.

• An	object’s	constructor	method	can	be	called	to	initialize	variable	attributes
of	that	object.

7

Importing	functions

This	chapter	demonstrates	how	to	import	additional	program	functionality	from	specialized	Java	classes.

Handling	files
Reading	console	input

Reading	files
Writing	files
Sorting	array	elements
Making	array	lists

Managing	dates
Formatting	numbers
Summary

Handling	files

Java	contains	a	package	named	java.io	that	is	designed	to	handle	file	input	and
output	procedures.	The	package	can	be	made	available	to	a	program	by
including	an	import	statement	at	the	very	beginning	of	the	.java	file.	This	can	use
the	*	wildcard	character	to	mean	“all	classes”	in	the	statement	import	java.io.*	;	.

The	java.io	package	has	a	class	named	“File”	that	can	be	used	to	access	files	or
complete	directories.	A	File	object	must	first	be	created	using	the	new	keyword
and	specifying	the	filename,	or	directory	name,	as	the	constructor’s	argument.
For	example,	the	syntax	to	create	a	File	object	named	“info”	to	represent	a	local

file	named	“info.dat”	looks	like	this:	File	info	=	new	File(“info.dat”)	;

This	file	would	be	located	in	the	same	directory	as	the	program,	but	the
argument	could	state	the	path	to	a	file	located	elsewhere.	Note	that	the	creation
of	a	File	object	does	not	actually	create	a	file,	but	merely	the	means	to	represent	a
file.

Once	a	File	object	has	been	created	to	represent	a	file,	its	methods	can	be	called
to	manipulate	the	file.	The	most	useful	File	object	methods	are	listed	in	this	table,
together	with	a	brief	description:

Method: Returns:

exists() true	if	the	file	exists	–	false	if	it	does	not

getName() the	filename	as	a	String

length() number	of	bytes	in	the	file,	as	a	long	type

createNewFile() true	if	able	to	create	the	new	unique	file

delete() true	if	able	to	successfully	delete	the	file

renameTo(File) true	if	able	to	successfully	rename	the	file

list() an	array	of	file	or	folder	names	as	Strings

The	filename	specified	as	the	constructor	argument	must	be	enclosed
within	quotes.

Start	a	new	program	that	imports	the	functionality	of	all	the	java.io	classes
import	java.io.*	;

ListFiles.java

Add	a	class	named	“ListFiles”	containing	the	standard	main	method	class	ListFiles

{

public	static	void	main(String[]	args)	{								}

}

Between	the	curly	brackets	of	the	main	method,	insert	a	statement	to	create	a	File
object	for	a	directory	folder	named	“data”
File	dir	=	new	File(“data”)	;

Add	an	if	statement	to	output	the	names	of	all	files	in	that	folder,	or	a	message	if
the	folder	is	empty
if	(dir.exists())

{

String[]	files	=	dir.list()	;
System.out.println(files.length	+	“	files	found...”)	;
for	(int	i	=	0	;	i	<	files.length	;	i++)

{

											System.out.println(files[i])	;

}

}

else
{												System.out.println(“Folder	not	found.”)	;	}

Save	the	program	as	ListFiles.java	alongside	a	“data”	folder	containing	some	files,
then	compile	and	run	the	program	to	see	the	filenames	listed	as	output

Reading	console	input

The	java.io	package	allows	a	program	to	read	input	from	the	command	line	–
interacting	with	the	user.	Just	as	the	System.out	field	can	send	output	to	the
command	line,	the	System.in	field	can	be	used	to	read	from	it	with	an
InputStreamReader	object.	This	reads	the	input	as	bytes,	which	it	converts	into
integer	values	that	represent	Unicode	character	values.

In	order	to	read	an	entire	line	of	input	text,	the	readLine()	method	of	a
BufferedReader	object	reads	the	characters	decoded	by	the	InputStreamReader.	This
method	must	be	called	from	within	a	try	catch	statement	to	catch	any	IOException
problems.

Typically,	the	readLine()	method	will	assign	the	input	to	a	String	variable	for
manipulation	by	the	program.

Start	a	new	program	that	imports	the	functionality	of	all	the	java.io	classes
import	java.io.*	;

ReadString.java

Add	a	class	named	“ReadString”	containing	the	standard	main	method	class
ReadString

{

public	static	void	main(String[]	args)	{										}

}

Between	the	curly	brackets	of	the	main	method,	insert	a	statement	to	output	a
message	prompting	the	user	for	input	System.out.print(“Enter	the	title	of	this	book:	“)
;

Add	a	statement	creating	an	InputStreamReader	object,	enabling	input	to	be	read
from	the	command	line	InputStreamReader	isr	=	new	InputStreamReader(System.in)	;

Create	a	BufferedReader	object	to	read	the	decoded	input	BufferedReader	buffer	=	new
BufferedReader(isr)	;

Declare	and	initialize	an	empty	String	variable	in	which	to	store	the	input	String
input	=	““	;

Add	a	try	catch	statement	to	read	the	input	from	the	command	line	and
store	it	in	the	variable

try

{

input	=	buffer.readLine()	;
buffer.close()	;

}

catch	(IOException	e)

{

System.out.println(“An	input	error	has	occurred”)	;

}

Output	a	message	that	includes	the	stored	value	System.out.println(
“\nThanks,	you	are	reading	“	+	input)	;

Save	the	program	as	ReadString.java	then	compile	and	run	the	program

Enter	text	as	prompted,	then	hit	Return	to	see	the	output	message
containing	your	input	text

It	is	good	practice	to	call	the	close()	method	of	the	BufferedReader
object	when	it	is	no	longer	needed.

Reading	files

The	java.io	package	contains	a	class	named	FileReader	that	is	especially	designed
to	read	text	files.	This	class	is	a	subclass	of	the	InputStreamReader	class	that	can
be	used	to	read	console	input	by	converting	a	byte	stream	into	integers	that
represent	Unicode	character	values.

A	FileReader	object	is	created	using	the	new	keyword,	and	takes	the	name	of	the
file	to	be	read	as	its	argument.	Optionally,	the	argument	can	include	the	full	path

to	a	file	outside	the	directory	where	the	program	is	located.

In	order	to	efficiently	read	the	text	file	line-by-line,	the	readLine()	method	of	a
BufferedReader	object	can	be	employed	to	read	the	characters	decoded	by	the
FileReader	object.	This	method	must	be	called	from	within	a	try	catch	statement	to
catch	any	IOException	problems	that	may	arise.

Reading	all	lines	in	a	text	file	containing	multiple	lines	of	text	is	accomplished
by	making	repeated	calls	to	the	readLine()	method	in	a	loop.	At	the	end	of	the	file
the	call	will	return	a	null	value,	which	can	be	used	to	terminate	the	loop.

Open	a	plain	text	editor,	such	as	Windows	Notepad,	and	write	a	few	lines
of	text	–	for	example,	a	famous	verse	from	“The	Ballad	of	Reading
Gaol”	by	Oscar	Wilde

Save	the	text	file	as	Oscar.txt	then	start	a	new	program	that	imports	the
functionality	of	all	the	java.io	classes	import	java.io.*	;

ReadFile.java

Add	a	class	named	“ReadFile”	containing	the	standard	main	method	class	ReadFile
{												public	static	void	main(String[]	args)	{						}								}

Between	the	curly	brackets	of	the	main	method,	insert	a	try	catch	statement
try	{						}
catch	(IOException	e)

{

System.out.println(“A	read	error	has	occurred”)	;

}

}

Between	the	curly	brackets	of	the	try	block,	insert	a	statement	to	create	a
FileReader	object	FileReader	file	=	new	FileReader(“Oscar.txt”)	;

Create	a	BufferedReader	object	to	read	the	file	BufferedReader	buffer	=	new
BufferedReader(file)	;

Declare	and	initialize	an	empty	String	variable	in	which	to	store	a	line	of
text	String	line	=	““	;

Add	a	loop	to	read	the	text	file	contents	into	the	variable	and	output	each
line	of	text
while	((line	=	buffer.readLine())	!=	null)
{												System.out.println(line)	;									}

Remember	to	close	the	BufferedReader	object	when	it	is	no	longer	needed
buffer.close()	;

Save	the	program	as	ReadFile.java	alongside	the	text	file,	then	compile	and
run	the	program	to	see	the	output

The	text	file	specified	as	the	FileReader	argument	must	be	enclosed	within
quotation	marks.

Writing	files

In	the	java.io	package	the	FileReader	and	BufferedReader	classes,	which	are	used	to
read	text	files,	have	counterparts	named	FileWriter	and	BufferedWriter	that	can	be
used	to	write	text	files.

A	FileWriter	object	is	created	using	the	new	keyword,	and	takes	the	name	of	the
file	to	be	written	as	its	argument.	Optionally,	the	argument	can	include	the	full
path	to	a	file	to	be	written	in	a	directory	outside	that	in	which	the	program	is
located.

The	BufferedWriter	object	is	created	with	the	new	keyword,	and	takes	the	name	of
the	FileWriter	object	as	its	argument.	Text	can	then	be	written	with	the	write()
method	of	the	BufferedWriter	object,	and	lines	separated	by	calling	its	newLine()
method.	These	methods	should	be	called	from	within	a	try	catch	statement	to
catch	any	IOException	problems	that	may	arise.

If	a	file	of	the	specified	name	already	exists,	its	contents	will	be	overwritten	by
the	write()	method,	otherwise	a	new	file	of	that	name	will	be	created	and	its
contents	written.

Start	a	new	program	that	imports	the	functionality	of	all	the	java.io	classes
import	java.io.*	;

WriteFile.java

Add	a	class	named	“WriteFile”	containing	the	standard	main	method	class
WriteFile

{

public	static	void	main	(String[]	args)	{											}

}

Between	the	curly	brackets	of	the	main	method,	insert	a	try	catch	statement	try	{							
}
catch	(IOException	e)

{

System.out.println(“A	write	error	has	occurred”)	;

}

Between	the	curly	brackets	of	the	try	block,	insert	a	statement	to	create	a	FileWriter

object	for	a	text	file	named	“Tam.txt”
FileWriter	file	=	new	FileWriter(“Tam.txt”)	;

Create	a	BufferedWriter	object	to	write	the	file	BufferedWriter	buffer	=	new
BufferedWriter(file)	;

Add	statements	to	write	lines	of	text	and	newline	characters	into	the	text
file	–	for	example,	a	translated	verse	from	“Tam	O’Shanter”	by	Robert
Burns	buffer.write(“The	wind	blew	as	if	it	had	blown	its	last”)	;

buffer.newLine()	;
buffer.write(“The	rattling	showers	rose	on	its	blast”)	;

buffer.newLine()	;
buffer.write(“The	speedy	gleams	the	darkness	swallowed”)	;

buffer.newLine()	;
buffer.write(“Loud,	deep	and	long	the	thunder	bellowed”)	;

buffer.newLine()	;
buffer.write(“That	night	a	child	might	understand”)	;

buffer.newLine()	;
buffer.write(“The	devil	had	business	on	his	hand.”)	;

Remember	to	close	the	BufferedWriter	object	when	it	is	no	longer	needed
buffer.close()	;

Save	the	program	as	WriteFile.java	then	compile	and	run	the	program	to
write	the	text	file	alongside	the	program

You	can	call	the	append()	method	of	the	BufferedWriter	object	to	add
text	–	rather	than	overwriting	text	with	the	write()	method.

Sorting	array	elements

Java	contains	a	package	named	java.util	that	provides	useful	utilities	for	handling
collections	of	data.	The	package	can	be	made	available	to	a	program	by
including	an	import	statement	at	the	very	beginning	of	the	.java	file.	This	can	use
the	*	wildcard	character	to	mean	“all	classes”	in	the	statement	import	java.util.*	;	.

The	java.util	package	has	a	class	named	“Arrays”	that	has	methods	which	can	be
used	to	manipulate	arrays.	Its	functionality	can	be	made	available	to	the	program
by	importing	all	classes	from	the	java.util	package	or,	where	the	program	only
requires	a	single	class,	the	import	statement	can	import	just	that	specific	class.
For	example,	the	program	can	import	the	Arrays	class	with	the	statement	import
java.util.Arrays	;.

The	Arrays	class	has	a	sort()	method	that	can	rearrange	the	contents	of	array
elements	alphabetically	and	numerically.

Start	a	new	program	that	imports	the	functionality	of	all	methods	in	the
java.util.Arrays	class	import	java.util.Arrays	;

Sort.java

Add	a	class	named	“Sort”	containing	the	standard	main	method	class	Sort
{													public	static	void	main(String[]	args)	{	}												}

After	the	main	method,	insert	a	method	to	display	all	element	contents	of	a	passed
String	array	public	static	void	display(String[]	elems)

{

System.out.println(“\nString	Array:”)	;
for	(int	i	=	0	;	i	<	elems.length	;	i++)
System.out.println(“Element	”+i+“	is	”+elems[i])	;

}

Add	an	overloaded	version	of	the	display()	method	to	display	all	element	contents
of	a	passed	int	array	public	static	void	display(int[]	elems)

{

System.out.println(“\nInteger	Array:”)	;
for	(int	i	=	0	;	i	<	elems.length	;	i++)
System.out.println(“Element	”+i+“	is	”+elems[i])	;

}

See	here	for	more	on	overloading	methods.

Between	the	curly	brackets	of	the	main	method,	declare	and	initialize	a
String	array	and	an	int	array	String[]	names	=	{	“Mike”	,	“Dave”	,	“Andy”	}	;
int[]	nums	=	{	200	,	300	,	100	}	;

Output	the	contents	of	all	elements	in	each	array	display(names)	;

display(nums)	;

Sort	the	element	contents	of	both	arrays	Arrays.sort(names)	;

Arrays.sort(nums)	;

Output	the	contents	of	all	elements	in	each	array	again	display(names)	;

display(nums)	;

Save	the	program	as	Sort.java	then	compile	and	run	the	program	to	see	the
output

The	for	loops	in	this	example	each	execute	a	single	statement	so	no
curly	brackets	are	required	–	but	they	could	be	added	for	clarity.

Making	array	lists

The	java.util	package	contains	a	class	named	ArrayList	that	stores	data	in	an
ordered	“Collection”	(resizable	sequence)	of	list	elements.	This	can	be	made
available	to	a	program	by	importing	the	specific	class	with	import
java.util.ArrayList;.	A	list	may	contain	duplicate	elements,	and	an	ArrayList	object
has	useful	methods	that	allow	manipulation	of	stored	values	by	specifying	their

element	index	number.	For	example,	the	list’s	method	call	get(0)	will	retrieve	the
value	stored	in	the	first	element	whereas	remove(1)	will	remove	the	second	list
element.

Element	values	can	be	modified	by	specifying	the	index	number	and	new	value
as	arguments	to	the	list’s	set()	method.	Elements	can	be	added	to	the	list	at	a
particular	position	by	specifying	the	index	number	and	value	as	arguments	to	the
list’s	add()	method.	The	list	expands	to	accommodate	additional	elements	by
moving	the	element	values	along	the	index.

You	can	discover	how	many	elements	a	list	currently	has	by	calling	its
size()	method.

An	ArrayList	object	is	simply	created	using	the	new	keyword	but,	like	other	Java
collections,	the	statement	must	specify	which	generic	type	of	item	the	list	may
contain.	Typically,	a	list	may	contain	String	items,	so	ArrayList	must	have	a
<String>	suffix.

Collections,	such	as	ArrayList,	have	a	forEach()	method	that	iterates	over	each
element	in	the	list.	This	makes	it	easy	to	loop	through	all	items	contained	in	the
list.

Each	stored	list	item	can	be	conveniently	referenced	in	turn	by	specifying	a
“lambda	expression”	as	the	argument	to	the	forEach()	method.	Lambda
expressions	are	simply	short,	anonymous	(un-named)	methods	that	can	be
specified	in	the	location	they	are	to	be	executed.	They	begin	with	parentheses,	to
contain	any	arguments,	then	have	a	->	character	sequence	followed	by	the
statement	block,	with	this	syntax:	(argument/s)	->	{	statement/s	}

The	data	type	of	the	arguments	can	be	explicitly	declared,	or	it	can	be	inferred
from	the	context	–	(String	x)	can	be	simply	(x).	Additionally,	the	curly	brackets
can	be	omitted	if	the	lambda	expression	statement	block	contains	only	one
statement.

With	a	list’s	forEach()	method	the	value	of	the	current	element	in	the	iteration	can
be	passed	to	the	lambda	expression	as	its	argument,	then	displayed	in	output	by

its	statement.

Lambda	expressions	were	introduced	in	Java	8	to	enable	succinct
anonymous	methods.

Start	a	new	program	that	imports	the	functionality	of	all	methods	in	the
java.util.ArrayList	class	import	java.util.ArrayList	;

Lists.java

Add	a	class	named	“Lists”	containing	the	standard	main	method	class	Lists
{														public	static	void	main(String[]	args)	{	}												}

Between	the	curly	brackets	of	the	main	method,	insert	a	statement	to	create	a
String	ArrayList	object	named	“list”
ArrayList<String>	list	=	new	ArrayList<String>()	;

Next,	add	statements	to	populate	the	list	elements	with	String	values	then	display
the	entire	list	list.add(“Alpha”)	;
list.add(“Delta”)	;
list.add(“Charlie”)	;
System.out.println(“List:	”	+	list)	;

Now,	identify	the	current	value	in	the	second	element	then	replace	it	with	a	new
String
System.out.println(“Replacing:	”	+	list.get(1)	+	“\n”)	;
list.set(1,	“Bravo”)	;

Finally,	iterate	through	the	list	and	display	the	String	value	now	stored	in	each
element	list.forEach((x)	->	System.out.println(“Item:	“	+	x))	;

Save	the	program	as	Lists.java	then	compile	and	run	the	program	to	see	the	output

As	with	regular	arrays,	elements	in	an	ArrayList	have	a	zero-based
index.

The	graphical	Java	Swing	JComboBox	component	that	is	introduced
here	holds	a	drop-down	list	of	options,	so	must	also	specify	its	generic
data	type	when	that	object	gets	created.

Managing	dates

The	java.time	package	contains	a	class	named	LocalDateTime	that	has	useful
methods	to	extract	specific	fields	from	a	LocalDateTime	object	that	describe	a
particular	point	in	time.	These	can	be	made	available	to	a	program	by	importing
the	specific	class	with	import	java.time.LocalDateTime;	or	by	importing	all	classes	in
this	package	using	the	wildcard	with	import	java.time.*	;	.

The	java.time	package	was	introduced	in	Java	8	to	make	it	easier	to
work	with	dates	and	times.

A	new	LocalDateTime	object	can	be	created	with	fields	describing	the	current	date
and	time	using	its	now()	method.	The	fields	are	initialized	from	the	system	clock
for	the	current	locale.

The	value	within	an	individual	field	can	be	retrieved	using	an	appropriate
method	of	the	LocalDateTime	object.	For	example,	the	value	of	the	year	field	can
be	retrieved	using	its	getYear()	method.	Similarly,	any	field	can	be	changed	using
an	appropriate	method	of	the	LocalDateTime	object	to	specify	a	replacement	value.
For	example,	the	value	of	the	year	field	can	be	changed	by	specifying	a	new	year
value	as	an	argument	to	its	withYear()	method.

Start	a	new	program	that	imports	the	functionality	of	all	methods	in	the
java.time.LocalDateTime	class	import	java.time.LocalDateTime	;

DateTime.java

Add	a	class	named	“DateTime”	containing	the	standard	main	method	class
DateTime

{

public	static	void	main	(String	[]	args)	{													}

}

Between	the	curly	brackets	of	the	main	method,	insert	a	statement	to	create	a
current	LocalDateTime	object	LocalDateTime	date	=	LocalDateTime.now()	;

Output	the	current	date	and	time	details	System.out.println(“\nIt	is	now	”	+	date)	;

Increment	the	year,	and	output	the	revised	date	and	time	date	=	date.withYear(2019)
;
System.out.println(“\nDate	is	now	”	+	date)	;

Output	individual	LocalDateTime	fields	of	the	revised	date	String	fields	=

“\nYear:\t\t\t”	+	date.getYear()	;

fields	+	=	“\nMonth:\t\t\t”	+	date.getMonth()	;

fields	+	=	“\nMonth	Number:\t\t”	+	date.getMonthValue()	;

fields	+	=	“\nDay:\t\t\t”	+	date.getDayOfWeek()	;

fields	+	=	“\nDay	Number:\t\t”	+	date.getDayOfMonth()	;

fields	+	=	“\nDay	Number	Of	Year:\t”	+	date.getDayOfYear()	;

fields	+	=	“\nHour	(0-23):\t\t”	+	date.getHour()	;

fields	+	=	“\nMinute:\t\t\t”	+	date.getMinute()	;

fields	+	=	“\nSecond:\t\t\t”	+	date.getSecond()	;

System.out.println(fields)	;

Save	the	program	as	DateTime.java	then	compile	and	run	the	program	to	see
the	output

Concatenating	a	String	like	this	means	the	program	makes	just	one	call

to	println()	to	output	field	details	–	this	is	more	efficient	than	calling
println()	many	times	to	output	each	individual	field	separately.

You	can	alternatively	use	the	ZonedDateTime	class	instead	of
LocalDateTime	if	you	also	require	a	time	zone	field.

Formatting	numbers

Java	contains	a	package	named	java.text	that	provides	useful	classes	for
formatting	numbers	and	currency.	The	package	can	be	made	available	to	a
program	by	including	an	import	statement	at	the	very	beginning	of	the	.java	file.
This	can	use	the	*	wildcard	character	to	mean	“all	classes”	in	the	statement
import	java.text.*	;.	Alternatively,	specific	classes	can	be	imported	by	name.

The	java.text	package	has	a	class	named	“NumberFormat”,	which	has	methods
that	can	be	used	to	format	numerical	values	for	output	–	adding	group	separators,
currency	signs,	and	percentage	signs.

The	method	used	to	create	a	new	NumberFormat	object	determines	its	formatting
type	–	getNumberInstance()	for	group	separators,	getCurrencyInstance()	for
currency	signs,	and	getPercentInstance()	for	percentage	signs.	Formatting	is
applied	by	specifying	the	numerical	value	to	be	formatted	as	the	argument	to	the
format()	method	of	the	NumberFormat	object.

The	java.time.format	package	was	introduced	in	Java	8	to	make	it
easier	to	specify	date	format	patterns.

The	java.time.format	package	has	a	DateTimeFormatter	class	that	can	be	used	to
format	java.time	dates	and	time	objects.	A	DateTimeFormatter	object	contains	a
formatter	pattern	that	is	specified	as	a	string	argument	to	its	ofPattern()	method.

The	formatter	comprises	letters,	defined	in	the	Java	documentation,	and	your
choice	of	separators.	For	example,	“M/d/y”	specifies	the	month,	day,	and	year,
separated	by	slashes.	The	format	is	applied	by	specifying	the	formatter	as	the
argument	to	the	format()	method	of	a	java.time	date	and	time	object.

Start	a	new	program	that	imports	the	functionality	of	all	methods	of	the
NumberFormat	class	in	the	java.text	package	and	all	methods	of	the
DateTimeFormatter	class	in	the	java.time.format	package	import
java.text.NumberFormat	;
import	java.time.format.DateTimeFormatter	;

Formats.java

Add	a	class	named	“Formats”	containing	the	standard	main	method	class	Formats

{

public	static	void	main	(String	[]	args)

{

}

}

Between	the	curly	brackets	of	the	main	method,	insert	statements	to
output	a	number	with	group	separators
NumberFormat	nf	=	NumberFormat.getNumberInstance()	;
System.out.println(“\nNumber:	“	+	nf.format(123456789))	;

Add	statements	to	output	a	number	with	a	currency	sign	NumberFormat	cf	=
NumberFormat.getCurrencyInstance()	;
System.out.println(“\nCurrency:	“	+	cf.format(1234.50f))	;

Add	statements	to	output	a	number	with	a	percent	sign	NumberFormat	pf	=
NumberFormat.getPercentInstance()	;
System.out.println(“\nPercent:	“	+	pf.format(0.75f))	;

Add	a	statement	creating	a	current	LocalDateTime	object

java.time.LocalDateTime	now	=
java.time.LocalDateTime.now()	;

Add	statements	to	output	a	formatted	numerical	date	DateTimeFormatter	df	=
DateTimeFormatter.ofPattern(“MMM	d,	yyy”)	;
System.out.println(“\nDate:	“	+	now.format(df))	;

Add	statements	to	output	a	formatted	numerical	time	DateTimeFormatter	tf	=
DateTimeFormatter.ofPattern(“h:m	a”)	;
System.out.println(“\nTime:	“	+	now.format(tf))	;

Save	the	program	as	Formats.java	then	compile	and	run	the	program	to	see
the	formatted	output

A	statement	can	address	a	class	that	has	not	been	imported	by	using	its
full	package	address	–	as	seen	here	in	the	statement	creating	a
LocalDateTime	object.

Pattern	letters	are	case	sensitive	–	refer	to	the	documentation	to	discover

the	full	details	of	possible	patterns.

Summary

• One	or	more	import	statements	can	be	included	at	the	start	of	a	program	to
make	the	functionality	of	other	classes	available.

• An	import	statement	can	import	all	classes	in	a	package	with	a	*	wildcard
character,	or	individual	classes	by	name.

• The	java.io	package	has	classes	that	are	designed	to	handle	input	and	output
procedures.

• A	File	object	can	be	used	to	access	files	and	directories.

• The	InputStreamReader	object	decodes	input	bytes	into	characters,	and	the
BufferedReader	reads	its	decoded	characters.

• A	FileReader	object	can	be	used	to	decode	text	file	bytes	into	characters	for
reading	by	a	BufferedReader	object.

• A	FileWriter	object	and	BufferedWriter	object	can	create	and	update	text	files.

• The	java.util	package	contains	utilities	for	handling	collections	of	data,	such	as
array	manipulation	with	its	Arrays	class.

• The	java.util	package	also	contains	an	ArrayList	class	that	has	methods	to	easily
manipulate	sequenced	list	items.

• An	ArrayList	object	is	a	Collection	that	must	specify	the	generic	type	of	item
that	list	may	contain,	such	as	<String>.

• A	lambda	expression	is	an	anonymous	method	that	can	be	specified	where	it
is	to	be	executed.

• The	java.time	package	contains	a	LocalDateTime	class	that	provides	fields	for
date	and	time	components.

• The	java.text	package	contains	a	NumberFormat	class	that	can	format	numbers
and	currency.

• The	java.time.format	package	contains	a	DateTimeFormatter	class	that	can
specify	patterns	to	format	dates	and	times.

8

Building	interfaces

This	chapter	demonstrates	how	to	use	Java	Swing	components	to	create	a	graphical	program	interface.

Creating	a	window
Adding	push	buttons

Adding	labels
Adding	text	fields
Adding	item	selectors
Adding	radio	buttons

Arranging	components
Changing	appearance
Summary

Creating	a	window

Programs	can	provide	a	graphical	user	interface	(GUI)	using	the	“Swing”
components	of	the	Java	library.	The	javax.swing	package	contains	classes	to
create	a	variety	of	components	using	the	style	of	the	native	operating	system.
These	can	be	made	available	to	a	program	by	including	the	initial	statement
import	javax.swing.*;.

A	class	must	be	created	to	represent	the	GUI	to	which	components	can	be	added
to	build	the	interface.	This	is	easily	achieved	by	declaring	it	a	subclass	of
Swing’s	JFrame	class	using	the	extends	keyword	–	thereby	inheriting	attributes

and	behaviors	that	allow	the	user	to	move,	resize,	and	close	the	window.

Remember	the	letter	x	in	javax.swing	by	thinking	of	JAVA	eXtra.

The	class	constructor	should	include	statements	to	set	these	minimum
requirements:	• The	title	of	the	window	–	specified	as	a	String	argument	to	the
inherited	super()	method	of	the	JFrame	class.

• The	size	of	the	window	–	specified	as	width	and	height	in	pixels	as
arguments	to	its	setSize()	method.

• What	to	do	when	the	user	closes	the	window	–	specified	as	a	constant
argument	to	its	setDefaultCloseOperation()	method.

• Display	the	window	–	specified	as	a	Boolean	argument	to	its	setVisible()
method.

Additionally,	the	constructor	can	add	a	JPanel	container	component	to	the
window,	in	which	smaller	components	can	be	added,	using	the	inherited	add()
method	of	the	JFrame	class.

By	default,	a	JPanel	container	employs	a	FlowLayout	layout	manager	that	lays	out
components	in	left-to-right	lines,	wrapping	at	the	right	edge	of	the	window.

The	steps	opposite	describe	how	to	create	a	basic	window	containing	a	JPanel
container	with	a	FlowLayout	layout	manager.	This	window	is	featured	in
subsequent	examples	in	this	book	that	demonstrate	how	to	add	various
components	to	the	JPanel	container.

Layout	managers	are	described	in	more	detail	here	.

Start	a	new	program	that	imports	all	Swing	components	import	javax.swing.*
;

Window.java

Create	a	subclass	of	the	JFrame	class	named	“Window”	containing	the	standard
main	method	class	Window	extends	JFrame

{

public	static	void	main	(String[]	args)	{						}

}

Before	the	main	method,	create	a	JPanel	container	object	JPanel	pnl	=	new	JPanel()	;

Next,	insert	this	constructor	method	to	specify	window	requirements	and	to	add
the	JPanel	object	to	the	JFrame
public	Window()

{

super(“Swing	Window”)	;
setSize(500	,	200)	;
setDefaultCloseOperation(EXIT_ON_CLOSE)	;
add(pnl)	;
setVisible(true)	;

}

Create	an	instance	of	the	Window	class	by	inserting	this	line	into	the	main
method	Window	gui	=	new	Window()	;

Save	the	program	as	Window.java	then	compile	and	run	the	program	to	see	the
basic	window	appear

The	EXIT_ON_CLOSE	operation	is	a	constant	member	of	the	JFrame
class.	It	exits	the	program	when	the	window	gets	closed.

Notice	how	the	add()	method	is	used	here	to	add	the	JPanel	object	to
the	JFrame	window.

Adding	push	buttons

The	Swing	JButton	class	creates	a	push-button	component	that	can	be	added	to	a
graphical	interface.	This	lets	the	user	interact	with	the	program	by	clicking	on	a
button	to	perform	an	action.

The	JButton	object	is	created	with	the	new	keyword,	and	its	constructor	takes	a
String	argument	specifying	text	to	be	displayed	on	that	button.

Images	can	appear	on	buttons	too.	An	ImageIcon	object	must	first	be	created	to
represent	the	image,	specifying	the	image	file	name	as	the	argument	to	its
constructor.	Typically,	the	image	will	be	located	alongside	the	program	but	the
argument	can	include	the	path	for	images	outside	the	local	directory.

Details	of	how	to	create	event-handler	methods	to	respond	to	user
actions,	such	as	a	button	click,	can	be	found	in	the	next	chapter.

Specify	the	name	of	the	ImageIcon	object	as	the	argument	to	the	JButton
constructor	to	display	that	image	on	the	button,	or	specify	a	String	and	ImageIcon
as	its	two	arguments	to	display	both	text	and	the	image.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Buttons”

Buttons.java

Before	the	Buttons()	constructor,	create	two	ImageIcon	objects	ImageIcon	tick	=	new
ImageIcon(“Tick.png”)	;
ImageIcon	cross	=	new	ImageIcon(“Cross.png”)	;

Next,	create	three	JButton	objects	to	display	text,	an	image,	and	both	text	and	an
image	respectively	JButton	btn	=	new	JButton(“Click	Me”)	;
JButton	tickBtn	=	new	JButton(tick)	;
JButton	crossBtn	=	new	JButton(“STOP”	,	cross)	;

Inside	the	Buttons()	constructor,	insert	three	statements	to	add	the	JButton
components	to	the	JPanel	container	pnl.add(btn)	;
pnl.add(tickBtn)	;
pnl.add(crossBtn)	;

Save	the	program	as	Buttons.java	then	compile	and	run	the	program	to	see	push
buttons	appear	in	the	window

The	JPanel	object	has	an	add()	method	–	to	add	components	to	that
panel.

Details	of	how	to	create	a	Java	Archive	(JAR)	can	be	found	here	.

The	buttons	respond	graphically	when	they	are	clicked,	but	will	not	perform	an
action	until	the	program	provides	an	event-handler	method	to	respond	to	each
click	event.

Where	the	program	is	intended	for	deployment	in	a	single	Java	archive	(JAR),
image	resources	must	be	loaded	by	a	ClassLoader	object	before	creating	the
ImageIcon	objects	to	represent	them.

Specifying	the	resource	file	name	or	path	to	the	getResource()	method	of	a
ClassLoader	returns	a	URL,	which	can	be	used	as	the	argument	to	the	ImageIcon
constructor.	The	java.net	package	provides	a	useful	URL	class	to	which	these	may
first	be	assigned.

Before	the	Buttons()	constructor,	create	a	ClassLoader	object	ClassLoader	ldr
=	this.getClass().getClassLoader()	;

Load	the	URLs	of	the	image	resources	java.net.URL	tickURL	=
ldr.getResource(“Tick.png”)	;
java.net.URL	crossURL	=	ldr.getResource(“Cross.png”)	;

Edit	the	ImageIcon()	constructors	in	Step	2	opposite	to	use	URLs	ImageIcon
tick	=	new	ImageIcon(tickURL)	;
ImageIcon	cross	=	new	ImageIcon(crossURL)	;

Save	the	changes	then	recompile	and	re-run	the	program	–	it	will	run	as
before	but	can	now	be	deployed	in	a	JAR

Notice	how	the	getClass()	method	and	this	keyword	are	used	here	to
reference	this	class	object.

Adding	labels

The	Swing	JLabel	class	creates	a	label	component	that	can	be	added	to	a
graphical	interface.	This	can	be	used	to	display	non-interactive	text	or	image,	or
both	text	and	an	image.

The	JLabel	object	is	created	with	the	new	keyword,	and	its	constructor	takes	a
String	argument	specifying	text	to	be	displayed	on	that	label,	or	the	name	of	an
ImageIcon	object	representing	an	image	to	display.	It	can	also	take	three
arguments	to	specify	text,	image,	and	horizontal	alignment	as	a	JLabel	constant
value.	For	example,	JLabel(“text”,	img,	JLabel.CENTER)	aligns	centrally.

Where	a	JLabel	object	contains	both	text	and	an	image,	the	relative	position	of
the	text	can	be	determined	by	specifying	a	JLabel	constant	as	the	argument	to

setVerticalPosition()	and	setHorizontalPosition()	methods	of	the	JLabel	object.

Additionally,	a	JLabel	object	can	be	made	to	display	a	ToolTip	when	the	cursor
hovers	over,	by	specifying	a	text	String	as	the	argument	to	that	object’s
setToolTipText()	method.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Labels”

Labels.java

Before	the	Labels()	constructor,	create	an	ImageIcon	object	ImageIcon	duke	=	new
ImageIcon(“Duke.png”)	;

Next,	create	three	JLabel	objects	to	display	an	image,	text,	and	both	text	and	an
image	respectively	JLabel	lbl1	=	new	JLabel(duke)	;
JLabel	lbl2	=	new	JLabel(“Duke	is	the	friendly	mascot	of	Java	technology.”)	;
JLabel	lbl3	=	new	JLabel(“Duke”	,	duke	,	JLabel.CENTER)	;

Inside	the	Labels()	constructor,	insert	this	statement	to	create	a	ToolTip	for	the	first
label	lbl1.setToolTipText(“Duke	-	the	Java	Mascot”)	;

Add	these	two	statements	to	align	the	text	centrally	below	the	third	label
lbl3.setHorizontalTextPosition(JLabel.CENTER)	;
lbl3.setVerticalTextPosition(JLabel.BOTTOM)	;

Now,	add	three	statements	to	add	the	JLabel	components	to	the	JPanel
container	pnl.add(lbl1)	;
pnl.add(lbl2)	;
pnl.add(lbl3)	;

Save	the	program	as	Labels.java	then	compile	and	run	the	program,	placing
the	cursor	over	the	first	label

JLabel	alignment	constants	include	LEFT,	CENTER,	RIGHT,	TOP	and
BOTTOM.

Where	the	program	is	intended	for	deployment	in	a	single	Java	archive	(JAR),
the	image	resource	must	be	loaded	by	a	ClassLoader	object	before	creating	the
ImageIcon	object	to	represent	it.

Specifying	the	resource	file	name	or	path	to	the	getResource()	method	of	a
ClassLoader	returns	a	URL,	which	can	be	used	as	the	argument	to	the	ImageIcon
constructor.

Before	the	Labels()	constructor,	create	a	ClassLoader	object	ClassLoader	ldr	=
this.getClass().getClassLoader()	;

Edit	the	ImageIcon()	constructor	in	Step	2	opposite	to	load	the	URL	of	the
image	resource	using	the	ClassLoader	object	ImageIcon	duke	=	new
ImageIcon(ldr.getResource(“Duke.png”))	;

Save	the	changes,	then	recompile	and	re-run	the	program	–	it	will	run	as
before,	but	can	now	be	deployed	in	a	JAR

Details	of	how	to	create	a	Java	Archive	(JAR)	can	be	found	here	.

Adding	text	fields

The	Swing	JTextField	class	creates	a	single-line	text	field	component	that	can	be
added	to	a	graphical	interface.	This	can	be	used	to	display	editable	text,	and
allows	the	user	to	enter	text	to	interact	with	the	program.

The	JTextField	object	is	created	with	the	new	keyword,	and	its	constructor	can
take	a	String	argument	specifying	default	text	to	be	displayed	in	that	field.	In	this
case,	the	component	will	be	sized	to	accommodate	the	length	of	the	String.
Alternatively,	the	argument	may	be	a	numeric	value	to	specify	the	text	field	size.
The	constructor	can	also	take	two	arguments,	specifying	both	default	text	and
the	text	field	size.

Use	the	JPasswordField	class	instead	of	the	JTextField	class	where
input	characters	are	needed	to	be	not	visible.

A	multiple-line	text	field	can	be	created	with	the	JTextArea	class,	whose
constructor	takes	two	numerical	arguments	specifying	its	number	of	lines	and	its
width.	Alternatively,	three	arguments	can	be	supplied	specifying	default	text,
line	number,	and	width.	Text	can	be	made	to	wrap	at	word	endings	within	this
field	by	specifying	true	as	the	argument	to	the	setLineWrap()	method	and
setWrapStyleWord()	method	of	the	JTextArea	object.

Where	text	entered	into	a	JTextArea	component	exceeds	its	initial	size,	the
component	will	expand	to	accommodate	the	text.	To	make	the	component	a
fixed	size	with	scrolling	capability,	it	can	be	placed	in	a	JScrollPane	container.
This	is	created	with	the	new	keyword,	and	takes	the	name	of	the	JTextArea	as	its
argument.

Scroll	bars	will,	by	default,	only	appear	when	the	field	contains	text	that	exceeds
its	initial	size	–	but	they	can	be	made	to	appear	constantly	by	specifying	a
JScrollPane	constant	as	the	argument	to	the	snappily-named
setVerticalScrollBarPolicy()	or	setHorizontalScrollBarPolicy()	methods	of	the
JScrollPane	object.	For	example,	to	always	display	a	vertical	scrollbar	use	the
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS	constant	as	the	argument.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“TextFields”

TextFields.java

Before	the	TextFields()	constructor,	create	two	JTextField	objects	JTextField	txt1	=	new
JTextField(38)	;
JTextField	txt2	=	new	JTextField(“Default	Text”	,	38)	;

Create	a	JTextArea	object	five	lines	high	JTextArea	txtArea	=	new	JTextArea(5
,	37)	;

Add	a	JScrollPane	object	–	to	contain	the	JTextArea	created	in	Step	3,	above
JScrollPane	pane	=	new	JScrollPane(txtArea)	;

In	the	TextFields()	constructor	method,	insert	statements	to	enable	the
JTextArea	object	to	wrap	at	word	endings	txtArea.setLineWrap(true)	;
txtArea.setWrapStyleWord(true)	;

Insert	a	statement	to	always	display	a	vertical	scrollbar	for	the	JTextArea
object	pane.setVerticalScrollBarPolicy	(
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS)	;

Insert	two	statements	to	add	the	JTextField	components	to	the	JPanel
container	pnl.add(txt1)	;
pnl.add(txt2)	;

Insert	another	statement	to	add	the	JScrollPane	container,	(containing	the
JTextArea	field)	to	the	JPanel	container	pnl.add(pane)	;

Save	the	program	as	TextFields.java	then	compile	and	run	the	program,
entering	some	text	into	the	text	area

A	JTextArea	component	has	no	scrolling	ability	unless	it	is	contained
within	a	JScrollPane	component.

Adding	item	selectors

The	Swing	JCheckBox	class	creates	a	checkbox	component	that	can	be	added	to	a
graphical	interface.	This	can	be	used	to	allow	the	user	to	select	or	deselect
individual	items	in	a	program.
The	JCheckBox	object	is	created	with	the	new	keyword,	and	its	constructor	takes	a
String	argument	specifying	text	to	be	displayed	alongside	that	checkbox.	It	can
also	take	a	second	true	argument	to	make	the	checkbox	be	selected	by	default.

A	choice	of	items	can	be	offered	by	the	JComboBox	class	that	creates	a	drop-
down	list	from	which	the	user	can	select	any	single	item.	This	object	is	created
with	the	new	keyword,	and	its	constructor	typically	takes	the	name	of	a	String
array	as	its	argument.	Each	element	in	the	array	provides	an	item	for	selection	in
the	drop-down	list.	Similarly,	a	choice	of	items	can	be	offered	by	the	JList	class

that	creates	a	fixed-size	list	from	which	the	user	can	select	one	or	more	items.	It
is	created	with	the	new	keyword,	and	its	constructor	also	takes	an	array	as	its
argument,	with	each	element	providing	an	item	for	selection.	As	both	JList	and
JComboBox	are	“Collections”	they	must	specify	the	generic	type	they	may
contain	when	they	get	created,	such	as	<String>.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Items”

Items.java

Before	the	Items()	constructor,	create	a	String	array	of	items	for	selection	String[]
toppings	=	{	“Pepperoni”	,	“Mushroom”	,	“Ham”	,	“Tomato”	}	;

Next,	create	four	JCheckBox	objects	to	present	each	array	item	for	selection	–	with
one	selected	by	default	JCheckBox	chk1	=	new	JCheckBox(toppings[0])	;
JCheckBox	chk2	=	new	JCheckBox(toppings[1]	,	true)	;
JCheckBox	chk3	=	new	JCheckBox(toppings[2])	;
JCheckBox	chk4	=	new	JCheckBox(toppings[3])	;

Add	a	second	String	array	of	items	for	selection	String[]	styles	=	{	“Deep	Dish”	,
“Gourmet	Style”	,	“Thin	&	Crispy”	}	;

Create	a	JComboBox	object	to	present	each	item	in	the	second	array	for
selection	JComboBox<String>	box1	=	new	JComboBox<String>(styles)	;

Add	a	JList	object	to	present	each	item	in	the	first	array	for	selection	from
a	list	JList<String>	lst1	=	new	JList<String>(toppings)	;

In	the	Items()	constructor	method,	insert	statements	to	add	each	JCheckBox
component	to	the	JPanel	container	pnl.add(chk1)	;
pnl.add(chk2)	;
pnl.add(chk3)	;
pnl.add(chk4)	;

Insert	statements	to	make	a	default	selection	and	to	add	the	JComboBox

component	to	the	JPanel	container	box1.setSelectedIndex(0)	;

pnl.add(box1)	;

Now,	insert	a	statement	to	add	the	JList	component	to	the	JPanel	container
pnl.add(lst1)	;

Save	the	program	as	Items.java	then	compile	and	run	the	program,
selecting	items	from	the	lists

Only	one	item	can	be	selected	from	a	JComboBox	component	–	multiple
items	can	be	selected	from	a	JList	component.

Details	of	how	to	create	event-handler	methods	to	respond	to	user
actions,	such	as	an	item	selection,	can	be	found	in	Chapter	9.

Adding	radio	buttons

The	Swing	JRadioButton	class	creates	a	radio	button	component	that	can	be	added
to	a	graphical	interface.	This	can	be	used	to	allow	the	user	to	select	an	item	from
a	group	of	radio	buttons.

The	JRadioButton	object	is	created	with	the	new	keyword,	and	its	constructor
takes	a	String	argument	specifying	text	to	be	displayed	alongside	that	radio
button.	It	can	also	take	a	second	true	argument	to	make	a	radio	button	be	selected
by	default.

A	ButtonGroup	object	logically	groups	a	number	of	radio	buttons	so	that	only	one
button	in	that	group	can	be	selected	at	any	time.	Each	radio	button	is	added	to
the	ButtonGroup	object	by	specifying	its	name	as	the	argument	to	the	group’s
add()	method.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Radios”

Radios.java

Before	the	Radios()	constructor,	create	three	JRadioButton	objects	–	with	one
selected	by	default	JRadioButton	rad1	=	new	JRadioButton(“Red”	,	true)	;
JRadioButton	rad2	=	new	JRadioButton(“Rosé”)	;
JRadioButton	rad3	=	new	JRadioButton(“White”)	;

Next,	create	a	ButtonGroup	object	with	which	to	group	the	radio	buttons
ButtonGroup	wines	=	new	ButtonGroup()	;

In	the	Radios()	constructor	method,	insert	statements	to	add	each	JRadioButton
component	to	the	JButtonGroup
wines.add(rad1)	;
wines.add(rad2)	;
wines.add(rad3)	;

Insert	statements	to	add	the	JRadioButton	components	to	the	JPanel	container
pnl.add(rad1)	;
pnl.add(rad2)	;
pnl.add(rad3)	;

Save	the	program	as	Radios.java	then	compile	and	run	the	program,	selecting	any
one	radio	button	after	the	default

The	ButtonGroup	object	only	groups	the	buttons	logically,	not	physically.

Details	of	how	to	create	event-handler	methods	to	respond	to	user
actions	can	be	found	in	the	next	chapter.

The	examples	on	the	previous	pages	have	demonstrated	the	most	common
Swing	components	–	JButton,	JLabel,	JTextField,	JCheckBox,	JComboBox,	JList	and
JRadioButton.	There	are	many	more	specialized	components	available	in	the
javax.swing	package,	whose	details	can	be	found	in	the	Java	documentation.	For
example,	the	JSlider,	JProgressBar,	and	JMenuBar	components	below:	

Try	using	the	Java	documentation	to	add	a	JSlider	component	to	the
Radios	program	–	see	here	for	details	on	how	to	use	the	documentation.

Arranging	components

The	java.awt	package	(Abstract	Window	Toolkit)	contains	a	number	of	layout
manager	classes	that	can	be	used	to	place	components	in	a	container	in	different
ways.

A	layout	manager	object	is	created	using	the	new	keyword,	and	can	then	be
specified	as	the	argument	to	a	JPanel	constructor	to	have	the	panel	use	that
layout.	When	components	get	added	to	the	panel	they	will	be	placed	according
to	the	rules	of	the	specified	layout	manager.

Layout	Manager: Rules:

BorderLayout
Places	North,	South,	East,	West	and	Center
(the	content	pane	default)

BoxLayout
Places	in	a	single	row	or	column

CardLayout
Places	different	components	in	a	specified
area	at	different	times

FlowLayout
Places	left	to	right	in	a	wrapping	line	(the
JPanel	default)

GridBagLayout
Places	in	a	grid	of	cells,	allowing	components
to	span	cells

GridLayout
Places	in	a	grid	of	rows	and	columns

GroupLayout
Places	horizontally	and	vertically

SpringLayout
Places	by	relative	spacing

The	top	level	JFrame	object	has	a	“content	pane”	container	that	places
components	using	the	BorderLayout	layout	manager	by	default.	This	can	be	used
to	place	up	to	five	JPanel	containers,	which	may	each	use	their	default	FlowLayout
layout	manager,	or	any	of	the	layout	managers	in	the	table	above.	Using	a
variety	of	layout	managers	accommodates	most	layout	requirements.

The	content	pane	can	be	represented	by	a	java.awt.Container	object,	whose	add()
method	can	specify	the	position	and	name	of	a	component	to	be	placed	within
the	content	pane.

You	can	find	further	details	of	each	layout	manager	in	the	java.awt
section	of	the	Java	documentation.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	declaration,
constructor,	and	instance	from	“Window”	to	“Layout”,	then	add	a
statement	at	the	start	of	the	program	to	import	the	functionality	of	the
java.awt	package	import	java.awt.*	;

Layout.java

Before	the	Layout()	constructor,	create	a	Container	object	representing	the	JFrame

content	pane	container	Container	contentPane	=	getContentPane()	;

Create	a	second	JPanel	object	using	a	GridLayout	layout	manager	in	a	2	x	2	grid
JPanel	grid	=	new	JPanel(new	GridLayout(2	,	2))	;

In	the	Layout()	constructor	method,	insert	statements	adding	JButton	components	to
both	JPanel	objects	pnl.add(new	JButton(“Yes”))	;
pnl.add(new	JButton(“No”))	;
pnl.add(new	JButton(“Cancel”))	;
grid.add(new	JButton(“1”))	;
grid.add(new	JButton(“2”))	;
grid.add(new	JButton(“3”))	;
grid.add(new	JButton(“4”))	;

Now,	insert	statements	adding	both	panels	and	a	button	to	the	content	pane
contentPane.add(“North”	,	pnl)	;
contentPane.add(“Center”	,	grid)	;
contentPane.add(“West”	,	new	JButton(“West”))	;

Save	the	program	as	Layout.java	then	compile	and	run	the	program	to	see	the
component	layout

While	the	FlowLayout	maintains	the	JButton	size,	other	layout
managers	expand	the	components	to	fill	their	layout	design.

Changing	appearance

The	java.awt	package	(Abstract	Window	Toolkit)	contains	“painting”	classes	that
can	be	used	to	color	interface	components.	These	can	be	made	available	to	a
program	by	including	the	initial	statement	import	java.awt.*	;	.

Included	in	the	java.awt	package	is	a	Color	class	that	has	constants	representing	a
few	basic	colors,	such	as	Color.RED.	Additionally,	instances	of	the	Color	class	can
be	created	using	the	new	keyword	to	represent	custom	colors.	The	constructor
can	take	three	integer	arguments	between	zero	and	255	to	represent	red,	green,
and	blue	(RGB)	values	to	form	the	custom	color.

Each	component	has	a	setBackground()	method	and	a	setForeground()	method	that
take	a	Color	object	as	their	argument	to	paint	that	component	with	the	specified
color.

Note	that	the	background	of	JLabel	components	are	transparent	by	default,	so	it	is
recommended	that	their	setOpaque()	method	should	be	called	to	set	the	opacity	to
true	before	they	are	painted.

Also	in	the	java.awt	package	is	a	Font	class	that	can	be	used	to	modify	the	font
displaying	text.	A	Font	object	represents	a	font,	and	its	constructor	can	take	three
arguments	to	specify	name,	style	and	size:

• The	specified	name	should	be	one	of	the	three	platform-independent	names
“Serif	”,	“SansSerif	”	or	“Monospaced”.

• The	specified	style	should	be	one	of	the	following	three
constants:	Font.PLAIN,	Font.BOLD	or	Font.ITALIC

• The	specified	size	should	be	an	integer	of	the	point	size.

Each	component	has	a	setFont()	method	that	takes	a	Font	object	as	its	argument	to
paint	that	component	with	the	specified	font.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Custom”

Custom.java

Add	a	statement	at	the	very	start	of	the	program	to	import	the	functionality	of	all
classes	in	the	java.awt	package	import	java.awt.*	;

Before	the	Custom()	constructor,	create	three	JLabel	objects	JLabel	lbl1	=	new	JLabel(
“Custom	Background”)	;
JLabel	lbl2	=	new	JLabel(“Custom	Foreground”)	;
JLabel	lbl3	=	new	JLabel(“Custom	Font”)	;

Next,	create	Color,	Font,	and	Box	layout	objects	Color	customColor	=	new	Color(255	,	0
,	0)	;
Font	customFont	=	new	Font(“Serif”	,	Font.PLAIN	,	64)	;
Box	box	=	Box.createVerticalBox()	;

In	the	Custom()	constructor	method,	insert	statements	to	color	a	JLabel	background
using	a	Color	constant	lbl1.setOpaque(true)	;
lbl1.setBackground(Color.YELLOW)	;

Insert	a	statement	to	color	a	JLabel	foreground	using	a	custom	Color	object
lbl2.setForeground(customColor)	;

Insert	a	statement	to	paint	text	on	a	JLabel	component	using	a	custom	font
lbl3.setFont(customFont)	;

Add	each	label	to	the	layout	container	box.add(lbl1)	;	box.add(lbl2)	;	box.add(lbl3)	;

Then,	add	the	layout	container	to	the	JPanel	container	pnl.add(box)	;

Save	the	program	as	Custom.java	then	compile	and	run	the	program	to	see	the
effect

In	this	case,	the	custom	color	is	equivalent	to	Color.RED	as	the	RGB
value	specifies	the	maximum	red	value	with	no	green	or	blue.

A	Box	object	is	a	handy	lightweight	container	that	uses	BoxLayout	as	its
layout	manager.	The	Box	object’s	createVerticalBox()	method
individually	displays	its	components	from	top	to	bottom.

Summary

• The	javax.swing	package	contains	the	Java	Swing	classes	that	are	used	to
create	GUI	components.

• A	window	is	created	as	a	top-level	JFrame	container.

• The	JFrame	constructor	should	specify	the	window’s	title,	size,	default	close

operation	and	visibility.

• A	JPanel	container	displays	smaller	components	in	a	wrapping	line	using	its
default	FlowLayout	layout	manager.

• The	JButton	constructor	can	specify	text	and	images	to	be	displayed	on	a	push
button	component.

• An	ImageIcon	object	represents	an	image	to	use	in	the	program.

• Programs	that	are	to	be	deployed	as	a	single	Java	archive	(JAR)	should	use	a
ClassLoader	object	to	specify	an	image	source.

• A	JLabel	object	displays	non-interactive	text	and	image	content.

• Editable	text	can	be	displayed	in	JTextField	and	JTextArea	fields.

• A	JScrollPane	object	provides	scrollbars	for	a	JTextArea	field.

• Items	for	selection	can	be	displayed	with	JCheckBox,	JComboBox	and	JList
components.

• A	ButtonGroup	object	logically	groups	a	number	of	JRadioButton	components
so	only	one	can	be	selected.

• Specific	RGB	colors	can	be	represented	by	the	Color	class	of	the	java.awt
package.

• The	java.awt	package	has	a	Font	class	that	can	be	used	to	create	objects
representing	a	particular	font	name,	style,	and	size.

• Multiple	JPanel	containers	can	be	added	to	a	JFrame	container	by	using	the
Container	class	of	the	java.awt	package	to	represent	the	content	pane	of	the
JFrame.

• When	creating	a	JPanel	container	object,	its	argument	may	optionally	specify
a	layout	manager.

9

Recognizing	events

This	chapter	demonstrates	how	to	create	Java	program	event-handlers	that	respond	to	user	interface

actions.

Listening	for	events
Generating	events

Handling	button	events
Handling	item	events
Reacting	to	keyboard	events
Responding	to	mouse	events

Announcing	messages
Requesting	input
Summary

Listening	for	events

A	user	can	interact	with	a	program	that	provides	a	graphical	user	interface	(GUI)
by	performing	actions	with	a	mouse,	keyboard,	or	other	input	device.	These
actions	cause	“events”	to	occur	in	the	interface,	and	making	a	program	respond
to	them	is	known	as	“event-handling”.

For	a	program	to	recognize	user	events	it	needs	to	have	one	or	more	EventListener
interfaces	added	from	the	java.awt.event	package.	These	can	be	made	available	to
the	program	by	adding	an	initial	statement	to	import	java.awt.event.*	;	.

The	desired	EventListener	interface	can	be	included	in	the	class	declaration	using
the	implements	keyword.	For	example,	a	class	declaration	to	listen	for	button
clicks	might	look	like	this:
class	Click	extends	JFrame	implements	ActionListener	{					}

The	Java	documentation	describes	many	EventListener	interfaces	that	can	listen
out	for	different	events,	but	the	most	common	ones	are	listed	in	the	table	below,
together	with	a	brief	description:

EventListener: Description:

ActionListener
Recognizes	action	events	that	occur	when	a
push	button	is	pushed	or	released

ItemListener
Recognizes	item	events	that	occur	when	a	list
item	gets	selected	or	deselected

KeyListener
Recognizes	keyboard	events	that	occur	when
the	user	presses	or	releases	a	key

MouseListener
Recognizes	mouse	button	actions	that	occur
when	the	user	presses	or	releases	a	mouse
button,	and	when	the	mouse	enters	or	exits	a
component

MouseMotionListener
Recognizes	motion	events	that	occur	when	the
user	moves	the	mouse

Multiple	EventListeners	can	be	included	after	the	implements	keyword
as	a	comma-separated	list.

Generating	events

Components	need	to	generate	events	that	the	EventListener	interfaces	can
recognize	if	they	are	to	be	useful.	Having	added	the	appropriate	EventListener	to
the	program,	as	described	opposite,	an	event	generator	must	be	added	to	the
component.

For	example,	in	order	to	have	the	program	respond	to	a	button	click,	the
ActionListener	interface	is	added	to	the	program	and	the	button’s
addActionListener()	method	must	be	called,	specifying	the	this	keyword	as	its
argument.	This	makes	the	button	generate	an	event	when	it	gets	clicked,	which
can	be	recognized	by	the	ActionListener	interface.

Statements	creating	a	button	that	generates	events	look	like	this:	JButton	btn	=	new
JButton(“Click	Me”)	;
btn.addActionListener(this)	;

When	the	user	clicks	a	button	that	generates	an	event,	the	ActionListener	interface
recognizes	the	event	and	seeks	an	event-handler	method	within	the	program	to
execute	a	response.

Each	EventListener	interface	has	an	associated	event-handler	method	that	is	called
when	an	event	is	recognized.	For	example,	when	a	button	gets	clicked,	the
ActionListener	interface	calls	an	associated	method	named	actionPerformed()	and
passes	an	ActionEvent	object	as	its	argument.

An	ActionEvent	object	contains	information	about	the	event	and	the	source
component	from	where	it	originated.	Most	usefully,	it	has	a	getSource()	method
that	identifies	the	object	that	generated	the	event.	This	can	be	used	to	create	an
appropriate	response	for	that	component.

An	event-handler	method	to	create	a	response	for	a	specific	button	click	could
look	like	this:

public	void	actionPerformed(ActionEvent	event)

{

if	(event.getSource()	==	btn)

{

Statements	to	be	executed	for	this	button	click	event	}

}

Handling	button	events

A	Swing	JButton	component	that	is	set	to	generate	an	ActionEvent	event	when	it
gets	clicked	can	be	recognized	by	the	ActionListener	interface,	which	will	pass
the	event	to	its	actionPerformed()	event-handler	method.	The	ActionEvent	object
has	a	getSource()	method	that	identifies	the	originating	component,	and	a
getActionCommand()	method	that	returns	a	String.	This	will	be	the	text	label	for	a
button	component,	or	the	content	for	a	text	field	component.

One	response	to	a	button	might	be	to	disable	a	component	by	calling	its
setEnabled()	method	with	a	false	argument.	Conversely,	the	component	can	be
enabled	once	more	by	specifying	a	true	argument	to	its	setEnabled()	method.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Actions”

Actions.java

Add	a	statement	at	the	very	start	of	the	program	to	import	the	functionality	of	all
classes	in	the
java.awt.event	package	import	java.awt.event.*	;

Edit	the	class	declaration	to	add	an	ActionListener	interface	to	the	program	class
Actions	extends	JFrame	implements	ActionListener

Before	the	Actions()	constructor,	create	two	JButton	push	buttons	and	a	JTextArea
text	field	JButton	btn1	=	new	JButton(“Button	1”)	;
JButton	btn2	=	new	JButton(“Button	2”)	;
JTextArea	txtArea	=	new	JTextArea(5	,	38)	;

Add	the	buttons	and	text	area	to	the	JPanel	container	pnl.add(btn1)	;
pnl.add(btn2)	;

pnl.add(txtArea)	;

Insert	statements	to	set	the	initial	state	of	two	components	btn2.setEnabled(false)	;
txtArea.setText(“Button	2	is	Disabled”)	;

In	the	Actions()	constructor,	insert	statements	to	make	each	button	generate	an
ActionEvent	event	when	clicked	btn1.addActionListener(this)	;
btn2.addActionListener(this)	;

After	the	constructor	method,	add	an	event-handler	method	for	the	ActionListener
interface	–	to	display	text	identifying	which	button	has	been	clicked	public	void
actionPerformed(ActionEvent	event)

{

txtArea.setText(event.getActionCommand()
												+	“	Clicked	and	Disabled”)	;

}

Insert	if	statements	in	the	event-handler	method	–	executing	a	specific	response	to
each	button	click
if	(event.getSource()	==	btn1)
{	btn2.setEnabled(true)	;	btn1.setEnabled(false)	;												}

if	(event.getSource()	==	btn2)
{	btn1.setEnabled(true)	;	btn2.setEnabled(false)	;												}

Save	the	program	as	Actions.java	then	compile	and	run	the	program,	clicking	the
push	buttons

The	components	are	declared	before	the	constructor	so	they	are	globally
accessible	to	the	event-handler	method.

It’s	sometimes	useful	to	disable	a	component	until	the	user	has
performed	a	required	action.

Handling	item	events

Swing	JRadioButton,	JCheckBox	and	JComboBox	components	maintain	states
whose	change	can	be	recognized	by	the	ItemListener	interface,	which	will	pass	the
ItemEvent	to	its	itemStateChanged()	event-handler	method.	The	ItemEvent	object	has
a	getItemSelectable()	method	that	identifies	the	originating	component	and	a
getStateChange()	method	that	returns	its	status.	This	will	determine	if	the	change
is	selecting	or	deselecting	an	item,	and	can	be	compared	to	an
ItemEvent.SELECTED	constant.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“States”.	Then,	add	a	statement	at	the	very	start	of	the	program	to
import	the	functionality	of	the	java.awt.event	package	import	java.awt.event.*
;

States.java

Edit	the	class	declaration	to	add	an	ItemListener	interface	to	the	program	class
States	extends	JFrame	implements	ItemListener

Before	the	States()	constructor,	create	these	components	String[]	styles	=	{	“Deep
Dish”	,	“Gourmet	Style”	,	“Thin	&	Crispy”	}	;
JComboBox<String>	box	=	new	JComboBox<String>	(styles)	;
JRadioButton	rad1	=	new	JRadioButton(“White”)	;
JRadioButton	rad2	=	new	JRadioButton(“Red”)	;
ButtonGroup	wines	=	new	ButtonGroup()	;
JCheckBox	chk	=	new	JCheckBox(“Pepperoni”)	;
JTextArea	txtArea	=	new	JTextArea(5	,	38)	;

In	the	States()	constructor,	insert	statements	to	group	the	two	JRadioButton
components	wines.add(rad1)	;
wines.add(rad2)	;

Insert	statements	to	add	the	components	to	the	JPanel	container	pnl.add(rad1)	;
pnl.add(rad2)	;
pnl.add(chk)	;
pnl.add(box)	;
pnl.add(txtArea)	;

Note	how	this	example	uses	the	append()	method	to	add	further	text	to	the
text	area.

Insert	statements	to	make	selectable	components	generate	an	ItemEvent

event	when	an	item	is	selected	or	deselected	rad1.addItemListener(this)	;
rad2.addItemListener(this)	;
chk.addItemListener(this)	;
box.addItemListener(this)	;

After	the	constructor	method,	add	an	event-handler	method	for	the

ItemListener	interface	–	identifying	items	selected	by	the	JRadioButton
components	public	void	itemStateChanged(ItemEvent	event)

{

if	(event.getItemSelectable()	==	rad1)
txtArea.setText(“White	wine	selected”)	;

														if	(event.getItemSelectable()	==	rad2)
txtArea.setText(“Red	wine	selected”)	;

}

Add	an	if	statement	to	the	event-handler	method	to	indicate	the	status	of
the	JCheckBox	component	if	((event.getItemSelectable()	==	chk)	&&

(event.getStateChange()	==	ItemEvent.SELECTED))
txtArea.append(“\nPepperoni	selected\n”)	;

Add	an	if	statement	to	the	event-handler	method	to	indicate	the	status	of
the	JComboBox	component	if	((event.getItemSelectable()	==	box)	&&

(event.getStateChange()	==	ItemEvent.SELECTED))
txtArea.append(event.getItem().toString()	+	“	selected”)	;

Save	the	program	as	States.java	then	compile	and	run	the	program,
selecting	various	items	from	left	to	right

The	JComboBox	fires	two	ItemEvents	when	an	item	gets	selected	–	one

selecting	the	item	and	one	deselecting	the	previously	selected	item.	That
is	why	steps	8	&	9	must	identify	both	the	originating	component	and	the
type	of	ItemEvent.

Notice	that	the	getItem()	method	returns	the	item	affected	by	the	change.

Reacting	to	keyboard	events

Swing	components	that	allow	the	user	to	input	text	can	recognize	user	key
strokes	with	the	KeyListener	interface,	which	will	pass	the	KeyEvent	event	to	these
three	event-handler	methods:

Event-handler: Description:

keyPressed(KeyEvent) Called	when	a	key	is	pressed

keyTyped(KeyEvent) Called	after	a	key	is	pressed

keyReleased(KeyEvent) Called	when	a	key	is	released

When	a	program	implements	the	KeyListener	interface	it	must	declare	these	three
methods	–	even	if	not	all	are	actually	used.

The	KeyEvent	object	has	a	getKeyChar()	method,	which	returns	the	character	for
that	key,	and	a	getKeyCode()	method,	which	returns	an	integer	Unicode	value
representing	that	key.	Additionally,	a	getKeyText()	method	takes	the	key	code
value	as	its	argument	and	returns	a	description	of	that	key.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Keystrokes”.	Then,	add	an	initial	statement	to	import	the
functionality	of	the	java.awt.event	package	import	java.awt.event.*	;

Keystrokes.java

Edit	the	class	declaration	to	add	a	KeyListener	interface	to	the	program	class
Keystrokes	extends	JFrame	implements	KeyListener

Before	the	Keystrokes()	constructor,	create	a	JTextField	component	and	a	JTextArea
component	JTextField	field	=	new	JTextField(38)	;
JTextArea	txtArea	=	new	JTextArea(5	,	38)	;

Insert	statements	to	add	these	two	components	to	the	JPanel	container	pnl.add(field
)	;		pnl.add(txtArea)	;

In	the	Keystrokes()	constructor,	insert	a	statement	to	make	the	JTextField	component
generate	KeyEvent	events	field.addKeyListener(this)	;

After	the	constructor	method,	add	an	event-handler	that	acknowledges	when	a	key
gets	pressed
public	void	keyPressed(KeyEvent	event)

{

txtArea.setText(“Key	Pressed”)	;

}

Add	a	second	event-handler	that	displays	the	key	character	after	the	key	has	been
pressed
public	void	keyTyped(KeyEvent	event)

{

txtArea.append(“\nCharacter	:	”	+	event.getKeyChar())	;

}

Add	a	third	event-handler	that	displays	the	key	code	and	key	text	when	the	key
gets	released
public	void	keyReleased(KeyEvent	event)

{

int	keyCode	=	event.getKeyCode()	;
txtArea.append(“\nKey	Code	:	”	+	keyCode)	;
txtArea.append(“\nKey	Text	:	”	+	event.getKeyText(keyCode))	;

}

Save	the	program	as	Keystrokes.java	then	compile	and	run	the	program,	typing	in
the	top	text	field

The	getKeyCode()	method	only	returns	the	key	code	if	called	from	within	the
keyPressed()	or	keyReleased()	event-handlers	–	not	from	the	keyTyped()	event-
handler.

Run	this	program	and	press	a	non-character	key,	such	as	Backspace,	to
see	its	key	text	name.

Responding	to	mouse	events

Swing	components	can	recognize	user	mouse	actions	with	the	MouseListener
interface,	which	will	pass	the	MouseEvent	event	to	these	five	event-handler
methods:

Event-handler: Description:

mousePressed(MouseEvent) Button	is	pressed

mouseReleased(MouseEvent) Button	is	released

mouseClicked(MouseEvent) Button	has	been	released

mouseEntered(MouseEvent) Mouse	moves	on

mouseExited(MouseEvent) Mouse	moves	off

Mouse	movements	can	be	recognized	by	the	MouseMotionListener	interface,	which
passes	MouseEvent	events	to	two	event-handlers:

Event-handler: Description:

mouseMoved(MouseEvent) Mouse	is	moved

mouseDragged(MouseEvent) Mouse	is	dragged

When	a	program	implements	the	MouseListener	or	MouseMotionListener	interface,
it	must	declare	all	its	associated	event-handler	methods	–	even	if	not	all	are
actually	used.

The	MouseEvent	object	passed	by	the	MouseMotionListener	interface	has	getX()	and
getY()	methods,	which	return	the	current	mouse	coordinates	relative	to	the
component	generating	the	event.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Mouse”.	Then,	add	an	initial	statement	to	import	the	functionality	of
the	java.awt.event	package	import	java.awt.event.*	;

Mouse.java

Edit	the	class	declaration	to	add	a	MouseListener	interface	and	MouseMotionListener
interface	to	the	program	class	Mouse	extends	JFrame	implements	MouseListener	,
MouseMotionListener

Before	the	Mouse()	constructor,	create	a	JTextArea	component	and	two
integer	variables	to	store	coordinates	JTextArea	txtArea	=	new	JTextArea(8	,
38)	;
int	x	,	y	;

In	the	Mouse()	constructor,	insert	statements	to	add	the	JTextArea
component	to	the	JPanel	container	and	to	make	it	generate	MouseEvent
events	pnl.add(txtArea)	;
txtArea.addMouseMotionListener(this)	;
txtArea.addMouseListener(this)	;

After	the	constructor	method,	add	the	two	event-handlers	for	the
MouseMotionListener	interface	public	void	mouseMoved(MouseEvent	event)
{	x	=	event.getX()	;	y	=	event.getY()	;							}
public	void	mouseDragged(MouseEvent	event)	{	}

Add	five	event-handlers	for	the	MouseListener	interface	public	void
mouseEntered(MouseEvent	event)
{	txtArea.setText(“\nMouse	Entered”)	;																	}

public	void	mousePressed(MouseEvent	event)
{	txtArea.append(“\nMouse	Pressed	at	X:	“	+x+	“Y:	“	+y)	;	}

public	void	mouseReleased(MouseEvent	event)
{	txtArea.append(“\nMouse	Released”)	;													}

public	void	mouseClicked(MouseEvent	event)	{			}
public	void	mouseExited(MouseEvent	event)	{			}

Save	the	program	as	Mouse.java,	then	compile	and	run	the	program,
clicking	on	the	JTextArea	component

Rollover	effects	can	be	created	by	swapping	images	with	the
mouseEntered()	and	mouseExited()	event-handler	methods.

Announcing	messages

The	Swing	JOptionPane	class	is	designed	to	create	a	standard	dialog	box	centered
on	its	parent	window.	Its	showMessageDialog()	method	displays	a	message	to	the
user	providing	information,	warning,	or	error	description.

The	showMessageDialog()	method	can	take	four	arguments:	• Parent	object	–
typically	referenced	by	the	this	keyword	• Message	String	to	be	displayed	• Dialog
title	String

• One	of	the	JOptionPane	constants:

INFORMATION_MESSAGE

WARNING_MESSAGE				or				ERROR_MESSAGE

The	dialog	box	will	display	an	appropriate	icon	according	to	which	JOptionPane
constant	is	specified.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Messages”

Messages.java

Add	an	initial	statement	to	import	the	functionality	of	the	java.awt.event	package
import	java.awt.event.*	;

Edit	the	class	declaration	to	add	an	ActionListener	interface	to	the	program	class

Messages	extends	JFrame	implements	ActionListener

Before	the	Messages()	constructor,	create	three	JButton	components	JButton	btn1=
new	JButton(“Show	Information	Message”)	;
JButton	btn2=	new	JButton(“Show	Warning	Message”)	;
JButton	btn3=	new	JButton(“Show	Error	Message”)	;

Insert	statements	to	add	the	button	components	to	the	JPanel	container	pnl.add(btn1
)	;
pnl.add(btn2)	;
pnl.add(btn3)	;

In	the	Messages()	constructor,	insert	statements	to	make	each	button
generate	an	ActionEvent	event	btn1.addActionListener(this)	;
btn2.addActionListener(this)	;
btn3.addActionListener(this)	;

After	the	constructor	method,	add	an	event-handler	method	for	the
ActionListener	interface	public	void	actionPerformed(ActionEvent	event)	{								}

Between	the	curly	brackets	of	the	event-handler,	insert	if	statements	to
display	a	dialog	when	a	button	gets	clicked	if	(event.getSource()	==	btn1)
JOptionPane.showMessageDialog(this	,	“Information...”	,	“Message	Dialog”,
JOptionPane.INFORMATION_MESSAGE)	;

if	(event.getSource()	==	btn2)
JOptionPane.showMessageDialog(this	,	“Warning...”	,	“Message	Dialog”	,
JOptionPane.WARNING_MESSAGE)	;

if	(event.getSource()	==	btn3)
JOptionPane.showMessageDialog(this	,	“Error...”	,	“Message	Dialog”	,
JOptionPane.ERROR_MESSAGE)	;

Save	the	program	as	Messages.java	then	compile	and	run	the	program,
clicking	on	each	button

You	can	also	simply	specify	the	parent	and	message	as	two	arguments
to	create	a	dialog	with	the	default	information	icon	and	the	default
“Message”	title.

Requesting	input

The	Swing	JOptionPane	class	can	request	information	from	the	user	by	opening	a
dialog	box	with	its	showConfirmationDialog()	method,	requesting	a	decision,	or
with	its	showInputDialog()	method,	requesting	user	input.

Both	these	methods	can	take	four	arguments:	• Parent	object	–	typically	referenced
by	the	this	keyword	• Request	String	to	be	displayed	• Dialog	title	String

• One	of	the	JOptionPane	constants	such	as	PLAIN_MESSAGE	or	to	specify	dialog
decision	buttons	as	YES_NO_CANCEL_OPTION

The	dialog	box	will	return	the	input	String	from	an	input	dialog	or	an	integer
from	a	decision	button	–	zero	for	yes,	1	for	no,	or	2	for	cancel.

Edit	a	copy	of	Window.java	from	here	,	changing	the	class	name	in	the
declaration,	the	constructor,	and	the	instance	statement	from	“Window”
to	“Request”.	Then,	add	an	initial	statement	to	import	the	functionality	of
the	java.awt.event	package	import	java.awt.event.*	;

Request.java

Edit	the	class	declaration	to	add	an	ActionListener	interface	to	the	program	class
Request	extends	JFrame	implements	ActionListener

Before	the	Request()	constructor,	create	a	JTextField	and	two	JButton	components
JTextField	field	=	new	JTextField(38)	;
JButton	btn1	=	new	JButton(“Request	Decision”)	;
JButton	btn2	=	new	JButton(“Request	Input”)	;

Add	each	component	to	the	JPanel	container	pnl.add(field)	;	pnl.add(btn1)	;	pnl.add(
btn2)	;

In	the	Request()	constructor,	insert	statements	to	make	each	button	generate	an
ActionEvent	event	btn1.addActionListener(this)	;
btn2.addActionListener(this)	;

After	the	constructor	method,	add	an	event-handler	method	for	the	ActionListener
interface	public	void	actionPerformed(ActionEvent	event)	{	}

Between	the	curly	brackets	of	the	event-handler,	insert	an	if	statement	to	respond
to	a	decision	button	click	if	(event.getSource()	==	btn1)

{

int	n	=	JOptionPane.showConfirmDialog(this	,
“Do	you	agree?”	,	“Confirmation	Dialog”	,
JOptionPane.YES_NO_CANCEL_OPTION)	;

switch(n)

{

							case	0	:	field.setText(“Agreed”)	;	break	;
							case	1	:	field.setText(“Disagreed”)	;	break	;
							case	2	:	field.setText(“Canceled”)	;	break	;

}

}

Insert	an	if	statement	to	handle	user	input	if	(event.getSource()	==	btn2)
field.setText(JOptionPane.showInputDialog(this	,

“Enter	your	comment”	,	“Input	Dialog”	,
JOptionPane.PLAIN_MESSAGE))	;

Save	the	program	as	Request.java	then	compile	and	run	the	program,	clicking	on
each	button

The	OK_CANCEL	constant	provides	two	decision	buttons	–	OK	returns	zero
and	CANCEL	returns	2.	Refer	to	the	documentation	for	the	full	range	of
constants.

Summary

• The	implements	keyword	can	be	used	in	a	class	declaration	to	add	one	or	more
EventListener	interfaces.

• A	component’s	addActionListener()	method	takes	the	this	keyword	as	its
argument	–	to	make	that	component	generate	an	ActionEvent	event	when	it	is
activated.

• The	ActionListener	interface	passes	a	generated	ActionEvent	event	as	the
argument	to	its	actionPerformed()	event-handler,	which	can	respond	to	a	push
button	click	made	by	the	user.

• The	getSource()	method	of	an	ActionEvent	event	can	be	used	to	identify	the
originating	component	that	generated	the	event.

• An	ItemListener	interface	passes	a	generated	ItemEvent	event	as	the	argument
to	its	itemStateChanged()	event-handler,	which	can	respond	to	an	item	selection
made	by	the	user.

• The	getItemSelectable()	method	of	an	ItemEvent	event	can	be	used	to	identify
the	component	that	generated	the	event.

• A	KeyListener	interface	passes	a	generated	KeyEvent	event	as	the	argument	to
three	required	event-handler	methods,	which	can	respond	to	a	key	press	and
reveal	that	key’s	character.

• A	MouseListener	interface	passes	a	generated	MouseEvent	event	as	the
argument	to	five	required	event-handler	methods,	which	can	respond	to
mouse	actions	made	by	the	user.

• A	MouseMotionListener	interface	passes	a	generated	MouseEvent	event	as	the
argument	to	two	required	event-handlers,	which	can	respond	to	mouse
movement.

• The	showMessageDialog()	method	of	the	JOptionPane	class	creates	a	dialog
displaying	a	message	to	the	user,	and	its	showInputDialog()	and
showConfirmationDialog()	methods	can	be	used	to	request	user	input.

• Audio	resources	can	be	represented	by	the	AudioClip	class	of	the	java.applet
package,	and	played	using	its	play()	method.

10

Deploying	programs

This	chapter	demonstrates	how	to	deploy	Java	programs	–	both	as	Java	archives	(JAR)	and	Android

application	packages	(APK).

Producing	an	application
Distributing	programs

Building	Java	archives
Deploying	applications
Creating	Android	projects
Exploring	project	files

Adding	resources	&	controls
Inserting	Java	code
Testing	the	application
Deploying	Android	apps

Summary

Producing	an	application

Java	applications	for	both	desktop	and	handheld	devices	can	be	created	from
common	code	–	like	the	Lotto.java	program	below:	import	javax.swing.*	;
import	java.awt.event.*	;

Components	public	class	Lotto	extends	JFrame	implements	ActionListener

{

ClassLoader	ldr	=	this.getClass().getClassLoader()	;
java.net.URL	iconURL	=	ldr.getResource(“Lotto.png”)	;
ImageIcon	icon	=	new	ImageIcon(iconURL)	;
JLabel	img	=	new	JLabel(icon)	;
JTextField	txt	=	new	JTextField(“”	,	18)	;
JButton	btn	=	new	JButton(“Get	My	Lucky	Numbers”)	;
JPanel	pnl	=	new	JPanel()	;

Constructor	public	Lotto()
{

super(“Lotto	App”)	;	setSize(260	,	210)	;
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)	;
pnl.add(img)	;	pnl.add(txt)	;	pnl.add(btn)	;
btn.addActionListener(this)	;	add(pnl)	;	setVisible(true)	;

}

Event-handler	public	void	actionPerformed(ActionEvent	event)

{

if	(event.getSource()	==	btn)

{

int[]	nums	=	new	int[60]	;	String	str	=	“”	;
for	(int	i	=	1	;	i	<	60	;	i++)	{	nums[i]	=	i	;	}
for	(int	i	=	1	;	i	<	60	;	i++)
{										int	r=	(int)	(59	*	Math.random())	+	1	;
											int	t=	nums[i]	;	nums[i]=	nums[r]	;	nums[r]=	t	;

}

for	(int	i	=	1	;	i	<	7	;	i++)
{										str	+=	“	”	+	Integer.toString(nums[i])	+	“	”	;	}
txt.setText(str)	;

}

}

Entry-point	public	static	void	main	(String[]	args)
{					Lotto	lotto	=	new	Lotto()	;	}

}

}

Lotto.java	

The	algorithm	in	this	event-handler	shuffles	integers	1-59	in	an	array,
then	assigns	those	integers	in	the	first	six	elements	to	a	string.

The	Lotto	program	begins	with	import	statements	to	make	Swing	components
and	the	ActionListener	interface	available.

Lotto.png	–	Checkered	areas	are	transparent

Components

The	program	comprises	a	single	panel	component	containing	a	label	component
to	display	an	image,	a	text	field	component	to	display	output,	and	a	button
component	for	user	interaction.

Constructor

The	Lotto()	constructor	builds	a	simple	Swing	interface	that	loads	the	panel	into	a
window	frame	measuring	260	x	210.

Event-handler
The	button’s	event-handler	method	executes	an	algorithm	to	select	a	sequence	of
six	unique	random	numbers	in	the	range	of	1-59	for	display	in	the	text	field
component.

Entry-point
The	main()	method	creates	an	instance	of	the	app,	and	calls	upon	ClassLoader()	to
seek	the	image	file	resource	Lotto.png	in	the	same	directory	as	the	program	file.
The	files	must	be	arranged	in	this	way	before	attempting	to	compile	the	program.

The	Lotto	program	is	used	throughout	this	chapter	to	create	apps	for
desktop	and	handheld	devices.

Observing	the	required	file	arrangement,	the	javac	compiler	can	be	employed	in
the	usual	way	to	create	a	Lotto.class	file,	then	the	java	interpreter	can	be	employed
to	execute	the	program:	

Distributing	programs

The	Lotto	program	opens	a	new	window	of	the	specified	size	containing	the
Swing	interface	components.	Each	time	the	user	clicks	the	push	button,	its	event-
handler	displays	six	new	random	numbers	in	the	range	1-59	within	the	text	field

component:	

As	with	all	other	examples	in	this	book,	the	example	Lotto	program	has	been
compiled	here	for	Java	9	and	can	be	distributed	for	execution	on	other	computers
where	the	Java	9	Runtime	Environment	is	present	–	regardless	of	their	operating
system.	For	example,	in	the	screenshots	below,	Lotto.class	and	Lotto.png	files
have	been	copied	to	the	desktop	of	a	computer	running	the	Linux	operating
system	with	the	Java	9	runtime	installed.	The	Lotto	program	can,	therefore,	be
executed	by	the	java	interpreter	in	the	same	way	as	on	the	originating	Windows
system.

The	.java	source	code	file	need	not	be	included	when	distributing	a
program	–	only	.class	and	resource	files	are	needed.

There	is,	however,	a	danger	in	distributing	Java	programs	this	way	as	the
program	will	fail	to	execute	if	resource	files	become	unavailable	–	in	this	case,

removing	Lotto.png	produces	this	error:	

The	JDK	contains	a	jar	utility	tool	that	allows	program	class	and	resource	files	to
be	bundled	into	a	single	Java	ARchive	(JAR)	file.	This	compresses	all	program
files,	using	the	popular	ZIP	format,	into	a	single	file	with	a	.jar	file	extension.	A
JAR	file	stores	the	program	efficiently	and	helps	ensure	that	resource	files	do	not
become	accidentally	isolated.	The	java	interpreter	fully	supports	JAR	files	so
Java	applications	can	be	executed	without	extracting	the	individual	files.	Like
the	java	interpreter	and	javac	compiler,	the	jar	tool	is	located	in	Java’s	bin
directory	and	runs	from	the	command	line	to	perform	these	common	jar
operations:

Command	syntax: Operation:

jar	cf	jar-file	input-file/s Create	a	JAR	file

jar	cfe	jar-file	entry-point	input-file/s Create	a	JAR	file	with	a	specified	entry	point
in	a	stand-alone	application

jar	tf	jar-file View	contents	of	a	JAR	file

jar	uf	jar-file Update	contents	of	JAR	file

jar	ufm	jar-file	attribute-file Update	contents	of	JAR	file	manifest,	adding
attribute/s

jar	xf	jar-file Extract	all	contents	of	JAR

jar	xf	jar-file	archived-file/s Extract	specific	files	from	JAR

Larger	programs	may	use	many	resource	files	whose	location	can	easily
be	disrupted	by	a	user	–	the	solution	is	to	package	the	program	and	all	its

resources	into	a	single	executable	archive	file.

For	larger	programs,	the	*	wildcard	character	can	be	used	to	archive
multiple	files	within	the	directory	–	for	instance,	jar	cf	Program.jar
*.class	archives	all	class	files	in	the	current	directory.

Building	Java	archives

Follow	these	steps	to	create	a	JAR	file	for	the	Lotto	program	described	at	the
start	of	this	chapter:

Open	a	command-line/terminal	window,	then	navigate	to	the	directory
where	the	Lotto	program	files	are	located	–	Lotto.class	and	Lotto.png

Lotto.jar

Enter	jar	cfe	Lotto.jar	Lotto	Lotto.class	Lotto.png,	then	hit	the	Enter	key	to	create	a
Lotto.jar	archive	Next,	enter	jar	tf	Lotto.jar	to	see	all	contents	of	the	JAR

Notice	that	the	jar	tool	automatically	creates	a	META-INF	directory	alongside	the
archived	files.	This	contains	a	text-based	manifest	meta	file	named	MANIFEST.MF
that	you	can	examine:

Now,	enter	jar	xf	Lotto.jar	META-INF	to	extract	a	copy	of	the	META-INF	directory	
Finally,	enter	type	META-INF\MANIFEST.MF	to	see	the	text	contained	within	the
archive	manifest

The	JAR	manifest	can	be	modified	for	advanced	purposes,	such	as	the
addition	of	permissions	to	use	system	resources.

Deploying	applications

Java	JAR	files	are	executable	on	any	system	on	which	the	appropriate	version	of
the	Java	Runtime	is	installed:

At	the	command	line,	navigate	to	the	directory	where	the	Lotto.jar	file	is
located,	then	type	java	-jar	Lotto.jar	and	hit	the	Enter	key	to	run	the	Lotto
application

Alternatively,	double-click	or	right-click	the	Lotto.jar	file	icon,	and	choose
to	“Open	With”	the	Java	Runtime

The	.jar	file	extension	is	required	when	executing	JAR	files	from	a	prompt.

Set	the	JRE	as	the	default	JAR	file	handler	on	your	system	for	permanent
double-click	execution.

Creating	Android	projects

The	Android	operating	system,	prevalent	on	handheld	devices,	includes	a	set	of
core	libraries	that	provide	most	of	the	functionality	of	those	in	the	Java
programming	language.	This	means	that	Java	programs	can	be	readily	converted
for	Android.

Android	Studio	is	available	free	from	developer.android.com/studio	This
example	describes	version	2.3.3	–	instructions	may	vary	for	other
versions.	Android	Studio	is	a	sizeable	download	of	around	1.9GB,	and
may	require	additional	downloads	to	complete	setup.	Check	the	system
requirements	to	ensure	your	computer	can	run	Android	Studio	before
downloading.

Android	app	development	is	best	undertaken	using	the	official	Android	Studio
Integrated	Development	Environment	(IDE).	This	provides	a	unified
environment	where	you	can	develop	apps	for	all	Android	devices,	and	provides

https://developer.android.com/studio/index.html

extensive	testing	tools.	Completed	apps	are	distributed	as	an	Android
Application	Package	(APK)	archive	file,	which	is	similar	to	a	Java	archive
(JAR)	file.	This	compresses	all	program	files,	using	the	popular	ZIP	format,	into
a	single	file	with	a	.apk	file	extension.	Each	app	is	first	created	in	Android	Studio
as	a	“project”,	to	which	the	developer	adds	code	and	resources:

Launch	Android	Studio,	then	choose	to	Start	a	new	Android	Studio	project	in
the	“Welcome”	dialog	options	–	to	open	the	“New	Project”	dialog	Enter	an
Application	name	(for	example,	“Lotto”)	and	a	Company	Domain,	then
choose	your	preferred	Project	location	at	which	to	save	the	project	on	your
computer

Click	Next	to	open	the	“Target	Android	Devices”	dialog	Select	the	device
type	and	platform	level	(for	example,	“Phone	and	Tablet”	running	“Ice
Cream	Sandwich”)

The	Package	name	is	an	automatically	assigned	unique	identifier	for	the
app,	comprised	of	com.domain.appname

Click	Next	to	open	the	“Add	an	Activity	to	Mobile”	dialog,	and	simply
select	the	Empty	Activity	option	Click	Next	to	open	the	“Customize	the
Activity”	dialog

Click	Finish	to	accept	the	suggested	configuration	–	Android	Studio	will
now	generate	several	files	and	folders	for	the	new	project	(this	can	take	a
while)	then	eventually	open	the	IDE	interface

Choose	API	15	if	you	would	like	the	app	to	run	on	100%	of	devices	active
on	the	Google	Play	Store.

You	can	change	the	suggested	names	here,	but	be	sure	to	leave	the
Generate	Layout	File	and	Backwards	Compatibility	boxes	checked.

Exploring	project	files

The	Android	Studio	IDE	provides	a	Project	window	that	displays	an	expandable
tree	view	of	all	files	and	folders	within	the	project.	You	can	click	any	arrow	in
the	Project	window	to	expand	a	folder,	and	double-click	on	any	file	in	the
Project	window	to	open	it	in	the	tabbed	Editor	window.

Despite	its	initial	appearance	of	complexity,	only	two	files	need	modification	by
the	developer	to	create	a	customized	application:	• MainActivity.java	–	the	Java	file
that	loads	controls	into	the	app	interface	and	can	contain	event-handler	code	to
respond	to	user	actions	within	the	app	interface.

• activity_main.xml	–	the	XML	file	that	defines	each	control	to	appear	in	the	app
interface	and	their	layout.

If	the	Project	window	is	not	immediately	visible	click	the	Project	button	in
the	left	sidebar,	or	open	it	using	the	shortcut	keys	Alt	+	F1.

Selecting	the	activity_main.xml	file	in	the	Project	window	presents	it	in	the	Editor
window	in	one	of	two	possible	views	–	visually	in	Design	view	or
programmatically	in	Text	view.	There	are	tabs	at	the	bottom	of	the	window	to
switch	between	views.

Design	view	provides	a	Palette	of	controls	that	can	be	dragged	onto	a	graphical
representation	of	the	app,	a	Component	Tree	to	select	any	added	control,	and	a
Properties	window	in	which	to	modify	the	appearance	of	a	selected	control.

Text	view	provides	a	“code-behind”	version	of	the	layout	that	describes	each
aspect	of	added	controls	using	XML	attributes.

Controls	can	be	added	to	the	app	interface	and	modified	either	visually	in	Design
view	or	programmatically	in	Text	view.

Adding	resources	&	controls
Image	Resources

To	begin	customizing	the	default	Android	Studio	empty	app	for	the	Lotto
program,	the	image	can	first	be	added	as	a	“resource”:

Right-click	on	the	Lotto.png	image,	and	choose	Copy	Next,	right-click	on	the
app>res>drawable	folder	and	choose	Paste	–	to	see	a	“Copy”	dialog	appear	Rename
the	file	to	lowercase	Lotto.png

Click	OK	to	see	the	file	now	appear	in	the	drawable	folder

Android	only	supports	lowercase	filenames	for	resource	items.

Interface	Controls

The	Lotto	app	will	require	three	interface	controls	aligned	one	above	the	other	in
a	vertical	layout.	An	ImageView	control	is	required	for	the	logo,	a	TextView

a	vertical	layout.	An	ImageView	control	is	required	for	the	logo,	a	TextView
control	is	required	for	the	output,	and	a	Button	control	is	required	for	user
interaction:

Open	the	activity_main.xml	file	in	the	Editor’s	Text	view

activity	_main.xml

Insert	this	ImageView	control	element	immediately	before	the	existing	default
TextView	element

<ImageView
android:layout_width=”match_parent”
android:layout_height=”wrap_content”
app:srcCompat=”@drawable/lotto”
android:id=”@+id/imageView”
app:layout_constraintTop_toTopOf=”parent”	/>

The	app:srcCompat	attribute	references	the	image	resource	added	to
the	drawable	folder.

The	attributes	in	this	element	fit	the	control	to	the	width	of	the	layout	container,
and	position	the	control	at	the	top	of	the	container.	The	image	resource	is
defined	as	the	content	source,	and	the	element	is	given	an	id	for	reference	by
other	elements.

Edit	the	existing	TextView	element	to	look	like	this	<TextView
android:layout_width=”match_parent”
android:layout_height=”wrap_content”
android:id=”@+id/textView
android:height=”60dp”
android:textSize=”36sp”
android:gravity=”center_horizontal”	app:layout_constraintTop_toBottomOf	=
”@+id/imageView”	/>

Insert	this	element	right	after	the	TextView	element	<Button

android:layout_width=”match_parent”
android:layout_height=”wrap_content”
android:id=”@+id/button”
android:textSize=”24sp”
android:onClick=”lotto”
android:text=”GET	MY	LUCKY	NUMBERS”
app:layout_constraintTop_toBottomOf	=	”@+id/textView”	/>

The	android:id	attribute	in	each	element	specifies	a	unique	name	by
which	the	element	can	be	referenced	in	Java	code.

The	android:onClick	attribute	specifies	the	name	of	an	event-handler	to
be	called.

String	Resources

The	strings	assigned	to	describe	the	image	content	and	to	specify	the	button	text
should	each	be	converted	to	a	string	resource:

Click	within	the	“Lotto	Logo”	string	assignment	to	give	it	focus,	then	press	Alt	+
Enter	to	see	a	QuickFix	dialog

Choose	Extract	string	resource,	then	provide	a	resource	name	in	the
“Extract	Resource”	dialog	that	now	appears

Click	OK	to	close	the	dialog,	and	see	the	assigned	string	get	replaced	by	a
reference	to	the	new	string	resource

Repeat	this	for	the	“GET	MY	LUCKY	NUMBERS”	string

Inserting	Java	code

After	adding	resources	and	controls	here	,	the	app	interface	should	now	resemble

that	of	the	Lotto.jar	application:	

If	the	controls	do	not	look	like	this	screenshot,	you	should	return	to	here

and	carefully	check	each	element’s	attributes.

Functionality	can	next	be	added	to	the	app	by	inserting	an	event-handler	into	the
MainActivity.java	file	that	will	respond	to	the	button’s	onClick	event	when	the	user
pushes	the	button.	This	event	automatically	passes	one	argument	to	the	event-
handler,	which	is	an	identifying	reference	to	the	control	that	has	been	clicked.
Consequently,	the	event-handler	signature	must	accommodate	the	argument	by
including	a	parameter	for	the	View	class	–	the	base	class	of	all	widgets.	The
method	must	also	have	a	void	return	type:

Insert	this	event-handler	signature	into	the	MainActivity	class,	immediately	after	its
onCreate()	method	block	public	void	lotto(View	vue)	{	}

MainActivity.java	Interface	controls	can	be	referenced	in	code	by
specifying	their	identity	as	the	argument	to	a	findViewById()	method.	This	is
the	name	assigned	to	their	android:id	attribute	in	activity_main.xml	prefixed	by
R.id.	:

Inside	the	event-handler	block,	assign	a	reference	to	the	<TextView>	control
element	to	a	variable	TextView	txt	=	(TextView)	findViewById(R.id.textView)	;

Finally,	inside	the	event-handler	block,	copy	the	code	from	the	event-handler	in
the	Lotto.java	program	(listed	here)	that	outputs	six	unique	random	numbers	int[]
nums	=	new	int[60]	;	String	str	=	“	”	;
for	(int	i	=	1	;	i	<	60	;	i++)	{	nums[i]	=	i	;	}
for	(int	i	=	1	;	i	<	60	;	i++)

{

int	r=	(int)	(59	*	Math.random())	+	1	;
int	t=	nums[i]	;	nums[i]=	nums[r]	;	nums[r]=	t	;

}

for	(int	i	=	1	;	i	<	7	;	i++)
{str	+=	“	”	+	Integer.toString(nums[i])	+	“	”	;	}
txt.setText(str)	;

In	this	case,	there	is	no	need	for	the	code	to	check	the	source	of	the	call
as	the	event-handler	is	explicitly	assigned	to	the	button	by	the
android:onClick	attribute	in	activity_main.xml

Now	that	the	Lotto	app	has	all	resources,	controls,	and	functional	code	in	place,
an	attempt	can	be	made	to	build	the	project:

On	the	Android	Studio	main	toolbar,	click	View,	Tool	Windows,	Messages	–	to
open	the	“Messages”	window	Then,	click	Build,	Make	Project	(or	press	the	Ctrl
+	F9	shortcut)	to	start	building	The	“Messages”	window	will	soon	display	a
confirmation	of	success,	or	report	any	errors	that	need	fixing

Fix	any	reported	errors	if	necessary,	then	build	again	until	you	see	a
confirmation	of	success

If	the	build	attempt	fails,	look	for	red	lightbulb	icons	in	the	code	–	Android
Studio	adds	these	so	you	can	easily	find	and	correct	errors.

Testing	the	application

Once	an	application	project	has	built	successfully,	it	is	ready	to	be	tested.

Once	an	application	project	has	built	successfully,	it	is	ready	to	be	tested.
Testing	can	be	performed	on	a	real	Android	device,	connected	to	your	computer
via	a	USB	socket,	or	on	an	Android	Virtual	Device	(AVD)	emulator.	AVDs
allow	you	to	test	how	the	app	will	perform	on	a	range	of	devices,	but	they	do	use
more	system	resources	and	can	be	painfully	slow.	Applications	should	be	tested
on	at	least	one	phone	device	and	one	tablet	device:

Click	Run,	Run	‘app’	(or	press	the	Shift	+	F10	shortcut)	to	open	the
“Select	Deployment	Target”	dialog

Select	an	AVD	phone	emulator	to	connect,	then	click	OK	to	install	the
Lotto	app	on	the	emulator

Push	the	app	button	to	see	the	TextView	content	unhappily	wrap	on	this
small	device	screen

Edit	activity_main.xml	to	reduce	the	text	size	android:textSize=”32sp”

Click	Build,	Rebuild	Project	to	apply	the	change,	then	run	the	app	in	the
emulator	once	more	to	see	the	solution

Creation	of	each	AVD	emulator	may	require	a	large	system	image	file	to
be	downloaded.	You	may	prefer	to	test	on	a	real	Android	device.	Also
note	that	accelerated	emulators	will	only	run	if	your	computer	has	a	CPU
that	supports	hardware	virtualization	(Intel	VT-x	or	AMD	SVM).

Android	Studio	has	an	Instant	Run	feature	that	automatically	updates
changes	to	the	app	so	they	appear	in	the	test	device	more	quickly.

It	is	better	to	test	on	real	devices	rather	than	the	emulators.	Ideally,	you
should	test	on	as	many	different	devices	as	possible	before	final
deployment	of	apps.

Take	an	Android	tablet	and	enable	“USB	Debugging”	on	the	Settings,
Developer	Options	menu	Connect	the	tablet	to	your	computer	via	a	USB
port	to	see	this	notification

Click	Run,	Run	‘app’	(or	press	the	Shift	+	F10	shortcut)	to	open	the
“Select	Deployment	Target”	dialog

Select	the	connected	tablet	device,	then	click	OK	to	install	the	Lotto	app
on	the	tablet	Push	the	app	button	to	see	the	Lotto	app	happily	perform	as
expected	–	a	successful	test

The	test	processes	provide	an	application	launcher	so	the	tablet	can	be
disconnected	and	the	app	launched	by	tapping	the	launcher	icon	–	but	remember,
this	is	a	Debug	build	of	the	app.

If	you	cannot	see	Developer	Options	on	the	Android	Settings	you	can
enable	it	by	tapping	on	the	Build	Number	seven	times	–	typically	found	at
Settings,	About,	Software	Information,	Build	Number.

Android	Studio	provides	a	default	image	launcher	icon,	but	you	can	use

your	own	image.	In	the	Project	window,	right-click	on	the	res	folder	then
choose	New,	Image	Asset	to	open	the	Asset	Studio,	then	select	Image
and	browse	to	an	image	you	wish	to	import	into	the	project.

Deploying	Android	apps

After	successful	testing,	the	development	Debug	version	of	an	app	should	be
changed	to	a	Release	version	before	deployment	as	an	Android	Application
Package	(APK).	Android	requires	that	all	APKs	must	be	digitally	signed	with	a
certificate,	and	Android	Studio	allows	you	to	easily	generate	a	signed	APK:

Click	Build,	Select	Build	Variant,	then	choose	the	release	version	option

Next,	click	Build,	Generate	Signed	APK

Enter	existing	keystore	details	or	click	Create	new...

Choose	a	location	at	which	to	save	the	keystore,	then	enter	passwords

Select	your	preferred	validity	period,	then	enter	certificate	information	

Click	OK	to	create	the	new	keystore

Click	Next	to	use	the	new	keystore	to	generate	a	signed	APK	for	the	app

Additional	steps	are	required	if	you	wish	to	distribute	your	apps	via	the
Google	Play	Store.	You	can	discover	what	is	needed	online	at
developer.android.com/distribute/tools/launch-checklist.html

A	keystore	holds	one	or	more	corresponding	public/private	key	pairs.
You,	as	the	owner	of	the	certificate,	retain	the	private	key	while	the
Android	Studio	signing	tool	attaches	the	public	key	certificate	to	the	APK.
This	uniquely	associates	the	APK	to	you	and	your	corresponding	private
key	to	ensure	that	any	future	updates	to	the	APK	come	from	the	original
developer.

Choose	a	location	at	which	to	save	the	APK	and	be	sure	the	Build	Type	is
“release”,	then	click	Finish	to	generate	a	signed	APK	named	app-
release.apk

https://developer.android.com/distribute/best-practices/launch/launch-checklist.html

Upon	success,	change	the	APK	name	to	a	more	meaningful	Lotto.apk

A	product	flavor	can	be	specified	to	define	different	customized	builds	of
the	app.	For	example,	the	button	text	on	a	Spanish	language	flavor	as
“Consigue	mis	números	de	la	suerte”.

The	Android	app	APK	can	now	be	deployed	in	several	ways:	• App	Marketplace
–	publish	on	Google	Play	Store	• Email	–	send	direct	as	an	attachment	• Website	–
host	online	for	download	Installation	of	APKs	from	sources	other	than	Google
Play	is	blocked	unless	the	user	opts	to	allow	them:

On	an	Android	device,	go	to	Settings,	Security	and	opt	to	“Allow
installation	of	apps	from	unknown	sources”

Next,	download	Lotto.apk	to	the	Android	device	Navigate	to	the	download
folder	and	click	Install,	then	tap	the	 	launcher	icon	to	run	the	app

Summary

• Java	programs	can	be	deployed	as	stand-alone	desktop	applications	running
on	an	appropriate	version	of	the	JRE.

• Application	files	can	be	distributed	for	execution	on	other	operating	systems
using	the	appropriate	java	interpreter.

• Bundling	all	program	files	into	a	single	JAR	archive	file	helps	ensure
resource	files	do	not	become	accidentally	isolated.

• Executable	JAR	applications	can	be	executed	from	a	prompt	with	the	java	-jar
command	or	by	clicking	on	their	file	icon.

• Java	programs	can	be	readily	converted	for	the	Android	operating	system	as
it	includes	similar	core	libraries.

• Android	Studio	is	the	official	IDE	for	the	development	of	Android
applications.

• APK	and	JAR	archive	files	are	both	compressed	in	ZIP	format.

• Each	Android	app	is	first	created	as	a	project	to	which	the	developer	adds
code	and	resources.

• The	most	used	windows	in	the	Android	Studio	interface	are	the	Project
window	and	the	Editor	window.

• Functional	code	can	be	added	to	the	MainActivity.java	file	and	interface
components	added	to	the	activity_main.xml	file.

• An	Android	app	can	store	images	and	strings	as	resources.

• The	signature	of	a	button’s	onClick	event-handler	must	include	a	parameter
for	a	View	class	object.

• Interface	components	can	be	referenced	in	code	by	specifying	their	identity
as	the	argument	to	findViewById().

• Android	Studio	provides	AVD	emulators	for	testing	and	also	allows	testing
to	be	performed	on	real	connected	devices.

• The	Release	version	of	an	Android	app	must	be	digitally	signed	with	a	public
key	certificate.

	Title
	Copyright
	Contents
	Preface
	1 Getting started
	Introduction
	Installing the JDK
	Writing a first Java program
	Compiling & running programs
	Creating a variable
	Recognizing data types
	Creating constants
	Adding comments
	Troubleshooting problems
	Summary

	2 Performing operations
	Doing arithmetic
	Assigning values
	Comparing values
	Assessing logic
	Examining conditions
	Setting precedence
	Escaping literals
	Working with bits
	Summary

	3 Making statements
	Branching with if
	Branching alternatives
	Switching branches
	Looping for
	Looping while true
	Doing do-while loops
	Breaking out of loops
	Returning control
	Summary

	4 Directing values
	Casting type values
	Creating variable arrays
	Passing an argument
	Passing multiple arguments
	Looping through elements
	Changing element values
	Adding array dimensions
	Catching exceptions
	Summary

	5 Manipulating data
	Exploring Java classes
	Doing mathematics
	Rounding numbers
	Generating random numbers
	Managing strings
	Comparing strings
	Searching strings
	Manipulating characters
	Summary

	6 Creating classes
	Forming multiple methods
	Understanding program scope
	Forming multiple classes
	Extending an existing class
	Creating an object class
	Producing an object instance
	Encapsulating properties
	Constructing object values
	Summary

	7 Importing functions
	Handling files
	Reading console input
	Reading files
	Writing files
	Sorting array elements
	Making array lists
	Managing dates
	Formatting numbers
	Summary

	8 Building interfaces
	Creating a window
	Adding push buttons
	Adding labels
	Adding text fields
	Adding item selectors
	Adding radio buttons
	Arranging components
	Changing appearance
	Summary

	9 Recognizing events
	Listening for events
	Generating events
	Handling button events
	Handling item events
	Reacting to keyboard events
	Responding to mouse events
	Announcing messages
	Requesting input
	Summary

	10 Deploying programs
	Producing an application
	Distributing programs
	Building Java archives
	Deploying applications
	Creating Android projects
	Exploring project files
	Adding resources & controls
	Inserting Java code
	Testing the application
	Deploying Android apps
	Summary

	Back Cover

